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Abstract

In recent years, artificial intelligence (AI)/machine learning has emerged as a plausible alternative to systems biology for the elucidation
of biological phenomena and in attaining specified design objective in synthetic biology. Although considered highly disruptive with
numerous notable successes so far, we seek to bring attention to both the fundamental and practical pitfalls of their usage, especially in
illuminating emergent behaviors from chaotic or stochastic systems in biology. Without deliberating on their suitability and the required
data qualities and pre-processing approaches beforehand, the research and development community could experience similar ‘AI
winters’ that had plagued other fields. Instead, we anticipate the integration or combination of the two approaches, where appropriate,
moving forward.
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Introduction
Human history was marked by transitions, whereby machines
had been innovatively built to replace, or make it easier for
mankind, to carry out laborious, time-consuming and/or mun-
dane tasks. The current development of artificial intelligence (AI)
and machine learning (ML) techniques and tools in the biological
and biotechnological domains can be viewed similarly for bring-
ing about smarter and more automated analysis and decision-
making to these fields [1]. AI/ML applications in these domains
particularly benefitted from the advent of high-throughput multi-
omics profiling [2], which provides the large amount of data
needed at each regulatory level (genomics, transcriptomics, pro-
teomics, metabolomics, etc.) [3, 4] for the reliable and accu-
rate prediction of biological behaviors. However, black-box AI/ML
methods that are solely dependent on data, by nature, unable to
provide the mechanistic basis for justifying the explanation of
complex behaviors, and in making reliable predictions.

Conversely, systems biology [5] underlines the principle that
complex behaviors can emerge holistically from the mechanistic
interactions among the components of a biological system (e.g.
cell fate transitions [6]), and models them mathematically to
predict experimental observations. However, it often requires
detailed description of the molecular mechanisms involved.
For example, modeling the temporal dynamics of biomolecules
in a metabolic system will entail the prescription of a set of
quantitative rate laws describing the material physico-chemical
interactions among enzymes, substrates and regulator molecules,
taking into account various intracellular effects (compartmental,
membrane, channeling effects [7], etc.) and regulation (post-
translational [8] and allosteric [9] regulations, among others).

In doing so, systems biology further provides a fundamental
basis for the rigorous integration of metabolomics and proteomics
(enzymes) datasets, while remaining amenable to the productive
analytical frameworks of other fields, such as those of chaos,
control and ergodic theories. However, such intricate mechanistic
details and their parameter values are mostly unavailable [10,
11] and challenging to obtain experimentally [12], requiring
considerable time and effort to attain in each context.

Considering the challenges of systems biology, AI/ML remains
an alternative for investigating system behaviors [13] and improv-
ing the output of interest in synthetic biology applications [14].
Nonetheless, there remains considerable challenges for an AI/ML
alternative to systems biology, especially if it is solely dependent
on (omics) data, despite its successes in specific categories of
biomedical applications [15]. Here, we collate the practical pitfalls
found in the literature and reiterate the fundamental challenges
to do so. We then conclude with key considerations for its usage.

Challenges associated with requiring huge
quantity of well-designed data
Firstly, the strength of AI/ML methods in handling enormous
number of samples is also where its weakness lies: it needs
them, but also of the right design to work well (Figure 1A, see
[14], for example of design guidelines in synthetic biology that
are also relevant to an AI/ML alternative to systems biology).
With inadequate data, they perform poorly, but the processes and
consequences of providing such data will give rise to difficult chal-
lenges, further compounded by the nature of both biological and
system studies, as outlined in the rest of the article. The stringent

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-0314-9666


2 | Yeo and Selvarajoo

data requirement has played an important part in their uneven
applications across biomedical fields, in line with the available
amount of suitable data [16]. As a case in point, since its concep-
tion 4 years ago [13], there has not been any report of the usage
of AI/ML to predict the temporal concentration of interacting
biomolecules solely based on their data. This is despite the clear
utility of such a technique for understanding complex system
behaviors, as well as, for enhancing the production titer/yield in
synthetic biology applications. The lack of application is likely
to be due to the huge amount of data required, which we shall
outline in the context of the ‘Design-Build-Test-Learn’ (DBTL)
cycle. The latter is an iterative improvement framework, used for
both refining the understanding of the biological phenomenon
under study [17] and for attaining specified design objective in
synthetic biology [18]. As its name implies, the cycle is named
after the sequential steps involved.

For illustration, we take the scenario of enhancing the pro-
duction of a metabolite via microbial strain design, whereby the
synthetic pathway involved consists of nine enzymatic steps,
each with three possible levels of expression (different promoter
strengths). As a result, there is a total combination of 19 683 (39)
candidate strains, a number which is considered too large for
exhaustive testing. To guide the strain design more effectively,
the DBTL cycle emphasizes the need to learn from each cycle
(step ‘L’), the candidate strains (i.e. combination of expression
levels) that could produce higher output, and, thus, should be
designed (‘D’), built (‘B’) and tested (‘T’) in the next cycle. To
do so, the learning process requires the building of a predictive
model embodying the relationship between the input and output
variables, which may be achieved in an automated fashion via
ML [19]. Through such a systematic and informed approach for
directing strain design, the framework aims to reduce the overall
number of tests required. A minimum of five DBTL cycles is
recommended [14], but this will still require 960 strains to be
investigated (<5% of all possibilities). The number of tested strains
consists of three 96-well plate instances (strains) for the first cycle,
and two 96-instances for the second cycle, followed by one each
for the last three cycles. Another two 96-instances are kept in
reserve, in anticipation of a high rate of design failures, such as
those arising from the toxicity of the pathway metabolites and
cellular stresses due to the presence of exogenous plasmids [20].
Triplicates are assumed with half-hourly samples over 2 days,
resulting in a total of 276 480 time-series data points (10×96-
well plate instances×3 replicates×2 days×24 h×2 half-hourly
timepoints) for each metabolite and enzyme under study, which
is considered a huge sample number for biological studies. Note a
similar sample size is required, if an AI/ML alternative to systems
biology is to be used for more fundamental studies, such as in
predicting dynamic and emergent cellular behaviors.

Although transfer learning can greatly reduce the data require-
ment by learning from prior data on different but related systems,
the low temporal resolution of available data is likely to have
limited such opportunity till now. This, in part, is attributed to
a different research focus other than dynamic modeling, a lack
of understanding of the resolution required, and exercising pru-
dence by minimizing the cost of data generation. The challenge of
insufficient data is further aggravated by the fact that the amount
required is unknown for new systems [14], and it is unclear if it is
knowable in advance. Currently, the practical and sensible way
to gauge the difficulty of a new learning task is to observe the
ease of improvement in the general ability of AI/ML models to
predict the test dataset, with increasing sample size [14]. However,
it is also important and suffice to be aware of the existence of
relationships in nature that may be well defined mathematically

but are so complex, data requirement-wise, that no amount is
sufficient to learn their form [21, 22]. In this regard, the inclusion
of a mathematical description of the phenomenon grounded in
first principles, if available, may be more desirable and useful by
providing a qualitative structure to the predictive model, thereby
markedly reducing data requirement.

Because of the various reasons mentioned above, the costs
and timeline of a new project, and even their uncertainty, may
be hard to estimate. This presents significant risk in correctly
assessing its feasibility, as well as its amenability to be completed
on budget and on time. Despite considerable advancements in
the last decade [23–27], the various phases of the DBTL cycle can
still benefit from exigently needed innovations to improve their
automation, throughput, reliability and cost (Figure 1A), to miti-
gate these challenges. Compared to systems biology approaches,
AI/ML methods are also less suitable for analyzing system fail-
ures, given its stringent demand on data quality and quantity.

Pernicious data leakage via preprocessing,
temporal and technical artifacts
As AI/ML algorithms are designed to build high-scoring models,
they are also naturally inclined to leverage on any correlation
present in the data, some of which may be irrelevant to the
fundamental working of the system being studied. These circum-
stantial associations can be technical in nature (temperature,
reagent batches, technicians and machine performance), due to
data pre-processing [28], or even come from irrelevant biological
relationships (homology [16], co-regulation, etc.) and noise for a
purely data-driven approach. Moreover, the sharing of replicates
and fundamentally similar samples (which may not be obvious)
among training and validation/test datasets may result in their
superficially easier prediction [14]. Such false/artificial relation-
ships are even more easily picked up with inappropriate training
processes [29–32], but the high performance of the resulting mod-
els could not be reproduced during application. The phenomenon
is termed ‘data leakage’, as it ascribes the cause to such mislead-
ing information that is ‘leaked across’ (present in both) training
and validation datasets. As a result, such associations uncovered
during the training process may be ‘validated’ by the high score
achieved in predicting the same associations in the validation
dataset. In all, data leakage can be defined as the phenomenon
whereby circumstantial and artifactual correlations, irrelevant
to the fundamental working of the system being studied, are
leveraged by AI/ML to build high-scoring models. To underscore
the deep-seated nature of the problem, data leakage may be said
to be in the ‘DNA’ of AI/ML algorithms, as they are designed
to build high-scoring models. In this light, the ‘random’ sorting
of samples into training and validation datasets will not pre-
vent the exploitation of irrelevant associations for building high-
scoring models [33]. The effect may also be compounded with
the variables under study to exaggerate the latter’s impact in a
hidden manner. In worse case scenarios, there is no real learn-
ing of the fundamental relationships under study but is simply
reflecting the arbitrary input–output correlation in the data (i.e.
overfitting or ‘memorizing’). Conversely, realistic models may be
confounded by the external factors and thus become disregarded
inconspicuously. Despite the seriousness of the problem, there are
no straightforward way to exhaustively detect and identify all the
factors before model deployment.

While a sound experimental design can ensure the equal expo-
sure of studied conditions to external factors (differences in oper-
ator, cell culture media preparation, etc.) [34] that can be corrected
for eventually, it is however challenging to do so for all factors, due
to the hidden nature of some of them, as well as experimental
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Figure 1. Challenges associated with AI/ML alternative to systems biology for fundamental understanding of complex systems as well as synthetic
biology applications. Three categories of issues (A–C) compound on each other from the perspective of ‘Design-Build-Test-Learn’ improvement cycle
to make an AI/ML alternative to systems biology solely dependent on data challenging. Note that data leakage (B) may happen via the cumulative
effects of multiple external factors. These factors may affect the same or different samples but is depicted in one sample for illustration purpose. (B)
Top: data generation artifacts may together confound the effect of variables driving the phenomena. Although the resulting overestimation of effect is
depicted, the converse is also possible. (B) Bottom: a high scoring but spurious model can ensue from combination of issues related to inappropriate
sample selection, data pre-processing and model training process. Although the depictions may appear to be exaggerated and unlikely, poor data
generation and usage strategy will increasingly elevate the chance of producing compromised models, as more external factors come into play and
augment the effect of each other in a subtle manner. As AI/ML algorithms are designed to build high scoring models, they are also inclined to leverage
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and resource constraints. Even without such limitations, it is still
not possible to totally eliminate all known effects, as it is difficult
and tedious to find the context-specific, optimal balance between
their removal and preservation of biological signals [35]. As such,
the results of batch effect correction can vary greatly in a poorly
understood manner, depending on the algorithm (assumptions)
and parameters used, and the order of the batches being merged
for correction. There is also the risk of random and biological vari-
abilities being suppressed during the process, thus exaggerating
the confidence interval of biological effects [34]. In addition, the
computational intractability of correcting massive datasets will
become more of a hindrance to an AI/ML method that is solely
dependent on data [36].

We anticipate data leakage to arise more perniciously in an
AI/ML alternative to systems biology fully dependent on data. This
is because the cost of samples and data preparation will, to certain
degree, incentivizes the minimal generation of time-series data
points, and the widespread application of data augmentation and
curve smoothening techniques to synthesize replacement data
[13]. However, excessive and ill-considered application for com-
plex dynamics can result in simplistic, false relationships between
the input candidates and the output, which are picked up during
training, and ‘validated’ in validation/test datasets with similar
artificial profiles (Figure 1B). An erroneously high model score can
thus arise, which is otherwise not indicative of its predictive per-
formance. Notably, such a practice has been further fed by a lack
of understanding of the temporal resolution required for profiling
dynamical systems. In addition, with increasing time, time-series
measurements are more likely to be affected by technical artifacts
[37] and rare chance events, unknowingly and uncontrollably by
the researchers, to bias the learning process. The sheer sample
size required by AI/ML will further aggravate the challenge [38].
Although AI/ML models may be trained to learn such temporal
effects, it may still not be possible to fully account for them [28].

Currently, the over-reliance on using a sole metric, such as
accuracy, and narrow approach, such as cross validation [38],
for judging potential predictive capability is another cause for
concern, as it provides ample room for AI/ML to exploit arti-
facts for attaining high training score, and further accentuated
by researchers’ search for such models, via repeated trial-and-
error attempts. In this way, any AI/ML approach that is solely
data dependent will be predisposed to pick up biased models,
which is thus a more serious and prevalent problem compared
to experimental and systems biology studies. In all, the difficulty
in managing multi-faceted data artifacts will pose a serious chal-
lenge [38] to the aspiration of replacing systems biology with an
AI/ML alternative that is fully reliant on data.

Unsuitability of AI/ML models solely reliant on
data for systems biology endeavors
Another major challenge is that, without mechanistic under-
pinning, AI/ML generally could not be expected to be able to
extrapolate out of data context [14] (Figure 1C), especially if the
underlying mechanism is complex and exhibits contextual emer-
gent behaviors. Also, without the fundamental constraints, the
ability to predict is also more easily impaired by technical and pre-
processing artifacts, as well as the hallmark of biological systems,

which is heterogeneity, whereby differing mechanism(s) at various
regulatory levels, e.g. transcriptomics, proteomics, metabolomics,
etc., often result in similar outcomes [39].

We also believe that an AI/ML approach solely reliant on data
is unsuitable for the predictive modeling of chaotic biological
systems and phenomena (e.g. yeast glycolysis [40], mitochon-
dria metabolism [41], synthetic biochemical network [42], cell
cycle transitions [43, 44], cyclic AMP signaling [45], etc.), since
some imperceptible error of measuring the initial state will result
in its nonlinear propagation, and hence, diverging predictions.
Although the limit for predicting the chaotic dynamics of sim-
ulated physical systems has been recently extended with the
usage of more advanced AI/ML algorithm [46], it should also be
noted that the said prediction was not restricted by the quan-
tity and quality of the data, an idealistic condition found under
simulation, but not in biological experiments that are further
plagued by heterogeneity. Importantly, the reported achievement
of accurately predicting dynamics up to 8 ‘Lyapunov time’ (time
required for the divergence in prediction to be considered large
by some measure of separation) still translates to under an hour
for biomolecular systems (8 × 4.6 min) [47], which is still not
sufficiently long to be useful for systems biology endeavors, even
if it can be similarly accomplished. Nonetheless, we believe the
boundary of the AI/ML predictions should continue to be ‘pushed’,
but a more accurate and reliable approach may benefit from the
incorporation of mechanistic elements into the model [48, 49].

AI/ML is similarly inappropriate for stochastic processes (e.g.
at the single-cell level), since the actual outcome of random
events cannot be foretold by any model. While ‘training’ can
arguably still be conducted for chaotic and stochastic systems
to achieve the more limited scope of inferring an explanatory
model, it is unclear if such models can minimally recover the
qualitative dynamics, given the issues of data quantity, quality
and heterogeneity.

In addition, the lack of mechanistic interpretability for AI/ML
models fully reliant on data continues to be hotly debated and
requires further scrutiny. Although arguments have been put
forth to downplay its relevance if the paramount purpose is to
predict [13], we believe the ability to justify predictions based
on mechanism is still the key to detecting model quality issues
(e.g. data leakage), and for researchers to trust the model [50].
More fundamentally, hypothesizing of mechanisms, and hence
inference of new biology, is a core endeavor of systems biology,
and the capacity must be preserved by any compelling alterna-
tives. Furthermore, without rudimentary knowledge of the acti-
vation and inhibition network topology, bioengineers cannot eas-
ily analyze and understand the stability of the system under
design [51].

Concluding remarks
In recent years, we observe the rise of AI/ML modeling as an
alternative to systems biology for elucidating the behaviors of
biological systems. There are, however, multifaceted interlocking
challenges as laid out in this article. In this light, a systems biology
approach can still be used for small systems (order of tens of
reactions) if the governing mechanistic rate laws are available,
with good predictive performances. In this case, AI/ML methods

maximally on circumstantial inflating factors to generate overly optimistic models more prevalently than perceived. Another possibly negative but
unobvious outcomes are the undermining of realistic models by the external factors; these are not unreported due to their poor training score. Cross:
measured data; open circle: augmented data; continuous line through both crosses and open circles: fitted curve; continuous line through crosses only:
the underlying phenomenon.
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fully reliant on data will provide no clear benefits for the high
tradeoffs in costs and risks, compared to the efforts involved in
curating and reconstructing rate laws.

However, for small systems whose biochemical mechanisms
are either unavailable or the models are not working well, one
option we believe is to treat the broad families of rate laws (gen-
eralized mass actions, Michaelis–Menten, Hill-type cooperativity,
etc.) or heuristic ones as candidate models to be similarly selected
and trained using AI/ML, such as automated ML [19], alike con-
ventional black-box models. This has the significant advantage
of grounding the modeled system in more realistic mechanisms,
thereby (1) providing interpretation and justification, as well as
(2) the hypothesizing of obscure biochemical mechanisms and
new biology. Such an approach will also (3) provide meaningful
mechanistic constraints that will greatly reduce the required data
for training, and thus the challenges associated with its provision.
In addition, a hybrid approach (4) may enhance the accuracy
and robustness of prediction due to the realism of the system
model, compared to its black-box counterparts. As a technique
for learning context-specific rate laws and parameter values as
part of the training process, the method will also help advance
the core endeavors of biochemistry and systems biology fields.
In contrast, most other science-informed AI/ML approaches to
date still necessitate the fundamental laws to be specifically pro-
vided [48, 49, 52]. Although we are currently working on such an
implementation, this area is generally under-studied and requires
further progress.

One caveat to the hybrid approach is its limited applicability
to small systems; as the number of rate laws to be hypothe-
sized increases, there will be more potential combinations of
candidate rate laws and parameter values that can collectively
fit the data relatively well. As such, due to the higher degree of
freedom, there may be more uncertainty in the inferred laws.
Consequently, for a large system with mostly unavailable rate
laws, the hybrid approach may not be superior to black-box AI/ML
methods in its interpretability (in terms of mechanism), and
prediction accuracy and robustness. Instead, conventional black-
box AI/ML may be preferred in practice, because of the greater
availability of their software packages. The approach is however
unsatisfactory, given the exponentially compounding effects of
our discussed challenges, as more models for reactions are being
trained, requiring more data. Also, kinetic simulation will still
be increasingly intractable with growing system size, regardless
of the approach used for building the required rate laws (i.e.
systems biology, black-box AI/ML or hybrid). For large genome-
scale metabolic systems, one computationally efficient solution
is to use flux balance analysis (FBA) sequentially for each time
point (i.e. dynamic FBA), assuming pseudo steady state for each
simulation [53]. Nevertheless, the AI/ML parameters to be trained
for such models remain to be studied.

On a positive note, there have been growing efforts to inte-
grate/combine systems biology approaches with AI/ML methods,
due to their specific synergies in various situations [54–56]. Nev-
ertheless, systems biology is still likely to remain relevant to the
biological and biotechnological domains for reasons given above.

Key Points

• We discuss the challenges in using AI/ML models, solely
dependent on data, as an alternative to systems biology.
These are associated with the required quantity and

quality of data, pervasive data leakage, and the irreplace-
ability of a deep understanding of fundamental laws.

• Systems biology remains relevant to the elucidation of
complex system behavior as well as the realization of
design objective in many contexts.

• A hybrid AI/ML and systems biology approach could
reduce the data-related challenges and enhance biolog-
ical predictability in the future.

Acknowledgements
H.C.Y. analyzed the subject matter and wrote the article. K.S.
conceptualized, supervised, and edited the article.

Funding
Agency for Science, Technology and Research; Singapore Govern-
ment (SGUnited jobs and skills package to H.C.Y.).

Data availability
There are no new data associated with this article.

References
1. Lopez R, Gayoso A, Yosef N. Enhancing scientific discoveries in

molecular biology with deep generative models. Mol Syst Biol
2020;16:e9198.

2. Mirza B, Wang W, Wang J, et al. Machine learning and integrative
analysis of biomedical big data. Genes (Basel) 2019;10:87.

3. Chen Y, Guenther JM, Gin JW, et al. Automated “cells-to-peptides”
sample preparation workflow for high-throughput, quantitative
proteomic assays of microbes. J Proteome Res 2019;18:3752–61.

4. Fuhrer T, Zamboni N. High-throughput discovery metabolomics.
Curr Opin Biotechnol 2015;31:73–8.

5. Kitano H. Systems biology: a brief overview. Science 2002;295:
1662–4.

6. Torregrosa G, Garcia-Ojalvo J. Mechanistic models of cell-fate
transitions from single-cell data. Curr Opin Syst Biol 2021;26:
79–86.

7. Abernathy MH, He L, Tang YJ. Channeling in native microbial
pathways: implications and challenges for metabolic engineer-
ing. Biotechnol Adv 2017;35:805–14.

8. Daran-Lapujade P, Rossell S, van Gulik WM, et al. The fluxes
through glycolytic enzymes in Saccharomyces cerevisiae are
predominantly regulated at posttranscriptional levels. Proc Natl
Acad Sci USA 2007;104:15753–8.

9. Hackett SR, Zanotelli VR, Xu W, et al. Systems-level analysis
of mechanisms regulating yeast metabolic flux. Science 2016;
354:aaf2786.

10. Kyriakopoulos S, Ang KS, Lakshmanan M, et al. Kinetic modeling
of mammalian cell culture bioprocessing: the quest to advance
biomanufacturing. Biotechnol J 2018;13:e1700229.

11. Costa RS, Machado D, Rocha I, et al. Hybrid dynamic model-
ing of Escherichia coli central metabolic network combining
Michaelis-Menten and approximate kinetic equations. Biosys-
tems 2010;100:150–7.

12. Helmy M, Smith D, Selvarajoo K. Systems biology approaches
integrated with artificial intelligence for optimized metabolic
engineering. Metab Eng Commun 2020;11:e00149.



6 | Yeo and Selvarajoo

13. Costello Z, Martin HG. A machine learning approach to predict
metabolic pathway dynamics from time-series multiomics data.
NPJ Syst Biol Appl 2018;4:19.
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