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The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder

characterized by progressive muscle weakness and spasticity, remains largely unknown.

Approximately 5–10% of cases are familial, and of those, 15–20% are associated with

mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of

the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked

by the presence of altered SOD1, along with other toxic species, such as advanced

glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor,

RAGE (receptor for advanced glycation end products), and induce RAGE-dependent

cellular stress and inflammation in neurons, thereby affecting their function and leading

to apoptosis. Here, we show for the first time that the expression of RAGE is higher in

the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested

whether pharmacological blockade of RAGE may delay the onset and progression of

disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice

with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands

and blocks their interaction with cell surface RAGE, significantly delays the progression

of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in

sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly

higher number of neurons and lower number of astrocytes is detectable in the spinal

cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for

ALS intervention.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a progressive and
terminal neurological disorder, which results in severe disability and death within 5 years after
diagnosis (Ferraiuolo et al., 2011). Approximately 5–10% of cases are familial, and of those, 15–20%
are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1; Andersen
and Al-Chalabi, 2011). Multiple contributory factors in the pathogenesis of ALS include enhanced
oxidative stress, neuroinflammation, glutamate toxicity, mitochondrial dysfunction, neurofilament
disorganization, disordered axonal transport, and neuronal apoptosis (Ferraiuolo et al., 2011).
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Mutations of the SOD1 gene not only lead to the loss of biological
function of the SOD1 molecule but they also disrupt normal
cellular homeostasis and result in accumulation and aggregation
of mutated SOD1 as well as other molecular species such as
advanced glycation end products (AGEs; Albers and Beal, 2000;
Kato et al., 2001). AGEs trigger activation of RAGE (receptor for
advanced glycation end products) and along with reactive oxygen
species are primary contributors to cellular stress, endoplasmic
reticulum stress, accumulation of abnormal protein aggregates,
and mitochondrial dysfunction (Daffu et al., 2013).

RAGE, a member of immunoglobulin superfamily and a
multiligand cell surface receptor, binds to AGEs, such as
carboxymethyllysine (CML), and interacts with a number of
other molecules such as S100/calgranulin family members, High
Mobility Group Box-1 (HMGB1), and molecules that are prone
to aggregation and post translational modifications (Ding and
Keller, 2005), such as amyloid-β-peptide, linked to Alzheimer’s
disease (AD) and neurodegeneration (Chen et al., 2007; Schmidt
et al., 2009). Recently, we demonstrated that RAGE and its
inflammatory ligands S100B, CML-AGE, and HMGB1, were co-
expressed and upregulated in thoracic spinal cord samples of
human ALS patients compared to controls (Juranek et al., 2015).

Soluble RAGE (sRAGE) is a soluble form of RAGE lacking the
transmembrane region, composed of the extracellular domains
of the receptor. sRAGE acts as a RAGE decoy, thereby
inhibiting RAGE function and lowering levels of RAGE ligands,
effectively preventing harmful RAGE ligand effects on cells
(Schmidt, 2015). sRAGE can be produced and purified in vitro
from a baculovirus expression system, consisting of the three
extracellular RAGE domains, V-C-C, and can be used as a
biological agent (Schmidt et al., 1999). In pre-clinical studies
in animal models, therapeutic administration of sRAGE has
been shown to be beneficial in several conditions such as
improving wound healing in diabetic mice (Goova et al.,
2001), protection of the liver from reperfusion injury (Zeng
et al., 2004), suppression of periodontal bone loss in diabetic
mice with infection-mediated periodontitis (Lalla et al., 2000),
prevention of transmission of post-transplantation autoimmune
diabetes in NOD/scid mice (Chen et al., 2004), and marked
reduction in experimental autoimmune encephalomyelitis (EAE)
symptoms in the mouse model of multiple sclerosis (MS; Yan
et al., 2003). Other studies have shown that sRAGE treatment
was beneficial in diabetic atherosclerosis, polycystic kidney
disease, and autoimmunemyocarditis, alleviating symptoms, and
improving overall outcome of the disease (Jandeleit-Dahm et al.,
2005; Yang et al., 2014; Lee et al., 2015). Furthermore, in acute
liver damage secondary to massive hepatectomy, administration
of sRAGE prevented excess mortality (Cataldegirmen et al.,
2005).

Abbreviations: AD, Alzheimer’s Disease; AGEs, advanced glycation end products;

ALS, Amyotrophic lateral sclerosis; CML, carboxymethyllysine; DAPI, 4′,6-

diamidino-2-phenylindole; EAE, experimental autoimmune encephalomyelitis;

GFAP, Glial fibrillary acidic protein; HMGB1, High Mobility Group Box-1; RAGE,

receptor for advanced glycation end products;MS,multiple sclerosis;MSA,murine

serum albumin; sRAGE, soluble RAGE; PAP, peroxidase anti-peroxidase; PBS,

phosphate buffered saline; RAGE, receptor for advanced glycation endproducts;

SOD, superoxide dismutase.

In the present study, we tested for the first time whether
sRAGE treatment offers protection against premature cell death
in motor neurons of SOD1 transgenic mouse, thereby delaying
the onset and progression of ALS and improving overall health
status of these mice. Our findings demonstrate the upregulation
of RAGE in the spinal cord of SOD1 mice, and show that
sRAGE-treated SOD1 mice display improved lifespan, improved
functional motor performance scores, and less neuronal cell
death compared to vehicle-treated age-matched SOD1 transgenic
mice controls. The results of this first study testing RAGE as a
therapeutic target in ALS support further examination of this
receptor in this incurable disorder.

MATERIALS AND METHODS

Animals
Eight week old transgenic B6SJL-Tg (SOD1∗G93A) 1Gur/J mice
of both genders (stock number 0002726; Jackson Laboratories,
Bar Harbor, ME, USA) were used in the study. According
to the Jackson Laboratories site (http://jaxmice.jax.org/strain/
002726.html), transgenic mice have an abbreviated life span:
50% survive at 128.9 ± 9.1 days (Dal Canto and Gurney, 1994;
Alexander et al., 2004). These numbers were consistent with
our experimental records. Transgenic SOD1 females were kept
as internal controls and all males were weight-matched and
randomly divided into two groups; mice were injected daily with
either vehicle (murine serum albumin, MSA, 175 µg/day IP;
SigmaAldrich, St. LouisMO, USA) or soluble RAGE (175µg/day
IP; Park et al., 1998) beginning at 8 weeks of age and continued
until sacrifice at the terminal stage of the disease defined as the
end of the experiment. The final stage of the disease, as described
by the institutional guidelines issued by local Animal Care and
Use Committees of Columbia and New York Universities, was
determined by 20% weight loss or the animal’s inability to right
itself within 20 s when placed on its side (Lautenschlager et al.,
2013; Parone et al., 2013). The disease onset, accompanied by
posture and gait impairment, was defined as the time when
animals lost∼10% of their maximal weight, before any noticeable
decrease in motor performance tests (Parone et al., 2013). All
experiments were approved by Institutional Animal Care and
Use Committees of Columbia and New York Universities. All
animals were housed and treated in accordance with ethical
committee guidelines outlined in the Principles of Laboratory
Animal Care, NIH publication no. 86–23, with further revisions).
As there is a protective effect of estrogen and other gender-related
factors on the onset and progression of the disease in females,
to assure consistency of results, only male mice were used for
sRAGE studies (lifespan assessment and functional performance
experiments; Veldink et al., 2003; Heiman-Patterson et al., 2005).

RAGE Immunohistochemistry
Prior to the sRAGE injection experiment, a small group of
control and SOD1 mice were set aside to first investigate the
expression of RAGE in the lumbar spinal cord. Control and
SOD1 transgenic mice were sacrificed at the same time that
corresponded to the end stage of the disease as described earlier
(Juranek et al., 2013a). Briefly, immediately after collection,
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samples were transferred to fixative (4% paraformaldehyde
in distilled water) for 12 h, cryoprotected in 20% sucrose
solution for 24 h, mounted in optimal cutting temperature
compound (Tissue-Tek Optimal Cutting Solution, Sakura
Finetek, Zoeterwoude, Netherlands) and stored at −20◦C for
further processing. Frozen samples were cut transversely at 10
µm thickness on cryostat (Microm HM 550, ThermoFisher
Scientific, Waltham, MA, USA) and collected on polylysine-
coated slides (SuperFrost Plus, Fisher Scientific, Pittsburgh,
PA, USA), always in the same order—two control and two
SOD1 sections from one pair of animals per one slide set.
After slide collection, sections were allowed to dry for 2 h
at room temperature and processed according to standard
staining protocol. For immunofluorescence, dried sections
were incubated with blocking solution (Cas-block, Invitrogen,
Carlsbad, CA, USA) for 1 h and incubated overnight with
primary goat anti-RAGE IgG (1:100; Genetex, Irvine, CA,
USA). The following day sections were rinsed 4 × 5 min
in phosphate buffer saline (PBS), incubated with goat anti-
rabbit Alexa 594 (1:300; ThermoFisher Scientific, Waltham,
MA, USA) for 1 h, rinsed again 4 × 5min in PBS and
mounted in Vectashield fluorescent mounting medium with a
blue fluorescent dye DAPI (Vector Laboratories, Burlingame,
CA, USA). To control specificity of secondary antibodies and
minimize risk of false positive results, standard immunostaining
procedure with omission or replacement of primary antibodies
on sections from each tissue sample set was carried out
parallel to the experimental staining. Mounted sections were
allowed to stabilize for 30 min and afterwards examined with
immunofluorescent and/or confocal microscopy, respectively
(Leica DM2500 and Leica SP5 scanning confocal microscope;
Leica, Goettingen, Germany). Image acquisition parameters were
identical for each studied specimen.

Astrocytosis and Neuronal Immunostaining
and Quantification
Quantification of lumbar ventral horn motor neurons and glial
cells was performed on 4% paraformaldehyde-fixed end-stage
spinal cords from MSA- and sRAGE-injected SOD1 mice. For
neuronal counts, 10 µm thick sections of lumbar spinal cord
were cut serially on the cryostat and stained with Cresyl Violet
following standard histological protocol. For astrocytosis counts,
10 µm thick spinal cord sections were stained with primary
rabbit anti-GFAP antibody (astrocyte marker; 1:150; Abcam,
Cambridge, MA, USA) followed by staining with biotinylated
secondary antibodies according to the standard peroxidase anti-
peroxidase (PAP) protocol provided with the kit (Vectastain
ABC Kit, Vector Laboratories, Burlingame, CA, USA). For each
condition, 25 sections were studied, five sections per one tissue
sample, 50 µm between sections within each tissue sample.
Representative regions of interest, 200 × 200 µm, outlining
ventral horn regions were analyzed and the same region was
analyzed in each sample. All sections were examined with the
Leica microscope (Leica, Wetzlar, Germany) and quantified
using Image J analysis tool (Image J open source software;
http://rsbweb.nih.gov/ij/).

RNA Isolation and Quantitative RT-PCR
Total RNA was extracted from mouse lumbar spinal cord tissue
samples using the RNeasy mini kit (Qiagen, Valencia, CA) and
cDNA was synthesized with iScript cDNA Synthesis Kit (BioRad,
Hercules, CA, USA). Quantitative Real Time PCR for the gene
encoding mouse RAGE, Ager, was performed using the TaqMan
Fast Universal Master Mix 2X with a pre-made primer set
(Mm01134790_g1) (Life Technologies, Carlsbad, CA, USA). The
relative expression of Ager was normalized to the expression of
Ipo8 housekeeping gene. The statistical significance of differences
was evaluated by Wilcoxon Signed-Rank Test.

Lifespan, Survival Probability, and Weight
Loss Assessment
Survival probability is defined as the probability of surviving over
a specific length of time (Goel et al., 2010). The Kaplan–Meier
estimate was specifically designed to calculate the probability of
survival over a specific length of time (Kaplan and Meier, 1958;
Goel et al., 2010; Rich et al., 2010). In this study, we used the
survival probability calculated from the onset of disease until the
predicted time of death, estimated by the number of mice that
survived over 130 days if no treatment was given. Kaplan–Meier
survival analysis was performed using XLSTAT (Belmont, MA,
USA) and the log-rank test was used to compare survival curves.
The final endpoint followed by humane sacrifice was determined
as 20% of initial weight loss or the animal’s inability to right
itself within 20 s when placed on its side. Animal’s weight was
monitored from the 8th week of age until the final end point as
described above.

Motor Function Tests
Measurement of motor function was performed using standard,
widely-used and well-established procedures (NRCC, 2003).
SOD1 transgenic mice begin to exhibit a decline in motor
function andmuscle strength at∼age 8–10 weeks, which worsens
as the disease progresses. All mice were trained and acclimated
to the procedure for 2 weeks prior to study start time, i.e.,
at the age of 8 weeks. All tests were performed twice per
week until mice no longer were able to perform the tests in
an appropriate and reliable manner due to the progression of
motor dysfunction. In all cases, the operator was naïve to the
experimental condition, andmice were given to the operator one-
by-one by an investigator aware of the treatment code. Triplicate
assessments were performed and the mean value was recorded
for each test session. Animals were given 1-min breaks between
each individual test replicate and 60 min between tests of muscle
and grip strength.

Muscle Strength Test
Muscle strength was measured using the hanging wire test as
described (Calvo et al., 2011). Briefly, each animal was placed on
the conventional cage wire lid, turned upside down 50 cm above
the padding and observed for up to 60 s. The amount of time the
mouse could hold on to the wire was recorded as the latency time
to falling down. As described in the Supplementary Movie 1: At
the beginning of the testing period, all mice were able to hold
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FIGURE 1 | Increased expression of RAGE in SOD1 transgenic mouse

lumbar spinal cord. Immunohistochemistry: lumbar spinal cord was stained

for RAGE using standard immunofluorescent technique in control (left) and

SOD1 transgenic ALS (right) mice. Representative images from n = 3

mice/group are shown. Scale bar = 25 µm.

on to the wire for the entire time (60 s). However, as the disease
progressed, the time they were able to stay attached to the wire
was reduced, measured as a fall latency and animals were falling
off before the 60 s cut-off. More information on the procedure
itself can be found in the following reference, Aartsma-Rus and
van Putten (2014).

Grip Strength
This test was used to assess muscle strength in limb muscles.
Hind limb grip force was measured following the manufacturer’s
training guidelines (Grip strength meter, Panlab, Barcelona,
Spain) by lowering the mouse toward the metal mesh grid,
allowing its hind paws to attach to the grid connected to a force
transducer and gently pulling backwards with consistent force
by the experimenter until the grip was released. The peak force
produced during the pull on the bar in grams was recorded by
the transducer. Demonstration of the procedure is shown in the
Supplementary Movie 2.

Statistical Analysis
All values are presented as mean ± standard error (SEM). The
statistical significance of differences (p < 0.05) was evaluated by
(GraphPad Instat, La Jolla, CA, USA) non-parametric ANOVA
with Student-Newman–Keuls post-test.

RESULTS

Increased Expression of RAGE in ALS
Mouse Lumbar Spinal Cord
Immunohistochemistry revealed increased expression of RAGE
in SOD1 transgenic vs. control mouse lumbar spinal cords
at the end stage of the disease as defined above (Figure 1).
Quantitative real-time PCR (qRT-PCR) of lumbar spinal cord
tissue from SOD1 transgenic mice revealed trends for increased
expression (2.2-fold higher) of Ager mRNA transcripts vs.
controls. (Figure 2).

FIGURE 2 | Increased expression of RAGE in SOD1 transgenic mouse

lumbar spinal cord: mRNA transcripts. Relative mRNA expression of Ager

mRNA transcripts was determined by quantitative RT-PCR normalized to Ipo8

mRNA transcripts (n = 3 mice/group). Error bars represent SEM.

Prolonged Life Span and Improved
Functional Performance Scores in
sRAGE-Treated Mice
To test the hypothesis that inhibition of RAGE activation would
improve life span and motor performance in SOD1 transgenic
mice, sRAGE, or vehicle, murine serum albumin (MSA), was
administered beginning at age 8 weeks until the final stage of
the disease, as defined above. Detailed analysis of the survival
and longevity span revealed that male mice injected with sRAGE
displayed on average a higher probability of surviving for a
longer time after the disease onset; p = 0.007 (Figure 3A),
and on average a longer lifespan compared to the MSA-treated
group (138.5 ± 3.1 vs. 130.6 ± 3.1, respectively); p = 0.01
(Figure 3B). The onset of disease, as measured by the onset of
weight decline, occurred at 14 weeks of age in control mice.
sRAGE-treated mice displayed on average significantly higher
body weight as compared to their MSA-treated counterparts; p<

0.01 (Figure 3C). In addition, the percentage of days lived by
sRAGE mice was significantly higher than that of MSA mice
(29.34% ± 0.66 vs. 27.67% ± 0.63, respectively (p = 0.02), when
compared to non-transgenic SJL mice used as a reference, 100%,
472 days, as published (http://www.informatics.jax.org/external/
festing/mouse/docs/SJL.shtml; Supplementary Figure 1).

Motor performance scores, as measured by grip strength
meter test and hanging cage test (Figures 4A,B), revealed
significantly higher motor performance in the sRAGE-treated
mice as compared to the MSA-treated mice. Performances scores
steadily declined over time and the decline was higher in the
MSA-injected group, especially after the first ALS symptoms
were observed (week 12–13, Figures 4A,B). Additional evidence
from short videos reveals notable differences in gait, posture
and movement between MSA- and sRAGE-treated animals.
Specifically, at 13 and 15 weeks of age, a time point at which
ALS-like symptoms were fully evident, and after ∼5–7 weeks
of sRAGE or vehicle treatment, SOD1 transgenic mice treated
with sRAGE displayed better gait, posture, and movement
(Supplementary Movies 3–5).
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FIGURE 3 | sRAGE-treated SOD1 transgenic mice display greater longevity, higher survival probability and reduced weight loss vs. control mice.

(A) Kaplan–Meier estimates, i.e., percentage of surviving mice plotted vs. survival time. Black line, MSA-treated mice, gray line, sRAGE-treated mice. (B) Mean life

span of MSA- vs. sRAGE treated mice (days). The mean number of days lived by sRAGE treated mice was significantly higher compared to MSA-treated mice. (C)

Decrease of body weight over time for both mice groups. Error bars represent SEM; disease onset is indicated by an arrow.

FIGURE 4 | sRAGE-treated transgenic SOD1 mice display improved motor function performance. Results of grip strength meter test (A) and hanging cage

test (B) over time for both mice groups. All tests were performed in triplicate twice a week. As the number of mice able to perform the tests was significantly reduced

after week 16 and 17, hence for consistency all results are shown only until week 17; n = 12 mice/group. Error bars represent SEM; disease onset is indicated by an

arrow.

Higher Neuronal Counts and Lower
Astrocytosis in sRAGE-Treated SOD1 Mice
Neuronal loss and increased presence of glial cells (astrocytosis)
are hallmarks of ALS pathology in the spinal cord. To determine

whether sRAGE treatment affected neuronal loss or astrocytosis,

we stained spinal cord samples with cresyl violet, a dye with

neuronal cell affinity, and with antibodies to GFAP, a well-

established astrocyte maker. We observed significant differences
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FIGURE 5 | Neuronal count and GFAP expression in terminal-stage SOD1 transgenic mouse spinal cord. (A) A schematic diagram showing different regions

of lumbar spinal cord and respective images of cresyl violet stained lumbar spinal cord regions from MSA- and sRAGE-mice as seen under the light microscope.

(B) Cresyl violet staining revealing higher number of neurons in spinal cord of sRAGE-treated mice vs. MSA-treated mice at the terminal stage of disease. Scale bar =

75 µm. (C) GFAP immunostaining showing lower number of astrocytes (brown staining) in sRAGE-treated mice as compared to their MSA-treated counterparts;

neurons shown here were stained with Hematoxylin and Eosin. Scale bar = 50 µm. Results of the quantitative analysis of number of neurons (D) and astrocytes (E)

per region of interest in MSA- and sRAGE-treated mice. The results are presented as the relative differences between values for sRAGE and MSA group, n = 5

mice/group. Error bars represent SEM.

in the number of ventral horn motor neurons (Figures 5A,B)
between MSA- and sRAGE-treated animals. sRAGE-injected
mice had significantly higher number of neurons at the terminal
stage of the disease, as compared to theMSA-treated counterparts
(Figures 5B,D). In parallel, GFAP-immunoreactivity in
the sRAGE-treated spinal cord was significantly lower
than that observed in the MSA-treated spinal cord
(Figures 5C,E).

DISCUSSION

Our study is the first report of the beneficial effects of treatment
with sRAGE, which sequesters RAGE ligands and prevents their

interaction with and activation of the cell surface receptor,
in delaying the onset and progression of a neurodegenerative
disease in the SOD1 transgenic mouse model of ALS. We
observed that the onset of ALS, as measured by weight loss and
performance scores, was delayed in sRAGE-treated SOD1 mice
and that these mice had improved motor functional scores and
prolonged life span. Additionally, we observed that these mice
consistently, and for longer periods of time from the disease
onset, performed better than their control treated-counterparts,
manifesting overall better health condition and prolonged life
span, as compared to controls. Our study also provides the first
molecular evidence that, comparable to that observed in the
human, expression of RAGE is increased in the SOD1 transgenic
mouse lumbar spinal cord.
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To date, studies on the effects of RAGE inhibition in
neurodegenerative disease mouse models have been scarce and
mainly limited to studies probing the effects of genetic deletion
or modification of RAGE. For example, in our previous work on
diabetic peripheral neuropathy, we showed that global deletion
of Ager improves post injury sciatic nerve regeneration in
type 1 diabetic mice, at least in part, by switching infiltrating
macrophages from pro- to anti-inflammatory signatures, linked
most likely to reduction in tissue-damaging inflammation and
thereby to improvement in neuronal survival scores at the injury
site (Juranek et al., 2013b). Another study in the mouse model
of Parkinson’s disease demonstrated that genetic deficiency of
Ager was protective by attenuating MPTP-induced toxicity in
dopaminergic neurons (Teismann et al., 2012).

Measurement of circulating levels of sRAGE in plasma/serum
or the cerebrospinal fluid (CSF) of patients has been proposed
to serve as a biomarker for disease onset or severity in multiple
diseases (Santilli et al., 2009; Vazzana et al., 2009; Shang et al.,
2010; Schmidt, 2015; Walker et al., 2015). In human studies,
patients with multiple sclerosis (MS) have been found to have
significantly reduced levels of sRAGE in serum (Sternberg et al.,
2008) and the CSF (Glasnovic et al., 2014) when compared to
controls. Circulating sRAGE levels have also been shown to be
significantly lower in plasma from AD patients (Emanuele et al.,
2005; Liang et al., 2013) and in serum from ALS patients (Ilzecka,
2009) vs. respective controls.

RAGE antagonists also show some promise for effective
treatment in neurodegenerative diseases. Deane and colleagues
identified a highly specific small molecule, FPS-ZM1, that blocks
Aβ binding to the V-type extracellular domain of RAGE, thus
preventing Aβ accumulation and Aβ-induced cellular toxicity in
the APP (APPsw/0) mouse model of AD (Deane et al., 2012). In
a rat model of intracerebral hemorrhage (ICH), treatment with
FPS-ZM1 significantly improved blood–brain barrier damage,
brain edema, motor dysfunction, and nerve fiber injury (Yang
et al., 2015). However, most promising progress for a RAGE
antagonist as a therapeutic for a neurodegenerative disease has
been in clinical trials for patients with AD (Burstein et al.,
2014; Galasko et al., 2014). One study in a 400 patient cohort
found that in patients with mild AD, oral administration of
the RAGE antagonist TTP488 or PF-04494700 (or Azeliragon;
vTv Therapeutics) demonstrated significant differences at month
18 on the ADAS-cog (Alzheimer’s Disease Assessment Scale-
Cognitive subscale), an established scale evaluating cognitive
impairment in the assessment of AD (Burstein et al., 2014;
Galasko et al., 2014). Azeliragon, produced by vTv Therapeutics,
recently entered Phase 3 clinical trials.

Our previous investigation on RAGE-ligand expression in
human ALS thoracic spinal cord found higher expression of
RAGE and its ligands compared to controls (Juranek et al., 2015).
Elevated levels of S100B, and CML-AGE, an AGE prototype, have
been observed in serum of ALS patients (Sussmuth et al., 2010)
and in rat motor neurons exposed to cerebrospinal fluid from
ALS patients (Shobha et al., 2010). Increased S100B cerebrospinal
fluid levels were also reported in Parkinson’s disease (Sathe
et al., 2012), Alzheimer’s disease (Edwards and Robinson,
2006), and schizophrenia (Schmitt et al., 2005), implying roles

for S100B in the pathogenesis of neurodegenerative diseases.
Reports show that S100B triggers RAGE-mediated inflammatory
responses and microglia stimulation in the brain (Bianchi et al.,
2011), leading to neuronal damage and neurodegeneration and
resulting in symptomatic brain disorders. In addition to potential
links to inflammation, studies show that in the cerebellum of
the spinocerebellar ataxia type 1 mouse model, S100B–RAGE
interaction leads to increased oxidative stress and further
damages neurons contributing to the progression of the disease
(Hearst et al., 2011). Collectively, these studies suggest roles
for the RAGE axis in the pathogenesis of neurodegenerative
diseases.

Riluzole is the first and most commonly used FDA approved
drug for ALS treatment. Although an earlier study suggested
benefit of Riluzole in the SOD1 transgenic mouse model (Gurney
et al., 1998), it was recently shown in a distinct study that
Riluzole did not improve outcome of the ALS-like phenomena
in these SOD1 transgenic mice (Li et al., 2013). The authors
concluded used a number of different testing approaches to
demonstrate that Riluzole exerted no beneficial effect on the onset
and progression of the disease in these animals.

In the light of this report and the absence of any other
currently approved treatment, we propose that sRAGE or other
forms of RAGE blockade might fill a critical gap in this disorder
as a potential single-agent or supplementary candidate for ALS
treatment. As AGEs and other RAGE ligands accumulate in the
ALS spinal cord, both in the human and in the murine model, we
predict that RAGE contributes importantly, at least in part, to the
chronic and sustained loss of neurons observed in this disorder.
Further studies aimed at extending this first report are required
to provide insight into molecular mechanisms of RAGE action
in ALS.
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Supplementary Movie 1 | Hanging cage test: As described in the text,

mice were placed on a standard cage wire lid, turned upside down and

allowed to hang for 60 s. At the beginning of the testing period, all mice were

able to hold on to the wire for the entire time (60 s), but as the disease

progressed, the time they were able to stay attached to the wire was reduced,

measured as a fall latency and animals were falling off before the 60 s cut-off. The

investigator performing the test was naïve to the experimental condition.

Supplementary Movie 2 | Grip strength meter test: As described in the text

and in the manual provided by the manufacturer, the animals were

allowed to grasp the metal grid and then they were pulled backwards in

the horizontal plane. The force applied to the grid before the animal lost its grip

was recorded as the peak tension and measured in grams. More details on the

technique available are provided here: http://www.panlab.com/en/products/grip-

strength-meter. The investigator performing the test was naïve to the experimental

condition.

Supplementary Movie 3 | Two male siblings, one injected with MSA (left)

and the other with sRAGE (right), 14 weeks old, were placed in two

separate cages. Video emphasizes differences in gait and posture between

them. While the MSA-injected mouse movement is quite reduced, the

sRAGE-injected mouse is able to move more quickly and without apparent

difficulty.

Supplementary Movie 4 | Same siblings, 1 week earlier (13 weeks old),

already show differences in gait and coordination. While sRAGE-injected

mouse moves fast and without apparent difficulty, the MSA-injected mouse

demonstrates difficulties with climbing and movement coordination.

Supplementary Movie 5 | Sibling triplets, 14–15 weeks old. Black mouse is

ALS negative and had no observable difficulty with gait or coordination. The white

mouse, ALS positive, was injected with sRAGE and reveals noticeable difficulties

with movement, but that these were less severe compared to the ALS positive,

MSA-injected brown mouse.

Supplementary Figure 1 | The percentage of days lived by sRAGE-treated

SOD1 transgenic mice was significantly higher than that of MSA-treated

SOD1 transgenic mice (29.34% ± 0.66 vs. 27.67% ± 0.63, respectively; p =

0.02); non-transgenic SJL mice were used as the reference, 100%, 472

days).

REFERENCES

Aartsma-Rus, A., and van Putten, M. (2014). Assessing functional performance in

the mdx mouse model. J. Vis. Exp. 85:51303. doi: 10.3791/51303

Albers, D. S., and Beal, M. F. (2000). Mitochondrial dysfunction and oxidative

stress in aging and neurodegenerative disease. J. Neural Transm. Suppl. 59,

133–154. doi: 10.1007/978-3-7091-6781-6_16

Alexander, G. M., Erwin, K. L., Byers, N., Deitch, J. S., Augelli, B. J., Blankenhorn,

E. P., et al. (2004). Effect of transgene copy number on survival in the G93A

SOD1 transgenic mouse model of ALS. Brain Res. Mol. Brain Res. 130, 7–15.

doi: 10.1016/j.molbrainres.2004.07.002

Andersen, P. M., and Al-Chalabi, A. (2011). Clinical genetics of amyotrophic

lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615. doi:

10.1038/nrneurol.2011.150

Bianchi, R., Kastrisianaki, E., Giambanco, I., and Donato, R. (2011). S100B

protein stimulates microglia migration via RAGE-dependent up-regulation

of chemokine expression and release. J. Biol. Chem. 286, 7214–7226. doi:

10.1074/jbc.M110.169342

Burstein, A. H., Grimes, I., Galasko, D. R., Aisen, P. S., Sabbagh, M., and Mjalli,

A. M. (2014). Effect of TTP488 in patients with mild to moderate Alzheimer’s

disease. BMC Neurol. 14:12. doi: 10.1186/1471-2377-14-12

Calvo, A. C., Moreno-Igoa, M., Mancuso, R., Manzano, R., Olivan, S., Munoz, M.

J., et al. (2011). Lack of a synergistic effect of a non-viral ALS gene therapy

based on BDNF and a TTC fusion molecule. Orphanet J. Rare. Dis. 6:10. doi:

10.1186/1750-1172-6-10

Cataldegirmen, G., Zeng, S., Feirt, N., Ippagunta, N., Dun, H., Qu, W., et al.

(2005). RAGE limits regeneration after massive liver injury by coordinated

suppression of TNF-alpha and NF-kappaB. J. Exp. Med. 201, 473–484. doi:

10.1084/jem.20040934

Chen, X., Walker, D. G., Schmidt, A. M., Arancio, O., Lue, L. F., and

Yan, S. D. (2007). RAGE: a potential target for Abeta-mediated cellular

perturbation in Alzheimer’s disease. Curr. Mol. Med. 7, 735–742. doi:

10.2174/156652407783220741

Chen, Y., Yan, S. S., Colgan, J., Zhang, H. P., Luban, J., Schmidt, A. M., et al.

(2004). Blockade of late stages of autoimmune diabetes by inhibition of the

receptor for advanced glycation end products. J. Immunol. 173, 1399–1405. doi:

10.4049/jimmunol.173.2.1399

Daffu, G., Del Pozo, C. H., O’shea, K. M., Ananthakrishnan, R., Ramasamy, R., and

Schmidt, A. M. (2013). Radical roles for RAGE in the pathogenesis of oxidative

stress in cardiovascular diseases and beyond. Int. J. Mol. Sci. 14, 19891–19910.

doi: 10.3390/ijms141019891

Dal Canto, M. C., and Gurney, M. E. (1994). Development of central nervous

system pathology in a murine transgenic model of human amyotrophic lateral

sclerosis. Am. J. Pathol. 145, 1271–1279.

Deane, R., Singh, I., Sagare, A. P., Bell, R. D., Ross, N. T., Larue, B., et al. (2012).

A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain

disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122, 1377–1392.

doi: 10.1172/JCI58642

Ding, Q., and Keller, J. N. (2005). Evaluation of rage isoforms, ligands,

and signaling in the brain. Biochim. Biophys. Acta 1746, 18–27. doi:

10.1016/j.bbamcr.2005.08.006

Edwards, M. M., and Robinson, S. R. (2006). TNF alpha affects the expression of

GFAP and S100B: implications for Alzheimer’s disease. J. Neural Transm. 113,

1709–1715. doi: 10.1007/s00702-006-0479-5

Emanuele, E., D’angelo, A., Tomaino, C., Binetti, G., Ghidoni, R., Politi, P.,

et al. (2005). Circulating levels of soluble receptor for advanced glycation

end products in Alzheimer disease and vascular dementia. Arch. Neurol. 62,

1734–1736. doi: 10.1001/archneur.62.11.1734

Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M., and Shaw, P. J. (2011).

Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis.

Nat. Rev. Neurol. 7, 616–630. doi: 10.1038/nrneurol.2011.152

Galasko, D., Bell, J., Mancuso, J. Y., Kupiec, J. W., Sabbagh, M. N.,

van Dyck, C., et al. (2014). Clinical trial of an inhibitor of RAGE-

Abeta interactions in Alzheimer disease. Neurology 82, 1536–1542. doi:

10.1212/WNL.0000000000000364

Glasnovic, A., Cvija, H., Stojic, M., Tudoric-Deno, I., Ivcevic, S., Romic, D.,

et al. (2014). Decreased level of sRAGE in the cerebrospinal fluid of multiple

sclerosis patients at clinical onset. Neuroimmunomodulation 21, 226–233. doi:

10.1159/000357002

Goel, M. K., Khanna, P., and Kishore, J. (2010). Understanding survival analysis:

Kaplan-Meier estimate. Int. J. Ayurveda Res. 1, 274–278. doi: 10.4103/0974-

7788.76794

Goova, M. T., Li, J., Kislinger, T., Qu, W., Lu, Y., Bucciarelli, L. G., et al.

(2001). Blockade of receptor for advanced glycation end-products restores

effective wound healing in diabetic mice. Am. J. Pathol. 159, 513–525. doi:

10.1016/S0002-9440(10)61723-3

Gurney, M. E., Fleck, T. J., Himes, C. S., and Hall, E. D. (1998). Riluzole preserves

motor function in a transgenic model of familial amyotrophic lateral sclerosis.

Neurology 50, 62–66. doi: 10.1212/WNL.50.1.62

Hearst, S. M., Walker, L. R., Shao, Q., Lopez, M., Raucher, D., and Vig, P.

J. (2011). The design and delivery of a thermally responsive peptide to

inhibit S100B-mediated neurodegeneration. Neuroscience 197, 369–380. doi:

10.1016/j.neuroscience.2011.09.025

Heiman-Patterson, T. D., Deitch, J. S., Blankenhorn, E. P., Erwin, K. L., Perreault,

M. J., Alexander, B. K., et al. (2005). Background and gender effects on survival

in the TgN(SOD1-G93A)1Gur mouse model of ALS. J. Neurol. Sci. 236, 1–7.

doi: 10.1016/j.jns.2005.02.006

Ilzecka, J. (2009). Serum-soluble receptor for advanced glycation end product

levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 120,

119–122. doi: 10.1111/j.1600-0404.2008.01133.x

Jandeleit-Dahm, K. A., Lassila, M., and Allen, T. J. (2005). Advanced

glycation end products in diabetes-associated atherosclerosis and renal

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 May 2016 | Volume 10 | Article 117

http://www.panlab.com/en/products/grip-strength-meter
http://www.panlab.com/en/products/grip-strength-meter
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Juranek et al. RAGE Inhibition Delays ALS Progression

disease: interventional studies. Ann. N.Y. Acad. Sci. 1043, 759–766. doi:

10.1196/annals.1333.088

Juranek, J. K., Daffu, G. K., Wojtkiewicz, J., Lacomis, D., Kofler, J., and Schmidt, A.

M. (2015). Receptor for advanced glycation end products and its inflammatory

ligands are upregulated in amyotrophic lateral sclerosis. Front. Cell. Neurosci.

9:485. doi: 10.3389/fncel.2015.00485

Juranek, J. K., Geddis, M. S., Rosario, R., and Schmidt, A. M. (2013a). Impaired

slow axonal transport in diabetic peripheral nerve is independent of RAGE.

Eur. J. Neurosci. 38, 3159–3168. doi: 10.1111/ejn.12333

Juranek, J. K., Geddis, M. S., Song, F., Zhang, J., Garcia, J., Rosario, R., et al.

(2013b). RAGE deficiency improves postinjury sciatic nerve regeneration in

type 1 diabetic mice. Diabetes 62, 931–943. doi: 10.2337/db12-0632

Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from

incomplete observations. J. Am. Stat. Assoc. 53, 457–481. doi:

10.1080/01621459.1958.10501452

Kato, S., Nakashima, K., Horiuchi, S., Nagai, R., Cleveland, D. W., Liu, J., et al.

(2001). Formation of advanced glycation end-product-modified superoxide

dismutase-1 (SOD1) is one of the mechanisms responsible for inclusions

common to familial amyotrophic lateral sclerosis patients with SOD1 gene

mutation, and transgenic mice expressing human SOD1 gene mutation.

Neuropathology 21, 67–81. doi: 10.1046/j.1440-1789.2001.00359.x

Lalla, E., Lamster, I. B., Feit, M., Huang, L., Spessot, A., Qu, W., et al. (2000).

Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic

mice. J. Clin. Invest. 105, 1117–1124. doi: 10.1172/JCI8942

Lautenschlager, J., Prell, T., Ruhmer, J., Weidemann, L., Witte, O. W., and

Grosskreutz, J. (2013). Overexpression of human mutated G93A SOD1

changes dynamics of the ER mitochondria calcium cycle specifically

in mouse embryonic motor neurons. Exp. Neurol. 247C, 91–100. doi:

10.1016/j.expneurol.2013.03.027

Lee, E. J., Park, E. Y., Mun, H., Chang, E., Ko, J. Y., Kim do, Y., et al. (2015). Soluble

receptor for advanced glycation end products inhibits disease progression

in autosomal dominant polycystic kidney disease by down-regulating cell

proliferation. FASEB J. 29, 3506–3514. doi: 10.1096/fj.15-272302

Li, J., Sung, M., and Rutkove, S. B. (2013). Electrophysiologic biomarkers for

assessing disease progression and the effect of riluzole in SOD1G93AALSmice.

PLoS ONE 8:e65976. doi: 10.1371/journal.pone.0065976

Liang, F., Jia, J., Wang, S., Qin, W., and Liu, G. (2013). Decreased plasma levels

of soluble low density lipoprotein receptor-related protein-1 (sLRP) and the

soluble form of the receptor for advanced glycation end products (sRAGE) in

the clinical diagnosis of Alzheimer’s disease. J. Clin. Neurosci. 20, 357–361. doi:

10.1016/j.jocn.2012.06.005

NRCC (2003). “The national academies collection: reports funded by national

institutes of health,” in Guidelines for the Care and Use of Mammals in

Neuroscience and Behavioral Research, ed N. Grossblatt (Washington, DC:

National Academies Press; National Academy of Sciences), 1–150.

Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J. Jr., Chow, W. S., et al. (1998).

Suppression of accelerated diabetic atherosclerosis by the soluble receptor

for advanced glycation endproducts. Nat. Med. 4, 1025–1031. doi: 10.1038/

2012

Parone, P. A., Da Cruz, S., Han, J. S., McAlonis-Downes, M., Vetto, A. P., Lee, S.

K., et al. (2013). Enhancing mitochondrial calcium buffering capacity reduces

aggregation of misfolded SOD1 andmotor neuron cell death without extending

survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci.

33, 4657–4671. doi: 10.1523/JNEUROSCI.1119-12.2013

Rich, J. T., Neely, J. G., Paniello, R. C., Voelker, C. C., Nussenbaum, B.,

and Wang, E. W. (2010). A practical guide to understanding Kaplan-Meier

curves. Otolaryngol. Head Neck Surg. 143, 331–336. doi: 10.1016/j.otohns.2010.

05.007

Santilli, F., Vazzana, N., Bucciarelli, L. G., and Davi, G. (2009). Soluble forms of

RAGE in human diseases: clinical and therapeutical implications. Curr. Med.

Chem. 16, 940–952. doi: 10.2174/092986709787581888

Sathe, K., Maetzler, W., Lang, J. D., Mounsey, R. B., Fleckenstein, C., Martin, H.

L., et al. (2012). S100B is increased in Parkinson’s disease and ablation protects

against MPTP-induced toxicity through the RAGE and TNF-alpha pathway.

Brain 135, 3336–3347. doi: 10.1093/brain/aws250

Schmidt, A. M. (2015). Soluble RAGEs - Prospects for treating and tracking

metabolic and inflammatory disease. Vascul. Pharmacol. 72, 1–8. doi:

10.1016/j.vph.2015.06.011

Schmidt, A. M., Sahagan, B., Nelson, R. B., Selmer, J., Rothlein, R., and Bell, J.

M. (2009). The role of RAGE in amyloid-beta peptide-mediated pathology in

Alzheimer’s disease. Curr. Opin. Investig. Drugs 10, 672–680.

Schmidt, A. M., Yan, S. D., Wautier, J. L., and Stern, D. (1999). Activation

of receptor for advanced glycation end products: a mechanism for chronic

vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. 84,

489–497. doi: 10.1161/01.RES.84.5.489

Schmitt, A., Bertsch, T., Henning, U., Tost, H., Klimke, A., Henn, F. A., et al.

(2005). Increased serum S100B in elderly, chronic schizophrenic patients:

negative correlation with deficit symptoms. Schizophr. Res. 80, 305–313. doi:

10.1016/j.schres.2005.04.013

Shang, L., Ananthakrishnan, R., Li, Q., Quadri, N., Abdillahi, M., Zhu, Z.,

et al. (2010). RAGE modulates hypoxia/reoxygenation injury in adult murine

cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS ONE

5:e10092. doi: 10.1371/journal.pone.0010092

Shobha, K., Alladi, P. A., Nalini, A., Sathyaprabha, T. N., and Raju, T. R. (2010).

Exposure to CSF from sporadic amyotrophic lateral sclerosis patients induces

morphological transformation of astroglia and enhances GFAP and S100beta

expression. Neurosci. Lett. 473, 56–61. doi: 10.1016/j.neulet.2010.02.022

Sternberg, Z., Weinstock-Guttman, B., Hojnacki, D., Zamboni, P., Zivadinov, R.,

Chadha, K., et al. (2008). Soluble receptor for advanced glycation end products

in multiple sclerosis: a potential marker of disease severity. Mult. Scler. 14,

759–763. doi: 10.1177/1352458507088105

Sussmuth, S. D., Sperfeld, A. D., Hinz, A., Brettschneider, J., Endruhn, S., Ludolph,

A. C., et al. (2010). CSF glial markers correlate with survival in amyotrophic

lateral sclerosis. Neurology 74, 982–987. doi: 10.1212/WNL.0b013e3181d5dc3b

Teismann, P., Sathe, K., Bierhaus, A., Leng, L., Martin, H. L., Bucala, R., et al.

(2012). Receptor for advanced glycation endproducts (RAGE) deficiency

protects against MPTP toxicity. Neurobiol. Aging 33, 2478–2490. doi:

10.1016/j.neurobiolaging.2011.12.006

Vazzana, N., Santilli, F., Cuccurullo, C., and Davi, G. (2009). Soluble forms

of RAGE in internal medicine. Intern. Emerg. Med. 4, 389–401. doi:

10.1007/s11739-009-0300-1

Veldink, J. H., Bar, P. R., Joosten, E. A., Otten, M., Wokke, J. H., and van Den

Berg, L. H. (2003). Sexual differences in onset of disease and response to

exercise in a transgenic model of ALS. Neuromuscul. Disord. 13, 737–743. doi:

10.1016/S0960-8966(03)00104-4

Walker, D., Lue, L. F., Paul, G., Patel, A., and Sabbagh, M. N. (2015).

Receptor for advanced glycation endproduct modulators: a new therapeutic

target in Alzheimer’s disease. Expert Opin. Investig. Drugs 24, 393–399. doi:

10.1517/13543784.2015.1001490

Yan, S. S., Wu, Z. Y., Zhang, H. P., Furtado, G., Chen, X., Yan, S. F., et al. (2003).

Suppression of experimental autoimmune encephalomyelitis by selective

blockade of encephalitogenic T-cell infiltration of the central nervous system.

Nat. Med. 9, 287–293. doi: 10.1038/nm831

Yang, F., Wang, Z., Zhang, J. H., Tang, J., Liu, X., Tan, L., et al. (2015).

Receptor for advanced glycation end-product antagonist reduces blood-brain

barrier damage after intracerebral hemorrhage. Stroke 46, 1328–1336. doi:

10.1161/STROKEAHA.114.008336

Yang, W. I., Lee, D., Lee Da, L., Hong, S. Y., Lee, S. H., Kang, S. M., et al. (2014).

Blocking the receptor for advanced glycation end product activation attenuates

autoimmune myocarditis. Circ. J. 78, 1197–1205. doi: 10.1253/circj.CJ-13-1235

Zeng, S., Feirt, N., Goldstein, M., Guarrera, J., Ippagunta, N., Ekong, U., et al.

(2004). Blockade of receptor for advanced glycation end product (RAGE)

attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39,

422–432. doi: 10.1002/hep.20045

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Juranek, Daffu, Geddis, Li, Rosario, Kaplan, Kelly and Schmidt.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 May 2016 | Volume 10 | Article 117

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice
	Introduction
	Materials and Methods
	Animals
	RAGE Immunohistochemistry
	Astrocytosis and Neuronal Immunostaining and Quantification
	RNA Isolation and Quantitative RT-PCR
	Lifespan, Survival Probability, and Weight Loss Assessment
	Motor Function Tests
	Muscle Strength Test
	Grip Strength

	Statistical Analysis

	Results
	Increased Expression of RAGE in ALS Mouse Lumbar Spinal Cord
	Prolonged Life Span and Improved Functional Performance Scores in sRAGE-Treated Mice
	Higher Neuronal Counts and Lower Astrocytosis in sRAGE-Treated SOD1 Mice

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


