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Abstract
Clinical presentation of osteoarthritis (OA) is dominated by pain
during joint use and at rest. OA pain is caused by aberrant
functioning of a pathologically altered nervous system with key
mechanistic drivers from peripheral nerves and central pain
pathways. This review focuses on symptomatic pain therapy
exemplified by molecular targets that alter sensitization and
hyperexcitability of the nervous system, for example, opioids and
cannabinoids. We highlight opportunities for targeting inflam-
matory mediators and their key receptors (for example, prosta-
noids, kinins, cytokines and chemokines), ion channels (for example,
NaV1.8, NaV1.7 and CaV2.2) and neurotrophins (for example,
nerve growth factor), noting evidence that relates to their
participation in OA etiology and treatment. Future neurological
treatments of pain appear optimistic but will require the systematic
evaluation of emerging opportunities.

Introduction
Osteoarthritis (OA) is recognized by degeneration of articular
cartilage, synovitis, remodeling of subchondral bone and
atrophy/weakness of joint muscles. Clinical presentation is
dominated by pain during joint use and often at rest. There
are circadian variations in pain severity in both knee and hand
OA, with pain worsening in the evening [1,2]. Pain frequency
and intensity has been related to obesity, helplessness and
education as well as a significant co-morbid association with
anxiety and depression [3].

There are major distinctions between physiological and
pathophysiological (chronic) pain. Physiological pain is a

necessary defense mechanism, related directly to the
degrees of existing or imminent tissue damage, and is
essential for survival. On the other hand, chronic pain serves
no defensive or helpful function, since neither the intensity nor
quality of chronic pain is related to the degree of tissue
damage and may persist long after the resolution of any initial
insult. Chronic pain (nociceptive or neuropathic) is now
recognized as a manifestation of an aberrant functioning of a
pathologically altered nervous system. Pain therapy, and the
emerging pharmacology, is seen in terms of symptomatic
treatment (through modulation of aberrant function, that is,
neural excitability) and disease modification (through neural
restoration of physiological pain processing). This is the
context in which we will develop new therapies and will be
the focus of this review. However, this does not deny that
disease modifying approaches, for example, to resolve joint or
cartilage degeneration, may also impact on OA pain.

Pain in OA, like other chronic pain conditions, is a complex
integration of sensory, affective and cognitive processes that
involves a number of abnormal cellular mechanisms at both
peripheral (joints) and central (spinal and supraspinal) levels
of the nervous system. The relative contribution of these
processes in the OA population appears to be strongly
segmented. Intra-articular anesthetic studies in hip and knee
OA support a peripheral drive to pain in approximately 60%
to 80% of patients, depending on the affected joint [3,4]. In
some individuals, however, central mechanisms, for example,
dysfunction of descending inhibitory control [5] or altered
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cortical processing of noxious information, may play a greater
role [6].

With such patient heterogeneity, identifying pharmacological
targets of the future is fraught with issues. Biomarker
development and patient stratification will need to be
progressed in parallel to ensure ‘tailor-made treatment’. More
narrow titration of preclinical activities, for example, animal
models, in vitro assays and so on, to specific patient subsets
may also be required to improve predictability in humans.
Nevertheless, rational mechanistic approaches can be taken.
Alterations in the physiology of sensory pathways, such as
sensitization (reduced threshold for stimulation), hyper-
excitability (amplification or prolongation of nerve discharge)
or spontaneous nerve activity, can be associated with
specific molecular changes.

In this review we have selected examples of emerging
pharmacology for the treatment of OA pain (Figure 1). Where
appropriate, examples of inflammatory and neuropathic pain
pharmacology have been highlighted, since there is

continuing discussion as to whether components of osteo-
arthritic pain are also neuropathic (see [7] for a review).
Ultimately, in any patient, multiple algogenic mechanisms may
underpin the pain experience. Combinations of pharmaco-
logical approaches may, therefore, be a requirement for
effective pain management. However, ‘chasing’ efficacy with
combinations will need to be balanced against the cumulative
safety burden of treatments. Indeed, OA patients (particularly
the elderly) may be willing to forgo efficacy in favor of lower
adverse event risk [8].

Target classes
Opioids and their receptors
Opioids have been a mainstay of chronic pain therapy for
many years. They act at peripheral, spinal, and supraspinal
sites through a variety of opioid receptors (mu-, delta-, and
kappa-opioid receptors) [9]. Opioids used in the clinic, such
as morphine, act via mu-opioid receptors to cause a variety of
well documented side effects, including sedation, dysphoria,
respiratory depression and constipation. However, opioid
receptor activation in the periphery, which directly hyper-

Figure 1

Key elements of osteoarthritis (OA) pain pathophysiology and examples of pharmacological intervention points. Observations of pain resolution
following intra-articular local anesthetic and following joint replacement would implicate a peripheral drive in the majority of OA patients. In the
periphery, the interaction between structural pathology, and the immune and nervous systems perpetuate the pain experience. Over time, as
structural pathology develops, the principle algogenic mechanisms and mediators will change. Furthermore, dysfunction in central processing of
information at the spinal and cortical levels has also been observed in OA patients, affecting both sensory and motor systems. This, in combination
with altered affective and cognitive functions, may underpin the pain experience in other patient subsets. ASIC, acid-sensing ion channel; BDNF,
brain-derived neurotrophic factor; CB, cannabinoid receptor; CCR, chemokine receptor; CGRP, calcitonin gene-related peptide; COX, cyclo-
oxygenase; DOR, delta opioid receptor; EP, E prostanoid receptor; FAAH, fatty acid amide hydrolysis; GABA, gamma-amino butyric acid; IL,
interleukin; mGluR, metabotropic glutamate receptor; mPGES, membrane or microsomal PGE synthase; N-type Ca2+, neuronal-type calcium
channels; NE, noradrenaline; NGF, nerve growth factor; NR2B, -N-methyl-D-aspartate receptor 2B subunit; P2X, purinergic 2X ionotropic receptor;
SSRI, selective serotonin reuptake inhibitor; SubP, substance P; T-type Ca2+, transient type Ca2+ channels; TNF, tumor necrosis factor; TNFR,
tumor necrosis factor receptor; Trk, tyrosine kinase; TRP, transient receptor potential; VEGF, vascular epidermal growth factor.
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polarizes sensory neurones and attenuates nerve hyper-
excitability caused by inflammation or injury [10,11], raises
the possibility of therapy with minimal central nervous system
(CNS) side effects. In keeping with this, limited clinical trials
of intra-articular delivery of morphine in OA support the
concept of peripherally restricted opiate analgesia [12].
Furthermore, novel mu-opioid ligands, such as [8-(3,3-
diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza spiro [4.5]dec-3-
yl]-acetic acid (DiPOA) and the antidiarrheal drug loperamide,
which also do not penetrate the blood brain barrier, have
shown efficacy in a number of post operative, inflammatory
and bone cancer pain models [13,14].

Delta-opioid receptor (DOR) agonists have the potential for
analgesic efficacy without the confounding side effects of
other opioid receptor therapies (see [15] for a review). Thus,
analgesia has been shown in primate and non-primate pain
models with a number of DOR ligands, for example,
[D-Pen2,D-Pen5]enkephalin, SNC80 and AM-390. However,
DOR efficacy depends on the pain stimulus, the type of injury
and the influence of the local neurochemical environment.
Thus, delta ligands have low analgesic efficacy in acute pain
models but show robust analgesia efficacy in a variety of
chronic pain conditions accompanied by inflammation
[16,17]. This can be explained by stimulus-dependent
trafficking of DOR from the cytoplasm to nerve membranes in
CNS neurons [16]. There is little clinical development of
DOR agonists for analgesia, although ADL 5859 [17] is
reported to be in clinical phase 1 for analgesia.

Kinins and their receptors
Bradykinin is an important mediator of inflammatory pain
causing nociceptor activation and sensitization via B2
receptors [18]. The abundant metabolite of bradykinin,
des-Arg9-bradykinin (kallidin), activates B1 receptors,
which occur in low abundance, in the periphery and CNS
[19-21].

B2 receptors undergo desensitization following prolonged
kinin exposure, whereas B1 receptors do not desensitize
rapidly and are dramatically up-regulated in many tissues
following injury [22-25] or exposure to IL-1β or the neuro-
trophin glial-derived neurotrophic factor (GDNF) [23,26].
Importantly, kinins cause a cascade of secondary changes,
including prostanoid and nitric oxide production, phosphory-
lation of signaling proteins such as PKC, and the sensitization
of sensory transducers such as the transient receptor
potential vanilloid (TRPV)1 receptor [27]. These events are
linked with heat and mechanical hyperalgesia [28,29]. In
keeping with this, B2 antagonists (for example, Icatibant and
bradyzide) and a B1 antagonist (des-Arg10 HOE-140;
SSR240612) produce robust anti-hyperalgesic effects in
models of nerve injury-induced pain [30-33]. Importantly,
intra-articular administration of Icatibant (HOE 140) in OA
patients was shown to reduce pain intensity at rest and
during activity [33].

Cannabinoids and their receptors
Two cannabinoid receptors, CB1 and CB2, are associated
with pain modulation (reviewed in [35]). CB1 receptors are
widely distributed in the CNS and peripheral sensory neurons
while CB2 receptors have been found in peripheral tissues,
including tissues of the immune system and keratinocytes,
with limited expression in sensory and CNS cells [36]. More
recently, constitutive expression of both CB1 and CB2
receptors have been isolated on chondrocytes and implica-
ted in a potential disease modifying role in OA [37]. Several
fatty acids, for example, anandamide, 2-arachidonylglycerol,
and palmitoylethanolamide, have been identified as the
endogenous ligands for these receptors while specific
antagonists, such as SR141716A and SR147778 for CB1
and SR144428 for CB2, have been used to characterize
receptor functions.

CB1 receptors attenuate pain by reducing peripheral nerve
excitability and through inhibition of sensory transmitter
release [38]. In the CNS, brain stem structures such as the
periaqueductal grey appear to be important for stress-
induced release of endocannabinoids, and CB1-induced
analgesia may involve activation of descending pathways that
inhibit spinal excitability [39,40].

Several clinical studies have shown that many cannabinoids,
such as delta(9)-tetrahydrocannabinol, that reduce pain by a
CNS action also produce adverse effects, such as euphoria,
dizziness and sedation [41]. Targeting peripheral cannabinoid
receptors can reduce CNS side effects. Thus, localized
administration of HU210 or oral administration of CB1
agonists with limited CNS availability, such as CT-3 (ajulemic
acid), produced analgesia both in pain models [42,43] and in
the clinic at a dose that causes minimal CNS side effects [44].

CB2 agonists (for example, HU-308, HU-210, CP55940,
AM1241 and GW405833) also modulate acute and chronic
pain [45-47] while JWH-133 also shows anti-inflammatory
activity [48]. It is unclear how these effects are produced
since few CB2 receptors are found in the CNS or on sensory
neurons [49]. However, CB1 like side effects (sedation,
catalepsy, motor impairments) have not been seen with CB2
selective compounds.

Another ongoing approach for pain reduction is to harness
the endogenous cannabinoid systems by targeting fatty acid
amide hydrolysis, the major degradation pathway for
endogenous cannabinoids [50]. Thus, in mice lacking this
enzyme [51], or after treatment of naïve mice with a novel
fatty acid amide hydrolysis inhibitor, such as URB597 and
OL135, there is significantly elevated brain anandamide and
increased pain threshold in pain models [52,53]. Finally,
several reports have indicated analgesic synergy between
mu-opioid and CB receptors. Thus, combinations of these
agonists have been shown to provide pain reduction with
minimal side effects in acute pain models [54]. However, it is
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still unclear whether such synergy can be exploited in chronic
pain treatment such as OA.

Prostanoids and receptors
A variety of prostanoid cyclo-oxygenase (COX) enzyme
products (prostaglandin (PG)E2, PGD2, PGF2α, throm-
boxane, PGI2) are made during inflammation, but PGE2 is
considered to be the major contributor to inflammatory pain.
Thus, blocking the major synthetic enzymes COX-1 and
COX-2 or inhibition of prostanoid receptors continue to be
important approaches for reducing inflammatory pain. PGE2
exerts its effects via a variety of E prostanoid (EP) receptors
(EP1, EP2, EP3, EP4), which are present in both peripheral
sensory neurones and the spinal cord. Activation of these
receptors produces a complexity of effects, ranging from
calcium influx to cAMP activation or inhibition. Sensitization of
nociceptors by PGE2 is caused by the cAMP-mediated
enhancement of sodium currents via ion channel
phosphorylation [55,56]. However, in the spinal cord,
prostaglandin-induced hyperexcitability was enhanced by
EP1 receptors but reduced by an EP3α agonist (ONO-AE-
248), suggesting further complexity in the prostanoid
regulation of pain [57].

In addition to their important roles in the periphery, COXs are
also present in the CNS. Important for pain is the increased
spinal cord expression of COX-1 (glia) and COX-2 (ventral
horn cells) caused by inflammation, peripheral nerve injury or
cytokines. In keeping with this, several non-steroidal anti-
inflammatory drugs (NSAIDs) have been shown to reduce
inflammatory hyperalgesia via inhibition of spinal COX activity
[58]. Several mechanisms have been proposed, including EP1
receptor activation and spinal release of glutamate as well as
loss of spinal glycine receptor mediated inhibition [59].
Recently, COX-3 has been identified as a splice variant of
COX-1 [60] and several NSAIDs (acetaminophen, diclofenac,
phenacetin) show low efficacy but some degree of selectivity
for COX-3. However, COX-3 has low enzymic capability and
its distribution and low abundance in the CNS and periphery
does not make this a compelling target for analgesia.

Since the 1990s, COX-2 selectivity has been associated with
cardiovascular concerns following observations of reduction
in anti-thrombotic prostacylin metabolites but not pro-
thrombotic thromboxane A2 in urine. Large scale, controlled
clinical trials for COX-2 inhibitors (VIGOR, CLASS, TARGET)
comparing efficacy and safety of rofecoxib, celecoxib and
lumiracoxib with traditional NSAIDs have confirmed an
increased risk of serious cardiovascular events compared to
placebo. Many key questions remain unanswered concerning
the mechanism of cardiovascular risk of selective COX-2
inhibitors (see [61] for a review). Despite this uncertainty,
development of COX-2 selective inhibitors still continues (for
example, GW406381), reflecting the attraction of this path-
way and the requirement for newer drugs with improved
overall safety profiles.

An alternative route of PGE2 inhibition is via the blockade of
PGE synthase (PGES), a major route of conversion of
prostaglandin H2 to PGE2. Two iso-forms of the enzyme have
been identified, membrane or microsomal associated
(mPGES-1) and cytosolic (cPGES/p23), which are linked with
COX-2 and COX-1 dependent PGE2 production, respectively
[62,63]. Both isoforms are up-regulated by inflammatory
mediators, and gene deletion studies in mice indicate an
important role for mPGES in acute and chronic inflammation
and inflammatory pain [64]. Additionally, inhibition of mPGES
is thought to be associated with lower cardiovascular risk
since PGI2 production would not be affected.

Cytokines, chemokines and their receptors
Inflammatory stimuli initiate a cascade of events, including the
production of tumor necrosis factor (TNF)α, ILs, chemokines,
nerve growth factor (NGF), sympathetic amines, leukotrienes
and PGs, with a complex impact on pain production. Cyto-
kines induce hyperalgesia by a number of direct and indirect
actions. Thus, IL1β activates nociceptors directly via intra-
cellular kinase activation, but it may also cause indirect
nociceptor sensitization via the production of kinins and
prostanoids [65]. TNFα also activates sensory neurones
directly via the receptors TNFR1 and TNFR2 and initiates a
cascade of inflammatory reactions through the production of
IL1, IL6 and IL8 [66,67]. It is significant that direct TNFα
application in the periphery induces neuropathic pain behavior
that is blocked by ibuprofen and celecoxib [68], while nerve
ligation causes increased TNFα in damaged as well as
adjacent undamaged axons [69]. Interestingly, anti-TNFα
treatment with the TNF antibody adalimumab produced a
prolonged reduction of pain symptoms in OA [70]. These are
encouraging preliminary data but will require further support.

Chemokines are important peripheral and central regulators
of chronic inflammation, typically orchestrating leucocyte
migration. However, recent studies implicate chemokine
receptors in brain development, neurodegenerative conditions
and synapse activity. Receptors have been detected
throughout the CNS in the macrophage-‘like’ microglial cells,
astrocytes, oligodendrocytes and neurons [71]. Receptors
have been co-localized with isolectin B4 and substance P
primary afferent neurons and dorsal root ganglion cultures
respond to chemokines with transient Ca2+ influx [72].
Chemokines can contribute directly to hyperalgesia through
G-protein coupled sensitization of ligand gated channels, for
example, TRPV1, heterologous desensitization of opioid
receptors and sensitization of sensory neurones [72,73]. For
example, pro-inflammatory cytokines, such as CC chemokine
ligand 2 (CCL2) and CCL3 (MIP-1a), sensitize TRPV1 to
capsaicin via removal of an intracellular phospholipid inhibitor
[72]. Furthermore, CCL2, CCL3 (MIP-1a), CCL5 and CXC
chemokine ligand 8 also desensitize mu-opioid receptors.
Therefore, the phasic synovitis that accompanies OA may
serve as a priming event for subsequent hyperalgesia,
mediated in part by chemokine and cytokine priming of
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sensory afferents, or desensitization of the endogenous
opioid system.

Adrenergic receptors
Several chronic pain disorders termed ‘sympathetically main-
tained pain’ have highlighted the importance of the release of
sympathetic transmitters (epinephrine or norepinephrine)
from sympathetic varicosities and the involvement of
adrenergic receptors in pain etiology. The joint capsule,
synovium and bone are richly innervated by sympathetic
postganglionic neurons [74]. These regulate vascular tone
and permeability, bone homeostasis and, during inflammation,
sensitizing of afferent sensory pathways. In rheumatoid
arthritis, sympathetic innervation is reduced, probably by
increased release of sympathetic nerve repellents such as
semaphorins, although no such denervation is observed in
OA [75]. Interactions between sympathetic and afferent
peripheral neurons may take place at several sites. NGF may
play an important role in linking sympathetic and C-fibre inner-
vation as sympathetic activation stimulates NGF secretion
from vascular smooth muscle [76]. Other pain conditions
have demonstrated sympathetic/sensory coupling at the level
of the dorsal root ganglion [77] and at the peripheral sites of
injury (for example, neuroma) [78].

Studies have also shown the expression of α-1 and α-2
adrenergic receptors on sensory neurons or on post-
ganglionic sympathetic terminals after nerve injuries [79,80].
Under these conditions sensory neurones can be directly
activated by the endogenous release of sympathetic trans-
mitters (via α-1 receptors) or in the clinic by intradermal
injection of norepinephrine [81].

Clonidine and other α-2 agonists such as dexmedetomidine
have also been used systemically to inhibit sensory trans-
mission in the spinal cord by block of pre- and postsynaptic
membrane excitability and intra-articularly following joint
replacement. Unfortunately, sedation and hypotension are
major target-related systemic side effects of these
compounds. Great efforts have been made to identify ligands
with improved α-2 receptor subtype selectivity, to avoid side
effects, but thus far this has not been particularly successful.

Glutamate regulation and glutamate receptors
In OA, synovial fluid levels of glutamate and aspartate are
significantly elevated above controls [82]. Glutamate acts
through a variety of receptor-coupled, ligand-gated ion
channels, including α-amino-3-hydroxy-5-methylisoxazole-4-
proprionate (AMPA)/kinate receptors, ionotropic glutamate
receptors (iGluRs) and G-protein coupled metabotropic
glutamate receptors (mGluRs). Injections of glutamate or
metabolically stable receptor-selective agonists such as
NMDA, AMPA, and kainate cause a pro-nociceptive response
upon thermal and mechanical stimulation, while application of
iGluR and mGluR antagonists attenuate pain in acute models
(see [83,84] for reviews). Glutamate may also have a

disease-modifying role, with receptors found on non-neuronal
cells, that is osteoblasts, osteoclasts, and chondrocytes,
mediating bone remodeling and cartilage mechano-trans-
duction, respectively [85,86].

NMDA antagonists show robust attenuation of pain behaviors
but also induce a number of side effects (sedation, confusion,
motor incoordination) and thus have insufficient therapeutic
margin. There has been a refocus on more specific NMDA-
receptor subtype blockers (NR1 and NR2) directed towards
the strychnine-insensitive glycineB modulatory site to avoid side
effects. This site modulates the NMDA channel only during the
sustained stimulation of the receptor, which is considered to
occur during chronic pain. Selective NR1-Gly antagonists have
been claimed to reduce pain with reduced side effects [87,88].
However, clinical experience has not confirmed this.
GV196771 did not show efficacy against clinical pain, possible
due to inadequate penetration into the CNS [89].

Alternative initiatives have targeted other NMDA receptor
subtypes, such as the NR2B receptor, which has a specific
distribution in sensory pathways. Blockade of this receptor
has also been claimed to produce anti-nociception (ifen-
prodil, traxoprodil (CP-101,606)) with reduced side effects
[90]. To date, traxoprodil has advanced into phase I safety
and efficacy study for acute ischemic stroke.

The mGluRs, particularly mGluR1 and mGluR5, have been
reported to play a key role in sustaining heightened central
excitability in chronic pain with minimal involvement in acute
nociception. Thus, spinal administration of selective agonists
such as dihydroxy phenyl glycine produced allodynia, while
mGluR5 was shown to be significantly over-expressed in
some, but not all, chronic pain models [91]. Peripheral
mGluR5 receptors have also been claimed to modulate pain.
Thus, local administrations of mGluR5 antagonists 2-methyl-
6[phenylethynyl]-pyridine (MPEP) and SIB1757 have been
effective in reducing pain behavior, suggesting a potential
use in pain therapy [92,93].

Metabotropic group II receptors (mGluR2 and mGluR3) also
modulate pain transmission. mGluR2 is located in sensory
neurones and presynaptic nerve terminals whereas mGluR3
is found all over the brain. mGluR3 can be selectively
increased in the spinal dorsal horn neurones after peripheral
UV injury [94]. mGluR2/3 receptor activation appears
necessary to reduce nerve terminal excitability and to
modulate pain transmission since treatment with the agonist
L-acetyl carnitine reduced inflammatory hyperalgesia and
mechanical allodynia and increased the expression of
mGluR2/3. The effects of L-acetyl carnitine were attenuated
by LY379268, an mGluR2/3 antagonist [95].

Ion channels
A variety of ligand and membrane voltage-regulated ion-
channels is involved in pain modulation and these have been
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targeted for pain control. The mammalian TRP channel
represents a large receptor family, subdivided into six
subfamilies: TRPA, TRPC, TRPM, TRPP, TRPV, and mucolipin.
Many TRP channels are localized to sensory neurones and play
a major role in temperature and mechanical transduction.

TRPV1 is a non-selective cation channel, gated by capsaicin,
noxious heat (>45°C), acidic pH (<5.3), and regulated by a
variety of inflammatory agents, including protons, bradykinin,
ATP, PGE2, 12-lipoxygenase products, protease-activated
receptor-2, anandamide, CCL3 and NGF. Sensitization of
TRPV1 involves a variety of pathways that regulate receptor
phosphorylation [96]. Analgesia approaches in OA have used
capsaicin preparations or capsaicin-like agonists to induce
TRPV1 desensitization or reversible sensory nerve terminal
degeneration caused by prolonged cation influx into the
nerve, osmotic damage and metabolic collapse [97]. In a
randomized study of intra-articular injections of placebo or
capsaicin (ALGRX 4975) prior to knee replacement, ALGRX
4975 was found to decrease visual analogue scales (VAS)
scores without effecting proprioreception or joint
histopathology [98]. Currently, there is a focus on TRPV1
channel blockers or selective TRPV1 receptor antagonists
[99]. Supporting these approaches, competitive (AMG-9810)
[100] and non-competitive (DD161515) [99] TRPV1
antagonists block chemical and thermal pain sensitivity,
heralding the emergence of a novel therapy. Indeed, recent
studies in volunteers have shown that oral SB705498
attenuated capsaicin and ultra-violet (UV)-induced pain and
hyperalgesia [101]. Other TRP channels (TRPV3, TRPV4,
TRPA1) have also been suggested to be involved in pain
transduction. Thus, TRPA1 (ANKTM1) is co-localized with
TRPV1 and is activated by capsaicin and mustard oil but can
also be sensitized by inflammatory mediators, including
bradykinin, known to be significantly elevated in osteoarthritic
synovial fluid, to produce cold-induced burning pain [102]. In
addition, TRPV1 can oligomerize with other TRP family
members, including TRPV3. The latter is found in
keratinocytes and appears to be upregulated in inflammatory
pain conditions. So far there are few reliable chemical tools to
help characterize the functions of these TRP receptors and
support their value as analgesia targets.

Purinergic receptor-regulated channels
The unique localization of the purinergic 2X ionotropic
(P2X)3 receptor to small sensory fibres has highlighted its
importance in pain. Large amounts of the endogenous ligand
ATP are released after tissue injury and during inflammatory
injuries while both ATP and a stable analogue, α,β-methyl
ATP, induce pain and are pronociceptive when administered
intradermally in volunteers [103].

In chronic inflammatory pain, P2X3-mediated excitability is
enhanced while reduction of P2X3 receptors by antisense
oligonucleotide administration reduces inflammatory hyper-
algesia as well as that evoked by α,β-methyl ATP [104]. In

keeping with this, several antagonists, including 2′,3′-O-(2,4,6-
trinitrophenyl)-adenosine triphosphate (TNP-ATP), pyridoxal-
phosphate-6-azophenyl-2′,4′-disulfonic acid, and suramin,
reduce pain behavior. More selective, and drug like,
antagonists, such as A-3174919, reduced pain in a number of
acute and chronic pain models, supporting the possibility for
future analgesia therapy of nociceptive pain such as OA [105].

It should be noted that several other purinergic receptor sub-
types, including P2X4 and P2X7, have also been suggested to
modulate pain through altered central excitability and the release
of neuroglial-cell products [106-108]. Thus, activated microglia,
astrocytes and satellite cells release a variety of inflammatory
mediators, including IL1β, TNFα, prostanoids and nitric oxide
upon ATP stimulation. Indeed, increased expression of P2X4
has been shown to occur in spinal microglia after peripheral
nerve lesions and this was related to painful mechanical
allodynia. This behavior was blocked by spinal administrations of
the selective P2X4 antagonist TNP-ATP [106]. Remarkably,
spinal administration of activated microglia reproduced TNP-
ATP sensitive mechanical allodynia in naïve animals.

Increased P2X7 expression has been found in peripheral
macrophages following inflammation but this receptor is also
expressed in spinal neurones and microglia following
peripheral nerve injury [107]. In keeping with an important
role in chronic pain, both microglia and P2X7 receptors are
up-regulated in human chronic pain patients [108] while
deletion of the P2X7 receptor gene produced a complete
absence of mechanical and thermal pain in mice [108].

It is worth noting that other nucleotide-gated ion channels
have also been shown to be important for regulating periph-
eral excitability. Thus, the Na/K re-polarizing ‘pacemaker
current’, Ih, which is activated during membrane hyper-
polarization, is important for generation of rhythmic and
spontaneous action potentials in sensory neurons. Ih currents
are controlled by cyclic nucleotides (cAMP and cGMP) via a
family of hyperpolarization-activated, cyclic nucleotide-gated
(HCN1-4) ion channels. These have been found to be
differentially expressed and redistributed after inflammatory
nerve injuries [109,110].

Acid sensing ion channels
Several arthritidies, including OA, are associated with
decreases in local pH during osteoclastic bone resorption,
inflammation and tissue hypoxia [111]. H+ ions can directly
activate nociceptors via multiple mechanisms, for example,
TRPV1 channels as previously discussed, and via acid-
sensing ion channels (ASICs). ASICs are Na+ channels
related to the degenerin/epithelial amiloride-sensitive Na+

channel superfamily of cation channels. Several subunits
have been identified, with ASIC 1a 1b, ASIC 2a, 2b and
ASIC3 expressed in the majority of dorsal root ganglion
(DRG) neurons. The relative contribution of TRPV1 and
ASICs to H+ activation of sensory afferents is only just
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emerging, but data indicate specificity differences for both
species and nerve fibre subtypes (Isolectin B4-/+) [112].

A novel blocker (A-317567) of peripheral ASIC 1, 2 and 3
channels has been described [113]. This reduces hyper-
algesia in models of inflammatory and post-operative pain, but
there have been no reports of therapeutic advances with
ASIC inhibitors.

Sodium channels
Voltage-gated sodium channels are characterized by their
primary structure and sensitivity to tetrodotoxin (TTX). A
variety of TTX sensitive (NaV1.3, Nav1.7) and TTX insensitive
(NaV 1.8, NaV1.9) channels are involved in regulating sensory
neural excitability [114,115]. Changes in the expression,
trafficking and redistribution of NaVs following inflammation
or nerve injury are considered to account for the abnormal
firing and the generation of ectopic activity in afferent nerves
[116]. Mutations of NaV1.7 have been identified as the cause
of burning pain in erythromelalgia [117], while inflammation
causes the over-expression of NaV 1.7 in animal models and
in inflamed human tooth pulp [118]. Interestingly, NaV1.7
over-expression could be prevented by pre-treatment with
COX-1 and COX- 2 inhibitors (ibuprofen, NS-398).

The clinical utility of non-selective Na channel blockade in OA
pain has been well established with the experimental use of
local anesthetics such as intra-articular levobupivacaine, the
active enantiomer of bupivacaine. It is noteworthy that the OA
population is stratified in response to intra-articular local
anesthetic, indicating a significant central component to the
pain in some patients [3]. Systemic and central exposure to
local anesthetics has been attempted in other pain
paradigms. Intravenous administration has been reported to
produce long lasting pain relief in both animal models [119]
and intractable neuropathic pain [120]. The major dis-
advantages of the systemic use of non-selective Na channel
blockers are cardiotoxicity and CNS sedation and confusion,
considered to be produced by NaV1.5 and NaV1.2 channel
blocking, respectively. Considerable activity is currently
focused on discovering novel, selective Na channel blockers.

An alternative approach to regulate ion channels is to block
the trafficking of channels to the nerve membrane. For
example, the functioning of NaV1.8 may be reduced by
preventing an association with p-11, an annexin II related
protein that tethers the channel to the nerve membrane [121].
In addition, channel-associated cell surface glycoproteins
such as contactin may be involved in concentrating specific
channel subtypes, for example, NaV1.8 and NaV1.9 (Isolectin
B4+) but not NaV1.6 and NaV1.7 (Isolectin B4-) in DRG
nerve membranes, with an associated increased in ionic
current density [122]. Although these approaches are
attractive, they have not been explored significantly and it is
unclear whether they will impact on nerve excitability
associated with specific pain etiology.

Calcium channels
Voltage-gated calcium channels are subdivided into two
major categories, low voltage-activated calcium channels
(T-type channels) and high voltage-activated. High voltage-
activated channels are further subdivided, based on pharma-
cology and biophysical characteristics, into L-, N-, R-, P-, and
Q-types. Several have been shown to be prominently involved
in pain regulation [123]. The N-type calcium channel is an
important regulator of nerve terminal excitability and neuro-
transmitter release. N-type channels can be regulated,
particularly through GPCR signaling by analgesic drugs such
as opioids, with a resultant modulation of sensory transmitter
release, for example, substance P, calcitonin gene-related
peptide (CGRP) and glutamate, at both spinal and peripheral
sensory nerve terminals. Channel trafficking may also be
affected; for example, activation of the opioid receptor-like
receptor by nociceptin causes channel internalization and
downregulation of calcium entry [124].

Gene deletion of the α2δ subunit of the N-type channel
reduces inflammatory and neuropathic pain [125,126].
Moreover, selective blockers such as Ziconotide (SNX-111,
Prialt; a synthetic form of omega-conotoxin) and verapamil have
been used to characterize channel activity while Ziconitide has
been used experimentally and clinically by spinal intrathecal
administration for pain relief [127,128]. Building on this
concept, small molecule channel blockers, with oral availability,
are now reported to be undergoing clinical evaluation for
analgesia, for example, NMED-160 [128].

Low voltage-activated T channels also appear important for
pain transmission and as targets for pain therapy. Thus, they
are expressed in superficial laminae of the spinal cord and in
dorsal root ganglion neurones [123]. T-channels play a
prominent role in regulating spinal excitability and spinal
sensitization following repetitive C-fibre stimulation [129].
Moreover, nerve injury-induced hyper-responsiveness was
blocked by the T-channel blocker ethosuximide [130], which
also attenuated mechanical allodynia in animal models of
vincristine and paclitaxel-induced neuropathic pain [131].

Finally, high voltage-activated channels are composed of four
subunits, an α1 subunit and auxiliary subunits α2δ, β, and γ.
There are four human α2δ genes described, α2δ1-4, which
associate into different subsets of channels and have
different tissue distributions. Pregabalin and gabapentin are
inhibitors of α2δ1 and α2δ2. These drugs act as presynaptic
inhibitors of the release of excitatory neurotransmitters in
stimulated neurones. They have been shown to be effective in
states of enhanced neuronal activation during inflammation
and nerve lesioning (spinal cord injury, diabetic neuropathy,
neuropathic cancer pain, HIV associated neuropathy) [132,
133], which may be associated with the increased expression
of the α2δ subunit [133]. Pregabalin has been assessed in
hip and knee OA in a 12-week, double blind, placebo-
controlled, multi-center study in 296 patients. No response
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was observed in patients with knee OA but patients with hip
OA experienced improvement in sleep quality and improve-
ments in the Western Ontario and McMaster University
Osteoarthritis Index (WOMAC) pain subscale [134].

Neurotrophins and their receptors
Neurotrophins and their receptors represent an important
family of regulatory proteins essential for sensory nerve
development, survival and the determination of neurochemical
phenotype important for the regulation of excitability
[135,136]. Several neurotrophins (NTs) have been identified,
including NGF, brain derived growth factor (BDNF) and NT3
and NT4/5. Each NT binds with high affinity to a receptor
tyrosine kinase (Trk): NGF to TrkA, BDNF and NT4/5 to TrkB
and NT3 to TrkC. NT3 also binds with TrkA and TrkB. Mature
NTs also bind to a structurally distinct receptor, p75, which
affects neuronal development through downstream signaling.
NTs arise from pro-NT precursors following extracellular
cleavage by metalloproteinases and plasmin. It is notable that
pro-NTs may signal through the p75 receptor in a manner
that opposes the effects of NTs, for example, to produce
apoptosis rather than cell survival [137].

NGF has been most studied with respect to inflammatory
hyperalgesia as its production is unregulated by inflammation
in macrophages, fibroblasts and Schwann cells. NGF has
emerged as a key regulator of sensory neurone excitability and
as an important mediator of injury-induced nociceptive and
neuropathic pain [138-140]. Thus, NGF acts via TrkA and p75
to activate a number of other kinase pathways, for example,
that of p38 kinase, leading to altered gene transcription and
increased synthesis of sensory neuropeptides (substance P,
CGRP), ion channels (TRPV1, NaV1.8, ASIC3) [141-143],
membrane receptors such as bradykinin and P2X3 [144,145],
and structural molecules, including neurofilament and channel
anchoring proteins such as the annexin light chain p11 [121].

Increased expression and release of NGF have been
demonstrated in several painful conditions in animal models
(for example, UV injury, surgical injury) [146,147] and in
human conditions, including arthritis, cystitis, prostitis and
headache [148-150]. Administration of exogenous NGF
induces thermal and mechanical hyperalgesia in animals and
humans [151,152], which is considered to be due, in part, to
mast cell degranulation and by directly increasing sensory
neuronal excitability [153].

Only a few small molecule NGF antagonists are available, but
ALE0540, which inhibits the binding of NGF to TrkA and
p75, and PD90780, which inhibits NGF binding to p75, have
been proposed to have efficacy in chronic pain models
[154,155]. The importance of NGF has also received clinical
confirmation since RN624, a humanized ant-NGF monoclonal
antibody, has been reported to be efficacious in reducing
pain and improved mobility in OA [156]. Anti-NGF mono-
clonal antibody therapy appears to be an attractive thera-

peutic approach with the potential for long lasting pain treat-
ment, similar in efficacy to morphine, without compromising
physiological nociception.

NGF also induces the synthesis and accumulation of BDNF
in peptide-containing sensory neurones following painful
nerve injury [135]. Release of BDNF in the spinal dorsal horn
increases spinal excitability and pain sensitization via TrkB
receptors. This initiates a variety of effects, including direct
neural excitation, activation of a signaling cascade via the
phophorylation of NMDA receptors, and altered regulation of
the neural chloride-ion transporter that contributes to pain
hypersensitivity [157]. In addition, spinal BDNF administration
induces thermal and mechanical allodynia whereas anti-
BNDF neutralization or TrkB IgG administration reduces
inflammation or nerve injury hypersensitivity in a number of
animal models [139,158,159].

Finally, GDNF represents an extensive family of ligands and
membrane receptor complexes that have an important role in
regulating peripheral and central neural phenotypes. GDNF
related ligands include neurturin and artemin, which act via the
complex c-Ret proto-oncogene receptor tyrosine kinase and
co-receptors glial cell line-derived neurotrophic factor receptor
(GFR)α1, α2, α3 and α4. Although there appears not to be a
specific role in inflammation, GDNF has been shown to have
neuroprotective and restorative properties in a number of
neurodegenerative and neuropathic pain states [135].
Specifically, GDNF treatment has been shown to restore
peripheral sensory neurone function, including peptide and ion
channel expression patterns, following painful peripheral nerve
injury accompanied by an attenuation of pain behaviors.
Unfortunately, clinical observations using GDNF have shown
unacceptable side effects, such as weight loss and allodynia,
which has discouraged therapeutic developments [160].

Botulinum toxin
Another approach to pain modulation has been the use of
botulinum toxins (BoTNs). The mechanism of action of BoTN
is related to inhibition of transmitter release from motor fibers
through proteolytic cleavage of a number of synaptosomal
regulatory proteins (soluble N-ethyl maleimide-sensitive fusion
protein attachment protein receptors (SNAREs), syntaxin,
synaptosome-associated protein of 25 kDa (SNAP-25) and
synaptobrevin). More recent studies have also indicated
potential for inhibition of neuropeptide transmitter release
from small afferent nerves [161,162]. In keeping with this,
BoNT has been shown to provide long lasting pain relief
following administration into human OA joints [163] and
improve bladder dysfunction in overactive bladder patients.
This was correlated with loss of both P2X3 and VR1
receptors in the urinary bladder [164].

Functional assessment and animal models
Predicting efficacy of novel targets in patients using
preclinical models has been a key theme in analgesic drug
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development. Animal models of cutaneous inflammatory pain
were developed initially as pharmacodynamic assays of anti-
inflammatory drug activity, particularly for NSAIDs. Typically,
primary endpoints were reduction in hindpaw swelling,
induced by Freund’s adjuvant or carrageenan, and reflex limb
withdrawal to a mechanical stimulation. At this time, the lack
of activity of NSAIDs in models of acute nociceptive pain,
such as the tail-flick [165] and hot plate assays [166], raised
an awareness that clinical pain pathophysiology and pharma-
cology, in which a sensitized state is induced in the presence
of inflammation (or nerve damage), differ significantly from
normal physiological pain observed in healthy animals. From
that time a major emphasis on models that reproduce specific
elements of chronic pain have allowed the systematic mecha-
nistic exploration of excitability changes in pain pathways
[167]. This has also provided the building blocks for rational
translation of findings in animal models, for example,
pharmacodynamic/pharmacokinetic measures of the reduction
of neuro-excitability and pain behavior to reduction of clinical
pain.

However, there is concern that current models still lack the
tissue and disease specificity of some key patient popula-
tions. OA pain is an example where an improved clinical
understanding of joint pathology and its relationship to pain
can focus disease specific approaches. Magnetic resonance
imaging studies have reported significant association of
specific tissue pathologies such as subchondral bone
lesions, synovial thickening and knee effusion with pain
[168-170]. These clinical observations, along with histo-
pathology samples from joint arthroplasty, synovial fluid
collections and so on, allow an investigation of specific
elements of structural pathology, the potential mediators
involved and the presence/absence of pain. It is clear that
while no single animal model replicates human OA, specific
elements can be modeled in animals. The choice of model,
interpretation of endpoints and translation to the clinic are
critical future challenges in therapeutic development.

While a comprehensive analysis of OA models is beyond the
scope of this review, recent developments have focused on
intra-articular injection of monoiodoacetate into rodent
femorotibial joint or surgical destabilization of the joint in rats
and guinea pigs. These models seek to emulate aspects of
OA pathology. For example in the monoiodoacetate model
following chondrocytic cell death and cartilage fragmentation,
a subchondral bone lesion develops with active resorption
and remodeling of cancellous bone typically by day 21.
Inflammation is observed as mononuclear cell infiltrates and
hyperplastic synovium but this is transient and resolves
[171-173]. In addition, mechanical allodynia (weight bearing)
[173,174] and mechanical hyperalgesia (von Frey hair
stimulation) [175] are exhibited. Further characterization
shows that, in the early stages, there is sensitivity to NSAIDs
[173,174] whereas later stages appear to demonstrate
evidence of nerve damage with elevated activating

transcription factor-3 (ATF-3) immunoreactivity in innervating
cell bodies of lumber-DRG and sensitivity to morphine,
amitriptyline and gabapentin [173,176]. The correlation of
bone lesion with onset of ATF-3 immunoreactivity makes
osteoclast-induced injury or mechanical compression of bone
Aδ and C-fibres candidate mechanisms for nerve damage.
These observations indicate the importance of relating animal
model histopathology with clinical samples to gain
understanding of putative analgesic targets and to propose
clearer hypotheses for testing. Detailed translation of this kind
may also be applied to the analysis of OA heterogeneity and
the evaluation of personalized approaches to OA treatments.

Summary and conclusions
Clinical presentation of OA is dominated by pain during joint
use and often at rest. Effective pain therapy has been a key
therapeutic challenge not only in OA but in a variety of
chronic pain disorders. OA represents a complexity of pain
conditions, including manifestations of both nociceptive and
neuropathic mechanisms driven by joint pathophysiology and
abnormal excitability in peripheral and central pain pathways.
A mechanisms-based focus on the key molecular drivers of
neural excitability offers a multiplicity of possible intervention
points. Indeed, a rich diversity of molecular events has been
identified in the pathophysiology of chronic pain, representing
most families of regulatory proteins. Many molecules are
inflammatory mediators and their key receptors (kinins,
mPGES) while others, such as ion channels (TRPV1,
NaV1.7) and NTs (NGF), are key regulators of membrane
excitability and cellular phenotype. We have highlighted these
and a number of other important targets for future pain
therapy, noting in particular evidence that relates to their
participation in animal model systems of OA, translatability to
humans as well as efficacy in the clinical setting. The future
treatment of pain appears optimistic but will require the
systematic evaluation of emerging opportunities.
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