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Abstract: Plants must balance both beneficial (symbiotic) and pathogenic challenges from microor-
ganisms, the former benefitting the plant and agriculture and the latter causing disease and economic
harm. Plant innate immunity describes a highly conserved set of defense mechanisms that play
pivotal roles in sensing immunogenic signals associated with both symbiotic and pathogenic microbes
and subsequent downstream activation of signaling effector networks that protect the plant. An
intriguing question is how the innate immune system distinguishes “friends” from “foes”. Here, we
summarize recent advances in our understanding of the role and spectrum of innate immunity in
recognizing and responding to different microbes. In addition, we also review some of the strategies
used by microbes to manipulate plant signaling pathways and thus evade immunity, with empha-
sis on the use of effector proteins and micro-RNAs (miRNAs). Furthermore, we discuss potential
questions that need addressing to advance the field of plant–microbe interactions.
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1. Introduction

The constant exposure of plants to microorganisms in the surrounding environ-
ment can result in disease and consequent severe economic damage to agriculture [1].
To protect themselves from pathogen attacks, plants have evolved a sophisticated, multi-
layered immune system involving constitutive and inducible defenses to detect pathogenic
microbes [2]. Unlike vertebrates, plants mainly rely on innate immunity to combat pathogens
due to their lack of an adaptive immune system.

Plants detect microbes through recognition of specific microbial structures by pattern
recognition receptors (PRRs), which always localize at the plasma membrane and work
with coreceptors [3]. PRRs consist of receptor-like kinases (RLKs) and receptor-like proteins
(RLPs): RLKs possess an intracellular kinase domain, a transmembrane domain, and an
extracellular domain, while RLPs lack the intracellular domain but contain the other two
domains [4–7]. RLKs and RLPs, as the first defense barrier, detect microbe-associated
molecular patterns (MAMPs) to initiate pattern-triggered immunity (PTI). However, some
pathogens can evade PTI by secreting effector proteins into plant cells to interfere with
MAMP detection and/or subsequent signal transduction, with consequent disease devel-
opment. Plants have in turn evolved another robust and rapid immune response, namely
effector-triggered immunity (ETI), to detect pathogen effectors, a process that depends
on intracellular nucleotide-binding leucine-rich repeat (NLR) proteins [8]. Plant NLRs
comprise a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB-
ARC) domain, and an N-terminal domain that may be a coiled-coil domain, a resistance
to powdery mildew 8 (RPW8) domain, or a toll/interleukin-1 receptor homology (TIR)
domain [9,10]. Recently, the structures of some NLRs have been resolved, providing a basis
for understanding plant NLRs [9,11–13]. Generally, PRRs function as extracellular immune
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receptors while NLRs mediate intracellular defenses. Together, PRRs and NLRs cooperate
to defend against invaders.

However, some microorganisms can establish a symbiotic relationship with the plant
that is beneficial to the plant host. For example, arbuscular mycorrhizal (AM) fungi collabo-
rate with most land plants to improve their phosphorus nutrition through the establishment
of symbiotic interactions. In addition, another widely studied symbiosis is the relationship
between rhizobia and legume plants, in which rhizobia fix atmospheric nitrogen and trans-
fer it to the plant. In these cases, beneficial microbes are subjected to the plant immune
system as pathogens, but they could survive. However, the underlying mechanism(s) dic-
tating this outcome remains uncertain. Is symbiosis a result of an absent immune response
upon recognition of beneficial microbes or do symbiotic microbes overcome plant defense
mechanisms? How plants distinguish “friend” from “foe” is a further intriguing question,
particularly as MAMPs are conserved in both symbiotic and pathogenic microbes [14].
Emerging evidence suggests that the establishment of symbiotic interactions is an intricate
process that requires contributions from both plants and microorganisms. In this review,
we highlight the importance of plant immunity in the recognition of different microbes and
discuss how plant immune pathways are tightly manipulated in symbiotic relationships,
focusing on the association between plants and AM fungi and rhizobia. Understanding the
molecular mechanisms underpinning immune responses and tolerance will give us some
guidance to foster beneficial microbial symbiosis while repudiating pathogenic interaction
and thus, ultimately, contribute to improving crop production.

2. The Plant Immune System

The plant immune system includes local immunity with PTI and ETI as well as sys-
temic immunity with systemic acquired resistance (SAR) and induced systemic immunity
(ISR). Systemic immunity refers to systemic signals spread from the affected site to unaf-
fected tissues to enhance resistance to a subsequent secondary stress. For example, the
differentiated outer cell layers display low protein level of PRRs and deficient PTI in
Arabidopsis thaliana. However, these cells could be induced to highly express PRRs and be
responsive to pathogens by neighbor cell damage, suggesting that a local immune response
could be induced in nonresponsive cells [15]. SAR is triggered by pathogens and is primar-
ily associated with salicylic acid (SA)-dependent signaling [16], whereas ISR is induced
by beneficial microbes with jasmonic acid (JA) or ethylene (ET) signaling independent of
SA [17]. The SA and JA pathways have a well-documented antagonistic relationship [18].
In addition, a novel immune strategy, termed general non-self response (GNSR), has been
identified in Arabidopsis thaliana. GNSR involves a core set of 24 genes that are consistently
induced in plant responses to the microbiome, indicating that plants use their immune
systems to shape their microbiota [19]. Here, we focus on how the plant innate immunity
functions appropriately during its interactions with microbes.

Plants detect microbes through MAMPs or microbial effectors. Plenty of MAMPs
have been identified, including β-glucans and the eicosapolyenoic acid (EP) of oomycete,
bacterial flagellin peptide flg22, peptidoglycan (PGN), lipopolysaccharide (LPS), EF-Tu
peptide elf18, lipopeptides, fungal wall component chitin, and chitosan [20]. The first layer
of the immune response begins when PRRs sense MAMPs. This then triggers the activation
of downstream plasma membrane-associated receptor-like cytoplasmic kinases (RLCKs),
followed by a ROS burst, calcium influx, and mitogen-activated protein kinase (MAPK)
cascades encompassing a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK),
and a MAPK (MPK) (Figure 1) [21,22]. In addition, MPK cascade activation by chitin
elicitor induces the expression of MYB transcription factors MYB30, MYB55, and MYB110,
resulting in the accumulation of ferulic acid together with enhanced resistance to pathogens
in rice [23]. These studies indicate that robust defense response involves multiple alterations
in gene expression, protein modifications, and synthesis of secondary metabolites.
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Figure 1. Schematic summary of plant innate immune signaling pathways. MAMPs, sensed by
membrane-localized PRRs which work with RLCKs, trigger immune responses, which typically
involve MAPK cascades, a ROS burst, a Ca2+ influx, and upregulation of transcription factors such as
MYB30, MYB55, and MYB110 to induce defense gene expression. For example, upon flg22 detection,
BIK1 is phosphorylated by FLS2-BAK1, followed by monoubiquitination by RHA3A/B and then
dissolution from the FLS2-BAK1 complex to phosphorylates RbohD to promote ROS production
and cyclic nucleotide-gated channels to increase the concentration of cyclic calcium. ROS produc-
tion is negatively regulated by the PBL13-PIRE complex which phosphorylates and ubiquitinates
RbohD. Additionally, BSK1 disassociates from the FLS2-BAK1 complex when flg22 is detected and
subsequently phosphorylates MAPKKK to induce downstream signals. In addition, Ca2+-dependent
kinases (CDPKs), such as CDPK5, have been shown to be involved in PTI by activating NADPH
oxidases. However, another Ca2+ sensor, CBL-interacting protein kinase 14 (CIPK14), negatively reg-
ulates MAPK-mediated immune responses and SA production. Furthermore, the EFR/BAK1/BKK1
complex shares common signaling pathways with FLS2 in response to elf18. In addition, fungal chitin
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is hydrolyzed by chitinase and releases COs to trigger an immune response. For example, CO8 is
recognized by AtCERK/AtLYK5 and OsCERK/OsCEBiP in Arabidopsis thaliana and Oryza sativa,
respectively. AtCERK/AtLYK5 and OsCERK/OsCEBiP associates with their RLCKs to initiate
downstream immune responses, including a ROS burst and activation of an MPK cascade. Some
pathogens secrete effector proteins into the host cell to interfere with MAMP detection and/or
subsequent signal transduction. In response, plants have evolved ETI to detect pathogen effectors,
which is mediated by intracellular NLR receptor proteins such as CC-NLR and TIR-NLR. For example,
uridylylated PBL2 (PBL2UMP) is recruited by the ZAR1-RKS1 complex, which forms the ZAR1-RKS1-
PBL2UMP resistosome. The resistosome localizes to the membrane and is controlled by Ca2+ to initiate
ETI by triggering a ROS burst. Endogenous phytohormones, such as SA, JA, and ET, as well as small
RNAs (sRNAs) are also induced and contribute to plant immunity.

Several RLCKs are thought to link PRRs to key downstream signaling pathways, such
as RLCK subfamily II components in Arabidopsis: botrytis-induced kinase 1 (BIK1), PBS1-
like 1 (PBL1), and brassinosteroid signaling kinase 1 (BSK1) [22,24–27]. The extensively
studied bacterial PAMPs that elicit immune responses are flg22 and elf18. For instance, once
flg22 is detected, FLS2 instantaneously forms a complex with brassinosteroid insensitive
1-associated kinase 1 (BAK1) and concomitantly interacts with BIK1 [24,25]. Subsequently,
BIK1 is phosphorylated by BAK1, followed by monoubiquitination by ring-H2 finger
A3A (RHA3A) and RHA3B and then dissolution from the FLS2-BAK1 complex to activate
immune signaling [28]. As a serine/threonine kinase, activated BIK1 subsequently phos-
phorylates the N terminus of NADPH oxidase RbohD to promote ROS production [29,30]
and cyclic nucleotide-gated channels to increase the concentration of cyclic calcium [31].
Many calcium-dependent kinases (CDPKs), including CDPK5, are also involved in ROS
production [32]. However, another Ca2+ sensor, CBL-interacting protein kinase 14 (CIPK14),
negatively regulates MAPK-mediated immune responses and SA production [33]. In addi-
tion, flg22 activates MAPK cascades to upregulate defense genes [34–36]. It has been shown
that BSK1, another RLCK member, may transduce upstream cues to activate MAPK cas-
cades. Similar to BIK1, BSK1 associates with FLS2 in the absence of flg22, but disassociates
from the complex when flg22 is detected [27]. Activated BSK1 then phosphorylates MAP-
KKK5 which associates with multiple MAPK kinases to induce downstream signals [36].
Similarly, EFR forms a complex with BAK1 and BAK1-LIKE 1 (BKK1) [37,38] and shares
common signaling pathways with FLS2 in response to elf18 [39,40].

Additionally, plants also have powerful mechanisms to sense fungi, which mainly
depend on the recognition of chitin. Chitin, a conserved structural component of fungal
cell walls, is a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc). To avoid fungal
infection, plants secrete chitinases that hydrolyze chitin and release chitooligosaccharides
(COs). Chitin hexamers (CO-6) or octamers (CO-8), as breakdown products, are recognized
by lysin motif (LysM)-containing RLPs or RLKs to initiate intracellular immune signaling
(Figure 1) [41,42]. In Arabidopsis thaliana, chitin is detected by the LysM-receptor kinases
AtCERK1 and AtLYK5, in which AtLYK5 has a higher affinity for COs, while AtCERK1
is an indispensable coreceptor with modest affinity [43]. In addition, AtLYK4 was shown
to be involved in chitin signaling by associating with AtLYK5 [44], or recognizing COs
directly [45]. Notably, AtCERK1, but not AtLYK5 or AtLYK4, has kinase activity, sug-
gesting that AtCERK1 is responsible for initiating immune responses. It has been shown
that chitin rapidly induces autophosphorylation of AtCERK1 at multiple residues in the
kinase and juxtamembrane domains, which is pivotal for chitin-induced signaling [46].
Activated AtCERK1 thus activates downstream members of RLCK subfamily VII which
contains 46 members in Arabidopsis thaliana, including PBL1 to PBL43, PBS1, CDG1, and
BIK1 [24,26,47–50]. In brief, chitin initiates the removal of BIK1 from AtCERK1, and BIK1
in turn phosphorylates and activates NADPH oxidase and cyclic nucleotide-gated channel
proteins, such as CNGC2 and CNGC4, leading to ROS production [29] and increased
cytosolic calcium [31]. In addition, RLCK VII-4 subfamily members, including PBL19,
could phosphorylate MAPKKK5 to activate MAPKKK5-MKK4/5-MPK3/6 cascades and



Int. J. Mol. Sci. 2022, 23, 10427 5 of 14

MEKK1 to promote MPK4 activation and defense gene expression [34]. Moreover, activated
MPK3/6 and MPK4 in turn phosphorylate MAPKKK5 and MEKK1, serving as positive
feedback mechanisms [34].

In Oryza sativa, chitin detection involves OsCEBiP and OsCERK1. Although OsCEBiP
binds COs with higher affinity, it does not have a cytoplasmic domain [51]. Considering
that OsCERK1 does not associate with chitin but possesses a kinase domain, it is thought
that OsCEBiP interacts with chitin and subjects it to its partner OsCERK1 to induce immune
signaling [51,52]. Briefly, a single chitin fragment crosslinks two OsCEBiP molecules to
promote OsCEBiP dimerization, after which OsCEBiP associates with OsCERK1 to form an
active hetero-oligomeric receptor complex, which has been suggested to act as a “sandwich-
like” homodimer [52,53]. In this model, OsCERK1 is activated via autophosphorylation
and in turn interacts with and phosphorylates OsRLCK185, a member of the RLCK VII
family. Subsequently, OsRLCK185 phosphorylates distinct substrates to initiate an immune
response [54–58]. In addition, other RLCK VII members, like OsRLCK118 and OsRLCK176,
participate in ROS generation by phosphorylating the NADPH oxidase OsRbohB [59].

Although successful pathogens can escape the first layer of plant innate immunity
by transferring effector proteins to host plants, plant cells employ NLRs to recognize
these effectors both directly and indirectly, and initiate ETI to drive the infected cell to
programmed cell death. For example, AvrPphB secreted by Pseudomonas syringae cleaves
RLCK PBS1 to suppress PTI [24,60]. However, this process could be monitored by NLR
protein resistance to pseudomonas syringae 5 (RPS5) and elicits RPS5-specified ETI [60].
Likewise, the effector protein AvrRpt2 activates NLR protein resistance to pseudomonas
syringae 2 (RPS2) through eliminating the RPS2-bound RIN4 protein in Arabidopsis [61,62].
Additionally, the tomato NLR protein Prf associates with Pto kinase to recognize the effector
protein AvrPto [63]. Recently, a pan-genomic analysis of numerous Pseudomonas syringae
strains identified many unique effector protein sequences that are surprisingly recognized
by only a small number of NLRs, suggesting a pervasive role for ETI [64]. Notably, the
molecular mechanisms underlying plant NLR activation have recently begun to be revealed
by a series of elegant studies that reconstituted and solved the structure of Arabidopsis NLR
receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). In two recent seminal articles [9,12],
the authors first investigated the 3D structure of the ZAR1-RKS1 complex and showed that
the ZAR1-RKS1-PBL2UMP complex induced the replacement of an ADP molecule by an
ATP molecule with ZAR1, resulting in the full activation of this complex and formation of
the pentameric ZAR1 resistosome [9,65]. More importantly, the ZAR1 resistosome has been
shown to form pentameric complexes in the plant cell plasma membrane, where it acts as a
calcium-permeable channel triggering plant immune signaling [11]. The discovery of the
ZAR1 resistosome is a breakthrough in our understanding of NLR-mediated immunity.

In summary, it is widely accepted that the RLP/RLK-RLCK signaling module plays
important roles in MAMP-triggered immune responses. However, the exact contributions
of most RLCK members to immune signaling still require further clarification. In addition,
the immune signaling pathways are also controlled by negative regulators. For example,
the complex formed from RLCK PBL13 and an E3 ligase PIRE phosphorylates RbohD and
enhances its ubiquitination to negatively regulate ROS production during immunity [66].
Moreover, great efforts are also needed to uncover how NLR proteins recognize various
effectors and initiate immune responses.

3. Interplay between MAMP- and Effector-Triggered Immunity

Remarkably, several recent studies have suggested that PRR- and NLR-mediated signal-
ing extensively cross-talk to significantly influence immune response outcomes [10,67–72]. For
example, the NLR protein recognition of Peronospora parasitica 2 (RPP2)- and RPP4-mediated
ETI-associated pathogen restriction in Arabidopsis against Hyaloperonospora arabidopsidis (Hpa)
races Emoy2 and Cala2 requires the RLK/PLP co-receptors BAK1 and BKK1 [37]. Fur-
thermore, avrRpt2 activates RPS2-dependent ETI in wild-type plants [61,62] but fails to
elicit effective ETI in fls2/efr/cerk1 and bak1/bkk1/cerk1 triple mutants in Arabidopsis [68,73].
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Moreover, BIK1 has recently been identified to be required for ROS burst, immune gene
expression, and resistance during ETI [68]. Consistently, pre-activation of ETI by AvrPps4
increases the flg22-induced production of ROS, suggesting that ETI enhances PTI re-
sponses [74]. In addition, it has been recently shown that MPK3/6 control the SA com-
ponent of defense through the expression of some NLR genes, thereby bridging PTI and
ETI [69]. Similarly, activation of TIR signaling fosters PTI, as demonstrated by a recent
study showing that PTI is attenuated in plants with reduced NLR protein levels [70]. Taken
together, there is increasing evidence that PTI and ETI cooperate to guarantee robust
immunity, although the precise molecular mechanisms still need further exploration.

4. Establishment of Symbiosis

The symbiotic interaction between rhizobia and leguminous plants involves multiple
processes that begin with pre-infection events in the rhizosphere [75]. Under nitrogen-
limiting conditions, flavonoids are produced by legume roots and are secreted into the
rhizosphere to recruit symbiotic partners [76]. When flavonoids are detected by rhizobia,
lipochitooligosaccharides (LCOs), known as Nod factors, are synthesized [75,77,78]. In
symbiosis, Nod factors are also perceived by LysM-RLKs. In Lotus japonicus, Nod factors
are recognized by NFR1 kinase and NFR5 pseudokinase, whereas the kinase and pseudok-
inase are LYK3 and NFP, respectively, in Medicago truncatula [79–82]. The perception of
Nod-LCOs elicits downstream signal-transduction [83], which induces the formation of
infection threads and nodule organogenesis [84]. Another important signaling pathway
involved in legume-rhizobium symbiosis is the type III secretion system (T3SS). The T3SS is
widely found in pathogenic bacteria [85,86], and it delivers virulence effectors to host plants
to manipulate host biological processes [87]. Interestingly, some rhizobia possess T3SSs,
which can be induced by flavonoids to secrete nodulation outer proteins [88], thereby
suppressing plant defense reactions. Nonetheless, some nodulation outer proteins activate
plant immune responses [88–90]. For example, nodulation outer protein L (NopL) secreted
by Rhizobium sp. NGR234 decreases the protein level of chitinase and therefore suppresses
the transcription of resistance genes in both Nicotiana tabacum and Lotus japonicus [88]. In
addition, nodulation outer protein M (NopM) is also secreted by Rhizobium sp. NGR234
and it has E3 ubiquitin ligase activity in vitro. Transgenic Nicotiana benthamiana plants
that express nopM exhibit suppressed flg22-induced PTI. However, NopM induces the
expression of resistance genes in the transgenic plants [89]. All these data suggest that sig-
naling pathways involved in immune responses are tightly regulated in the establishment
of symbiosis.

Similarly, the establishment of AM symbiosis requires presymbiotic communication
which depends on mutual signal exchange between fungi and host plants. The recipient
plant root extrudes strigolactones (SLs), a class of phytohormone, which act as stimulants
of hyphal branching and fungal metabolism [91]. Simultaneously, AMFs secrete Myc
factors including sulfated and nonsulfated mycorrhizal-lipochitooligosaccharides (Myc-
LCOs) and short-chain COs, such as CO4 and CO5, to elicit presymbiosis responses in
the host [92,93]. Both Myc-LCOs and COs are chemically closely related to the MAMPs
CO7 and CO8, which elicit plant PTI [43,94–96]. It has been shown that OsCERK1 is
involved in AM symbiosis [97,98] and recognition of COs, as shown in a study in which
CO-dependent nuclear Ca2+ spiking was impaired when OsCERK was mutated in rice [99].
Furthermore, OsCERK1 homologs in Medicago truncatula and Pisum sativum, MtLYK9 and
PsLYK9, also function as bifunctional receptors that participate in AM symbiosis and
defense responses [100,101].

Importantly, given that OsCERK1 is unable to bind to CO4 and CO5, it is therefore
likely that there are additional proteins other than CEBiP and NFR5 that associate with
OsCERK1 for AMF ligand perception [102]. Recently, Myc factor receptor 1 (OsMYR1)
was identified as an OsCERK1 binding partner for detecting Myc-CO4, as demonstrated
by the finding that the Osmyr1 mutant had low colonization with the AM fungus and
decreased symbiotic responses [103]. The same group also determined the molecular
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mechanism by which the OsMYR1/OsCERK1 complex elicits symbiosis rather than an
immune response [104]. Briefly, the symbiotic receptor OsMYR1 was shown to disrupt the
formation of the OsCERK1-OsCEBiP complex and stop OsCERK1 from phosphorylating the
downstream substrate OsGEF1, thereby decreasing the sensitivity of rice to MAMPs [104].
The perception of Myc factors by RLKs is thought to contribute to the establishment
of AM symbiosis through activating symbiotic responses including robust nuclear Ca2+

oscillations in the rhizodermis and transcriptional regulation of AM symbiosis-associated
genes [105,106].

The structural similarity of LysM-RLKs or the dual functions of the same RLK have
prompted the question of how RLKs initiate specific signaling for symbiosis or immunity.
Recently, several studies have begun to answer this question. An elegant study performed
in Lotus japonicus and Medicago truncatula revealed that the ectodomain of chitin-binding
receptor LjLYS6/MtLYK9 enables the kinase to bind long COs such as CO6, CO7, and CO8
instead of CO4, indicating the importance of the ectodomain in discriminating immuno-
genic and symbiotic factors [107]. Subsequently, another elegant study identified that two
diverging motifs in the LysM1 domain of NFR1 and CERK6 are responsible for discrimi-
nating between immunity and symbiotic functions in Lotus japonicus [41]. The molecular
mechanisms governing specific recognition of distinct signals by LysM receptors across
different plant species still need further investigation. In addition, a lysin motif effector,
RiSLM, has been shown to protect chitin from chitinases, and in doing so it efficiently inter-
feres with chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis [108]. In
summary, the strategies used by plants to distinguish pathogenic from symbiotic microbes
are complicated and still need investigation. The comparative analysis of different model
plants using proteomics, transcriptomics, and structural analysis would help deepen our
understanding of immunity and symbiosis.

5. Tight Regulation of Plant Immunity during Symbiosis

Several studies have now shown that the establishment of symbiotic associations is
always accompanied by a transient immune response [109–111]. For example, a transcrip-
tome analysis of Bradyrhizobium japonicum-inoculated soybean showed strong induction
of plant defense-related genes in the 12 h after inoculation but with expression returning
to the baseline within 24 h [109]. Similarly, AM fungus Glomus intraradices colonization
increased the transcriptional level of defense genes in rice leaves [111]. Therefore, the
symbiotic associations appear to be established on the basis of tightly regulated immunity.
Here, we focus on how plant immunity is tightly controlled during symbiosis.

Symbionts can evade recognition by the plant through MAMP divergence or effectors
that actively suppress defense responses (Figure 2). Bacterial polysaccharides, as polyan-
ionic molecules, can chelate calcium ions and thus suppresses innate immunity to enhance
symbiosis [112,113]. In line with this, roots inoculated with an exopolysaccharide-deficient
mutant of Sinorhizobium meliloti express upregulated plant defense genes compared to roots
inoculated with the wild type [113]. Furthermore, NFs have been shown to partially inhibit
PTI in a nodulation-independent manner, and this inhibition occurrs in both legumes
and non-legumes [114]. In addition, some LysM receptors, such as the newly identified
epidermal LysM receptor (NFRe), guarantee robust symbiotic signaling through phospho-
rylating NFR5, which in turn regulates NFRe downstream signaling. Consistently, mutants
of Nfre show an increased calcium spiking interval and fewer nodules in the presentence
of rhizobia [84]. Moreover, diacetyl, a bacterial volatile compound, can transit immunity
to symbiosis depending on phosphate availability. Diacetyl partially inhibits the ROS
burst and fosters symbiont colonization while phosphate is abundant. However, diacetyl
could enhance hormone-mediated immunity under phosphate-deficient conditions [115].
Another important strategy by which microbes invade the host plant immune system is by
interfering with plant PRR function via the delivery of effector proteins or small RNAs to
the apoplast or the host cell [116–118]. One example is Ecp6, a protein containing the LysM
domain, which competes with plant chitin receptors for ligand binding to prevent host
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immune activation through PRR ligand deprivation [119–121]. In addition, a recent study
revealed that the symbiosis receptor-like kinase (SymRK) associates with LjBAK1 to directly
inhibit LjBAK1 kinase activity and thus suppress innate immunity [122]. Co-infection of
the legume Medicago truncatula with rhizobium and pathogenic bacteria shows that nodules
display a weak defense response upon pathogen infection and provide a diffusion barrier
to prevent pathogens from spreading to the rest of the plant [123], indicating spatiotem-
poral suppression of PTI during symbiosis. It is of great significance to investigate how
plants maintain immune responses in a spatiotemporally specific manner while employing
distinct strategies for plant–microbe symbioses.
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Figure 2. Signaling pathways employed by microbes to evade plant immunity and establish symbiosis.
Beneficial microbes establish symbiotic interactions by secreting effectors that interfere with plant
immune systems. Nod factors, detected by NFR5/NFP, trigger calcium oscillations in the nucleus and
promote symbiosis. Recently, a new LysM receptor, NFRe, has been identified and guarantees robust
symbiotic signaling through phosphorylating NFR5. Furthermore, RiSLM, a lysin motif effector,
suppresses recognition of microbes by plants by protecting the cell walls from chitinases. Similarly,
the Ecp6 protein, which contains the LysM domain, competes with plant chitin receptors for ligand
binding to prevent host immune activation. Moreover, sRNAs from microbes have been found
to impact the host immune system and help establish symbiosis. In addition, microbial diacetyl
modulates the transition from immunity to symbiosis in a phosphate-dependent manner.

Plants also seem to directly suppress immunity signaling with endogenous small
RNAs (sRNAs) to promote symbiotic associations [124]. For example, upon rhizobia
infection, miR169 binds to polysomes and is decreased in polysomal complexes to accelerate
nodulation [125]. In another example, miR171b, expressed in arbuscule-containing cells,
promotes symbiosis as well [126]. Briefly, LOST MERISTEMS 1 (LOM1) is identified to
be a positive regulator of AM symbiosis and is a substrate of miR171 family members.
However, miR171b has a mismatched cleavage site and lacks the ability to downregulate the
transcription level of LOM1. Moreover, miR171b expression protects the LOM1 gene from
silencing by other miR171 family members. Moreover, high-throughput sRNA sequencing
of maize roots identified many miRNAs that regulate symbiosis via lipid metabolism,
phosphate starvation, or fatty acid metabolism [127]. For example, decreased levels of
miR399 are able to inhibit the expression of Pi starvation-inducible genes in the direct
Pi-uptake pathway, leading to reorganization of Pi uptake. Additionally, the decreased
expression of several miRNAs, such as zma-miR399b-5p, results in an increase of fatty
acid biosynthetic process genes’ expression, which promotes fatty acid metabolism and
lipid delivery from plants to AM fungi. A recent study reported that transfer-RNA-derived
sRNA fragments from rhizobial bacteria modulate host nodulation-associated genes by
employing the host’s RNAi machinery [128]. This transfer of sRNAs and subsequent
gene silencing in the target organism is known as cross-kingdom RNAi. Although many
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miRNAs have been reported to function in symbiosis, whether symbiotic microbes transfer
sRNAs to the host plant to repress plant immunity is largely unknown.

6. Conclusion and Perspectives

Recent studies have provided a detailed understanding of plant immunity. Microbial
MAMPs and/or effectors sensed by host plants trigger PTI and/or ETI. Studies of the
PRR and NLR networks have revealed that the perception of pathogenic invasion is highly
complex and probably requires the cooperation of multiple immunogenic signals [12].
Similarly, accumulating evidence indicates that a successful response requires complex
cooperation of multiple pathways

The establishment of mutualistic symbiosis requires beneficial microbes to either avoid
producing MAMPs, repress plant immunity, or both. Although some effector proteins or
small RNAs have been found to negate plant immunity, there are also more challenging
questions that relate to the interplay between immunity and symbiosis signaling. For
example, how do cross-kingdom sRNAs work synergistically? How does the plant cell
respond to many diverse signals received simultaneously? Are there any other strategies
employed by microbes to restrain host plant immunity? To solve these questions, transcrip-
tomic and proteomic analyses might be useful to screen for differentially expressed genes
and proteins at the global level during different stages of infection. Moreover, single-cell
sequencing technology is likely to be useful for identifying novel genes and proteins in-
volved in immunity and symbiosis at the single-cell level. Furthermore, a novel technology
called proteolysis-targeting chimeras (PROTACs), which degrade targeted proteins, could
help us investigate the functions of newly identified proteins [129,130]. In addition, we
cannot ignore the roles of protein post-translational modifications, such as ubiquitination,
phosphorylation, and acetylation, in plant–microbe interactions.

There has historically been a focus on the early stages of symbiosis and plant immunity,
but it is also interesting and necessary to understand the maintenance and termination of
these processes. Plants respond to invading microbes through complicated networks, but
clearly and comprehensively understanding these plant–microbe interactions will provide
the foundation to engineer disease resistance genes into important crops and help increase
crop yield.
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