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Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification,
control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a
feedback structure.The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy
perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN
which gives faster convergence via an estimate of error energy while giving guarantee to the 𝑙

2
stability governed by the upper

bounding via small gain theorem. Simulation results are presented to support our theoretical development.

1. Introduction

Neural Networks have recently been used in almost every
field of science. Radial basis function neural networks
(RBFNN) are single-layered feedforward networks with
universal approximation capabilities, in addition to more
efficient learning than the famous multilayered feedforward
neural networks (MFNN) [1]. RBFNN has been used in a
wide variety of applications such as in [2–9].

RBFNN are generally trained using supervised learning.
During training, a recursive update procedure is used to
estimate the weights of the RBFNN that best fit the given
data [1]. The recursive procedure often requires selecting a
suitable adaptation gain called learning rate.The learning rate
should be within an optimum range. It should neither be too
large whichwould drive the algorithmunstable, nor too small
that it slows down the training. In general practice, trial-and-
error experiences are used to select a suitable learning rate for
training phase.

Due to inherent nonlinearity in the structure of neural
networks, its convergence analysis becomes complicated. A
very limitedwork has been done in this context. In [8–10], the

authors have presented a robustness analysis for the percep-
tron neural network. The formulation in [8–10] emphasizes
an intrinsic feedback structure for most adaptive algorithms
and it relies on tools from system theory, control, and signal
processing such as state-space description, feedback analysis,
small gain theorem, 𝐻∞ design, and lossless systems. The
feedback configuration is provoked via energy arguments and
is shown to consist of twomajor blocks: a time-variant lossless
(i.e., energy preserving) feedforward path and a time-variant
feedback path.

More recently, in [11], convergence analysis of RBFNN
is carried out and optimal adaptation for its learning rate
is derived using the deterministic feedback analysis aided
with small gain theorem. But the work does not include any
adaptive mechanism for the learning rate in true sense. In
contrast, in this work, we present an intelligent adaptation
rule for the learning rate of RBFNN which gives faster
convergence via an estimate of error energy while giving
guarantee to the 𝑙

2
stability governed by the upper bounding

via small gain theorem. Moreover, unlike the work of [11], we
avoid mean value theorem, thanks to the RBFNN structure
which allows us to separate the nonlinearity with its weights
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Figure 1: A MIMO RBF neural network.

as opposed to the perceptron structurewhere it is not possible
to separate them. This in turn helps us to avoid mean value
theorem by using the relation of a priori estimation error.
Another distinguished and good feature of our work in
contrast to the work in [11] is that it does not require the
calculation of the derivative of the radial basis function for
the learning rate adaptation.

The paper is organized as follows. Following the intro-
duction in Section 1, we present overview of RBFNN in
Section 2. Section 3 develops a deterministic framework for
the robustness analysis of RBFNN. The feedback structure
for lossless mapping is provided in Section 4 and as a result
a stability bound is derived in Section 5. In Section 6, an
intelligent adaptive rule is presented for the learning rate
of RBFNN. Simulation results are presented in Section 7
to validate our theoretical findings. Finally, the concluding
remarks are given in Section 8.

2. Radial Basis Functions Neural Networks

RBFNN is a type of feedforward neural network. They are
used in a wide variety of contexts such as function approx-
imation, pattern recognition, and time series prediction.
Networks of this type have the universal approximation
property [1]. In these networks the learning involves only one
layer with lesser computations. A multi-input multioutput
RBFNN is shown in Figure 1.TheRBFNN consists of an input
node 𝑢(𝑡), a hidden layer with 𝑛

𝑜
neurons, and an output

node 𝑦(𝑡). Each of the input nodes is connected to all the
nodes or neurons in the hidden layer through unity weights
(direct connections). While each of the hidden layer nodes
is connected to the output node through some weights, for
example, the 𝑖th output node is connected with all the hidden
layer nodes by𝑊(𝑡) = [𝑤

1
(𝑡), . . . , 𝑤

𝑛
𝑜

(𝑡)], each neuron finds
the distance, normally applying Euclidean norm, between the
input and its center and passes the resulting scalar through a
nonlinearity. So the output of the 𝑖th hidden neuron is given
by 𝜙
𝑖
(‖𝑢(𝑡) − 𝑐

𝑖
‖), where 𝑐

𝑖
is the center of the 𝑖th hidden layer

node, 𝑖 = 1, 2, . . . , 𝑛
𝑜
, and 𝜙

𝑖
(⋅) is the nonlinear basis function.

Normally this function is taken as a Gaussian function of
width 𝛽, which dictates the effective range of input passing
through the basis function. The output 𝑦

𝑚
(𝑡) is a weighted

sum of the outputs of the hidden layer, given by

𝑦
𝑚
(𝑡) = Φ (𝑡)𝑊 (𝑡) ,

𝑦
𝑚
(𝑡) =

𝑛
𝑜

∑

𝑖=1

𝜙
𝑖
(
𝑢 (𝑡) − 𝑐𝑖

) 𝑤𝑖 (𝑡) ,

(1)

where the basis functions and weight vector are defined as

Φ (𝑡) = [𝜙1 (𝑢 (𝑡)) 𝜙
2
(𝑢 (𝑡)) ⋅ ⋅ ⋅ 𝜙

𝑛
𝑜

(𝑢 (𝑡))] , (2)

and the Gaussian basis function is

𝜙
𝑖
(𝑢 (𝑡)) = exp(−

𝑢 (𝑡) − 𝐶𝑖

2

𝛽2
) . (3)

Consider a collection of input vectors {𝑢(𝑡)} with the
corresponding desired output vectors {𝑦(𝑡)}. We also take
into account noisy perturbations V(𝑡) in the desired signal.
These perturbations can be due to model mismatch or to
measurement noise. Assuming there exists an optimal weight
vector𝑊

𝑜
such that

𝑦 (𝑡) = Φ (𝑡)𝑊
𝑜
+ V (𝑡) . (4)

TheRBFNN is presentedwith the given input-output data
{𝑢(𝑡), 𝑦(𝑡)}.The objective is to estimate the unknown optimal
weight𝑊

𝑜
. Now, starting with an initial guess𝑊

0
, the weights

are updated recursively based on the LMS principle as

𝑊(𝑡 + 1) = 𝑊 (𝑡) + 𝛼 (𝑡) 𝑒 (𝑡) Φ
𝑇
(𝑡) , (5)

where 𝛼(𝑡) is the learning and the error 𝑒(𝑡) is defined as

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦
𝑚
(𝑡) ,

𝑒 (𝑡) = Φ (𝑡)𝑊
𝑜
− Φ (𝑡)𝑊 (𝑡) + V (𝑡) .

(6)

We define a priori and a posteriori error quantities as

𝑒
𝑎
(𝑡) = Φ (𝑡) �̃� (𝑡) ,

𝑒
𝑝
(𝑡) = Φ (𝑡) �̃� (𝑡 + 1) ,

(7)

where �̃�(𝑡) is the weight error vector symbolizing the
difference between the optimal weight and its estimate as
�̃�(𝑡) = 𝑊

𝑜
−𝑊(𝑡). Thus, we can rewrite the 𝑒

𝑎
(𝑡) as

𝑒
𝑎
(𝑡) = Φ (𝑡)𝑊

𝑜
− Φ (𝑡)𝑊 (𝑡) (8)

= Φ (𝑡)𝑊
𝑜
− 𝑦
𝑚
(𝑡) , (9)

𝑒
𝑝
(𝑡) = Φ (𝑡) [�̃� (𝑡) − 𝛼 (𝑡)Φ(𝑡)

𝑇
𝑒 (𝑡)]

= 𝑒
𝑎
(𝑡) − 𝛼 (𝑡) ‖Φ (𝑡)‖

2
𝑒 (𝑡) .

(10)

Consequently, the weight error update equation satisfies the
following recursion:

�̃� (𝑡 + 1) = �̃� (𝑡) − 𝛼 (𝑡) 𝑒 (𝑡) Φ
𝑇
(𝑡) . (11)
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3. A Deterministic Framework for
the Robustness of RBFNN

Robustness of an algorithm is defined as the consistency
in its estimation error with the disturbances in the sense
that a minor increase in disturbances would lead to a
smaller increase in its estimation error irrespective of the
disturbances nature. In order to study the robustness of
RBFNN, we employ a pure deterministic framework without
assuming any prior knowledge of signal or noise statistics as
was used in [8, 9].This is especially useful in situations where
prior statistical information is missing. The robust design
would guarantee a desired level of robustness independent of
the noise statistics. In a broad sense, robustness would imply
that the ratio of an estimation error energy to the noise or
disturbance energy will be guaranteed to be upper bounded
by a positive constant:

estimation error energy
disturbance energy

≤ 1. (12)

Thus, the ratio in (12) gives the assurance that the resulting
estimation error energy will be upper bounded by the
disturbance energy, regardless of the nature and statistics of
noise.

Next, we will develop a lossless mapping between the
estimation errors while adapting the weights from the 𝑡th
time instant to the (𝑡+1)th time instant. A lossless mapping is
the one that transforms 𝑥 to 𝑦 as 𝑦 = 𝑇[𝑥] in such a way that
we have ‖𝑇[𝑥]‖2 ≤ ‖𝑥‖

2 for all 𝑥; that is, the output energy
does not exceed the input energy. To set up the stage for the
analysis, we define the disturbance error Ṽ(𝑡) as

Ṽ (𝑡) = 𝑒 (𝑡) − 𝑒
𝑎
(𝑡) . (13)

Now, by using the above definition and definitions of esti-
mation errors, we evaluate the energies of both sides of the
weight error recursion (11) as follows:

�̃� (𝑡 + 1)



2

=

�̃� (𝑡)



2

− 2𝛼 (𝑡) 𝑒 (𝑡) Φ (𝑡) �̃� (𝑡)

+ 𝛼(𝑡)
2
𝑒
2
(𝑡) ‖Φ (𝑡)‖

2
,

=

�̃� (𝑡)



2

− 2𝛼 (𝑡) 𝑒
2

𝑎
(𝑡) − 2𝛼 (𝑡) 𝑒

𝑎
(𝑡) Ṽ (𝑡)

+ 𝛼(𝑡)
2
‖Φ (𝑡)‖

2
𝑒
2

𝑎
(𝑡)

+ 2𝛼(𝑡)
2
‖Φ (𝑡)‖

2
𝑒
𝑎
(𝑡) Ṽ (𝑡)

+ 𝛼(𝑡)
2
‖Φ (𝑡)‖

2Ṽ2 (𝑡) .
(14)

By rearranging the relevant terms, we finally arrive at


�̃� (𝑡 + 1)



2

+ 2𝛼 (𝑡) 𝑒
2

𝑎
(𝑡) −

𝛼(𝑡)
2

𝜇 (𝑡)
𝑒
2

𝑎
(𝑡)

=

�̃� (𝑡)



2

− 2𝛼 (𝑡) 𝑒
𝑎
(𝑡) Ṽ (𝑡) + 2

𝛼(𝑡)
2

𝜇 (𝑡)
𝑒
𝑎
(𝑡) Ṽ (𝑡)

+
𝛼(𝑡)
2

𝜇 (𝑡)
Ṽ2 (𝑡) ,

(15)

where we have introduced a new parameter 𝜇(𝑡) defined as

𝜇 (𝑡) =
1

‖Φ (𝑡)‖
2
. (16)

Thus, it can be easily seen from the mapping (15) that the
following three different scenarios exist depending upon the
value of learning rate:


�̃� (𝑡 + 1)



2

+ 𝛼 (𝑡) 𝑒
2

𝑎
(𝑡)


�̃� (𝑡)



2

+ 𝛼 (𝑡) Ṽ2 (𝑡)

{{

{{

{

≤ 1, for 0 < 𝛼 (𝑡) < 𝜇 (𝑡)

= 1, for 𝛼 (𝑡) = 𝜇 (𝑡) ,

≥ 1, for 𝛼 (𝑡) > 𝜇 (𝑡) .

(17)

The first two inequalities in the statement of (3) ascertain that
if the learning rate is chosen such that 𝛼(𝑡) ≤ 𝜇(𝑡), then the
mapping from signals {�̃�(𝑡), √𝜇(𝑡)𝑒

𝑝
(𝑡)} to the singals {�̃�(𝑡+

1), √𝜇(𝑡)𝑒
𝑎
(𝑡)} is a lossless or contractivemapping.Therefore,

a local energy bound is deduced that highlights a robustness
property of the update recursion. The energy bound depicts
that no matter what the value of the noise component Ṽ(𝑡) is,
and no matter how far the estimate𝑊(𝑡) is from the optimal
𝑊
𝑜
, the sum of energies ‖�̃�(𝑡 + 1)‖

2

+ 𝛼(𝑡)𝑒
2

𝑎
(𝑡) will always

be smaller than or equal to the sum of energies ‖�̃�(𝑡)‖
2

+

𝛼(𝑡)Ṽ2(𝑡). Since this contractive property holds for each 𝑡th
instant, it should also hold globally over any interval. In fact,
selecting 𝛼(𝑡) < 𝜇(𝑡) over the interval 0 ≤ 𝑡 ≤ 𝑁, it follows
that


�̃� (𝑁)



2

+

𝑁

∑

𝑡=0

𝛼 (𝑡) 𝑒
2

𝑎
(𝑡) ≤


�̃� (0)



2

+

𝑁

∑

𝑡=0

𝛼 (𝑡) Ṽ2 (𝑡) .

(18)

4. Feedback Structure for Lossless Mapping

In this section, a feedback structure is established that
explains a lossless mapping between estimation errors 𝑒

𝑎
(𝑡)

and 𝑒
𝑝
(𝑡). To do so, we first reformulate the a posteriori error

defined in (10) in terms of parameter 𝜇(𝑡) as follows:

𝑒
𝑝
(𝑡) = 𝑒

𝑎
(𝑡) − 𝛼 (𝑡) ‖Φ (𝑡)‖

2
𝑒 (𝑡) ,

𝛼 (𝑡) 𝑒 (𝑡) = 𝜇 (𝑡) (𝑒
𝑎
(𝑡) − 𝑒

𝑝
(𝑡)) .

(19)

Hence, the weight error recursion in (11) will take the
following form:

�̃� (𝑡) = �̃� (𝑡) − 𝜇 (𝑡) Φ
𝑇
(𝑡) (𝑒
𝑎
(𝑡) − 𝑒

𝑝
(𝑡)) . (20)

Thus, the evaluation of energies of the both sides of the above
equation leads to a similar form as (3) with equality showing a
losslessmapping between the estimation errors and it is found
to be


�̃� (𝑡 + 1)



2

+ 𝜇 (𝑡) 𝑒
2

𝑎
(𝑡)


�̃� (𝑡)



2

+ 𝜇 (𝑡) 𝑒2
𝑝
(𝑡)

= 1, (21)

which holds for all possible choices of the learning
rate. This implies that the mapping 𝑇

𝑖
from the signals
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Figure 2: A lossless mapping in a feedback structure for RBFNN
learning algorithm.

{�̃�(𝑡), √𝜇(𝑡)𝑒
𝑝
(𝑡)} to the signals {�̃�(𝑡 + 1), √𝜇(𝑡)𝑒

𝑎
(𝑡)} is

lossless.
Next, by employing the relations (8) and (6), (19) can be

set up as

𝑒
𝑝
(𝑡) = 𝑒

𝑎
(𝑡) −

𝛼 (𝑡)

𝜇 (𝑡)
(𝑒
𝑎
(𝑡) + V (𝑡)) ,

𝑒
𝑝
(𝑡) = [1 −

𝛼 (𝑡)

𝜇 (𝑡)
] 𝑒
𝑎
(𝑡) −

𝛼 (𝑡)

𝜇 (𝑡)
V (𝑡) ,

−√𝜇 (𝑡)𝑒
𝑝
(𝑡) =

𝛼 (𝑡)

√𝜇 (𝑡)
V (𝑡) − [1 −

𝛼 (𝑡)

𝜇 (𝑡)
]√𝜇 (𝑡)𝑒

𝑎
(𝑡) .

(22)

This relation shows that the overall mapping from the original
(weighted) disturbances √𝜇(𝑡)V(𝑡) to the resulting a priori
(weighted) estimation errors √𝜇(𝑡)𝑒

𝑎
(𝑡) can be expressed in

terms of a feedback structure, as shown in Figure 2.

5. Stability Bound via Small Gain Theorem

The stability of the structures of the form (22) can be studied
via well-known tools such as the small gain theorem [12].
Thus, conditions on the learning rate 𝛼(𝑡) will be derived
in order to guarantee a robust training algorithm, as well as
faster convergence speeds.

This will be achieved by establishing conditions under
which the feedback configuration is 𝑙

2
stable in the sense that

it should map a finite-energy input noise sequence (which
includes the noiseless case a special case) {√𝜇(𝑡)V(𝑡)} to a
finite-energy a priori error sequence {√𝜇(𝑡)𝑒

𝑎
(𝑡)}.

The small gain theorem for our scenario can be stated as

Δ (𝑁) = max
0≤𝑡≤𝑁


1 −

𝛼 (𝑡)

𝜇 (𝑡)


. (23)

According to the above definition, Δ(𝑁) is the maximum
absolute gain of the feedback loop over the interval 0 ≤ 𝑡 ≤ 𝑁.

The small gain theorem states that the 𝑙
2
stability of a

feedback configuration such as the configuration in Figure 2
as special case requires that the product of norms of the
feedforward and feedback maps be strictly bounded by one
[8, 9, 12]. In our case, the norm of the feedforward map
is equal to one (since it is lossless) while the norm of the
feedbackmap is defined in (23) asΔ(𝑁). Hence, the condition
Δ(𝑁) < 1 guarantees an overall contractive map. Therefore,
for Δ(𝑁) < 1 to hold, we need to choose the learning rate
such that, for all 𝑡,

0 < 𝛼 (𝑡) < 2𝜇 (𝑡) =
2

‖Φ (𝑡)‖
2
. (24)

6. Designing Adaptive Learning Rate

In this section, we propose an adaptive mechanism to update
the learning rate 𝛼(𝑡) such that it gives faster convergence as
well as guaranteeing the 𝑙

2
stability discussed in the previous

section. For this, we propose an adaptive mechanism similar
to the one in [13] according to which the learning rate should
be adapted via an estimate of error correlation. In addition,
we upper-bounded themaximumvalue of the learning rate to
assure its 𝑙

2
stability by employing the stability bound derived

in (24). To do so, we propose the following adaptive rule [13]:

𝛼 (𝑡 + 1) = 𝜆𝜂 (𝑡) + 𝛾𝑒
2
(𝑡) , (0 < 𝜆 < 1, 𝛾 > 0) , (25)

𝜂 (𝑡 + 1) = {
𝜂max, if 𝛼 (𝑡 + 1) > 𝜂max,

𝛼 (𝑡 + 1) , otherwise,
(26)

where the parameter 𝜂max is so chosen that it ensures 𝑙
2

stability given in (23). Thus, 𝜂max is given by

𝜂max =
2

‖Φ (𝑡)‖
2
, (27)

where the parameter 𝜆 is a positive quantity showing its
dependency on its own past value and lies in the range
[0, 1] (usually we choose a value closer to 1, e.g., 0.97) while
the constant 𝛾 is a very small number. The adaptation rule
given by (25) and (26) suggests that the learning rate is
large in the initial stage of adaptation due to larger error
correlation and it decreases near steady state as the error
correlation of the algorithmalso decreases once the algorithm
approaches the steady state. Thus, by adjusting the learning
rate online according to the rule given in (25), it will give
faster convergence as it allows faster adaptation of 𝛼(𝑡) via an
estimate of error energy due to the term 𝛾𝑒

2
(𝑡). On the other

hand, the adaptation rule in (24) will guarantee the stability of
the feedback structure due to upper bounding via the stability
limit in (24), that is, 2/‖Φ(𝑡)‖2. Thus, it promises both faster
convergence and a stable response.

7. Simulation Results

The proposed adaptive learning rate is verified using various
simulations for nonlinear identification and tracking control.
In all the cases the simulation is first performed for fixed
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adaptive learning rates. The fixed learning rates are 0.01, 0.03, 0.06,
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learning rates. The fixed learning rates are set after several
trials. However, these trials are not required when using
the proposed adaptive learning rate given by (24), (25), and
(26). A comparison for different fixed learning rates and
adaptive learning rate is shown for each example along with
identification/tracking and learning rate trends.

7.1. Identification of Nonlinear Control Valve. In this simula-
tion example, the proposed adaptive learning rate is used in
the identification of a model that describes a valve for control
of fluid flow described in [14] as

𝑦 (𝑡) =
𝑢 (𝑡)

√0.10 + 0.90𝑢2 (𝑡)
. (28)

The model is identified using an RBFNN with 5 centers
spaced at 0.5. The width of the center is set to 0.6. An output
additive noise of 30 dB SNR is considered in this example.
Learning rates of 0.01, 0.03, 0.06, and 0.08 are used for
fixed learning rate case. The algorithm became unstable and
values are near or greater than 0.08. After the simulations,
mean square errors (MSE) for fixed and adaptive learning
rates are shown in Figure 3. The lowest MSE achieved using
adaptive learning rate shows the performance of the proposed
approach.

Actual and identified control valve using the proposed
approach are shown in Figure 4. The learning rate trend can
be seen in Figure 5.

7.2. Identification of Nonlinearity in Hammerstein Model.
The proposed bound on the adaptive learning rate is used
in the identification of the static nonlinearity in nonlin-
ear Hammerstein model defined in [15]. The Hammerstein
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Figure 4: Actual and identified control valve using the proposed
adaptive learning rate.
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Figure 5: Learning rate trend for the identification of control valve.

model has been identified using RBFNN in [16]. The Ham-
merstein model used for simulation represents a nonlinear
heat exchanger in cascade with linear dynamics. The static
nonlinearity and linear dynamics are given by [15]

𝑥 (𝑡) = −31.549𝑢 (𝑡) + 41.732𝑢
2
(𝑡) − 24.201𝑢

3
(𝑡)

+ 68.634𝑢
4
(𝑡) ,

𝑦 (𝑡) = 0.4𝑦 (𝑡 − 1) + 0.35𝑦 (𝑡 − 2) + 0.15𝑥 (𝑡) + V (𝑡) ,
(29)

where 𝑢(𝑡) is the input to the system, 𝑥(𝑡) is the intermediate
variable, 𝑦(𝑡) is the system output, and V(𝑡) is additive noise
at the output. Actual and identified heat exchangers using the
proposed approach are shown in Figure 7. The nonlinearity
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Figure 6: MSE for the identification of heat exchanger in Ham-
merstein model using fixed and adaptive learning rates. The fixed
learning rates are 0.01, 0.02, 0.03, and 0.05.
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Figure 7: Actual and identified heat exchanger in Hammerstein
model using the proposed adaptive learning rate.

in the Hammerstein model is identified online using RBFNN
with 9 neurons and a width of 0.5. An output additive noise
of 30 dB SNR is considered in this example. Learning rates
of 0.01, 0.02, 0.03, and 0.05 are used for fixed learning rate
case.The algorithm became unstable at values near or greater
than 0.07. After the simulations mean square errors (MSE)
for fixed and adaptive learning rates are shown in Figure 6,
the lowest MSE achieved using adaptive learning rate shows
the performance of the proposed approach.

The learning rate trend can be seen in Figure 8.
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Figure 8: Learning rate trend for the identification of heat exchanger
in Hammerstein model.

7.3. Adaptive Inverse Control Using RBFNN. In this simula-
tion example an adaptive control technique, namely, adaptive
inverse control (AIC) is considered [17]. This technique is
based on identifying the plant and its inverse. This technique
was introduced for stable, minimum phase linear systems;
however, with appropriate modification it can also be used
for nonminimum phase and nonlinear systems [17].

Consider a nonminimum phase plant with a transfer
function:

𝐺 (𝑠) =
𝑠 (𝑠 + 1)

𝑠2 + 0.45𝑠 + 0.1
. (30)

AIC based on RBFNN is used for tracking control of
the given plant. Therefore, the plant is identified online
using RBFNN with 5 centers and width of 1. The weights
are initialized with random numbers. These initial weights
are kept the same for all different cases of learning rates.
The response to a square wave with output additive noise
is measured and compared with the RBFNN output. The
mismatch signal is used as error signal in weight update (5).

For fixed learning rate case, learning rates of 0.1, 0.5, 0.8,
and 0.9 are used. The algorithm became unstable at learning
rate of 1. MSE for different learning rates and proposed
adaptive learning rate are shown in Figure 9. It is observed
that the MSE converges faster with higher learning rates.
On the other hand, using the proposed adaptive learning
rate MSE converges to smaller values than any of the fixed
learning rate cases.

The tracking of actual and identified nonminimum phase
plant using the proposed approach is shown in Figure 10.The
learning rate trend can be seen in Figure 11.

7.4. Internal Model Control of MIMO System Using RBFNN
Based U-Model. In this simulation example internal model
control (IMC) [18] is applied for the tracking control of a
2-input 2-output system. The plant is modelled by RBFNN
based U-model. The details of the RBFNN based U-model
are presented in [19, 20].
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Learning Rate Bound.

The 2-input 2-output system is given by

𝑦
1
(𝑡) = 0.21𝑦

1
(𝑡 − 1) − 0.12𝑦

2
(𝑡 − 2)

+ 0.3𝑦
1
(𝑡 − 1) 𝑢

2
(𝑡 − 1) − 1.6𝑢

2
(𝑡 − 1) + V

1
(𝑡) ,

𝑦
2
(𝑡) = 0.25𝑦

2
(𝑡 − 1) − 0.1𝑦

1
(𝑡 − 2)

− 0.2𝑦
2
(𝑡 − 1) 𝑢

1
(𝑡 − 1) + 1.2𝑢

1
(𝑡 − 1) + V

2
(𝑡) ,

(31)
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Figure 11: Learning rate trend for the tracking using RBFNN based
AIC.
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Figure 12: MSE for the tracking of 2-input 2-ouput system using
RBFNN based U-model with fixed and adaptive learning rates. The
fixed learning rates are 0.1, 0.2, 0.5, and 0.9.

where 𝑦
𝑠
are the output, 𝑢

𝑠
are the input, and V

𝑠
are output

additive noise.
IMC based onU-model is used for tracking control of the

MIMO system.Therefore, the plant is identified online using
2-input 2-output RBFNN based U-model [19] with 4 centers
and width of 1.

For fixed learning rate case, learning rates of 0.1, 0.2,
0.5, and 0.9 are used. MSE for different learning rates and
proposed adaptive learning rate are shown in Figure 12.

It can be seen that adaptive learning rate has outper-
formed the fixed learning rate. The tracking of actual and
identified nonminimum phase plant using the proposed
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Figure 13: Tracking using RBFNN based U-model with Proposed
Learning Rate Bound.
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Figure 14: Learning rate trend for the tracking control of 2-input
2-output system using RBFNN based U-model.

approach is shown in Figure 13. The learning rate trend can
be seen in Figure 14.

8. Conclusions

This paper presents the convergence analysis of the RBFNN
with a deterministic framework. An adaptive learning rate is

designed which is a result of time domain feedback analysis
of RBFNN learning algorithm. The proposed adaptive rule
for the learning rate gives faster convergence via an estimate
of error energy while giving guarantee to the 𝑙

2
stability

governed by the upper bounding via small gain theorem.
Performance of the proposed adaptive learning rate is verified
by a number of identification and tracking control examples
of nonlinear systems. The effectiveness of the proposed
approach is observed by betterMSE compared to the onewith
a fixed learning rate.
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