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Abstract

Sleep is indispensable for most animals’ cognitive functions, and is hypothesized to be a 

major factor in memory consolidation. Although we do not fully understand the mechanisms 

of network reorganisation driving memory consolidation, available data suggests that sleep-

associated neurochemical changes may be important for such processes. In particular, global 

acetylcholine levels change across the sleep/wake cycle, with high cholinergic tone during wake 

and REM sleep and low cholinergic tone during slow wave sleep. Furthermore, experimental 

perturbation of cholinergic tone has been shown to impact memory storage. Through in silico 
modeling of neuronal networks, we show how spiking dynamics change in highly heterogenous 

networks under varying levels of cholinergic tone, with neuronal networks under high cholinergic 

modulation firing asynchronously and at high frequencies, while those under low cholinergic 

modulation exhibit synchronous patterns of activity. We further examined the network’s dynamics 

and its reorganization mediated via changing levels of acetylcholine within the context of different 

scale-free topologies, comparing network activity within the hub cells, a small group of neurons 

having high degree connectivity, and with the rest of the network. We show a dramatic, state-

dependent change in information flow throughout the network, with highly active hub cells 
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integrating information in a high-acetylcholine state, and transferring it to rest of the network 

in a low-acetylcholine state. This result is experimentally corroborated by frequency-dependent 

frequency changes observed in vivo experiments. Together, these findings provide insight into how 

new neurons are recruited into memory traces during sleep, a mechanism which may underlie 

system memory consolidation.
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1 INTRODUCTION

Sleep is crucial for normal cognitive functions (Deak and Stickgold, 2010; Wilckens et al., 

2014), however, the mechanistic underpinnings of its brain-specific functions are largely 

unknown. Studies have implicated the role of sleep in mediating the overall homeostatic 

depotentiation of brain connectivity after active storage during waking (i.e. synaptic 

renormalization hypothesis (Tononi and Cirelli, 2014)) as well as its participation in memory 

storage and consolidation (Benington and Frank, 2003; Stickgold, 2005).

Numerous results have shown that sleep promotes changes in network organization 

following the learning experience in order to consolidate new memories throughout the brain 

(Maquet, 2001; Diekelmann and Born, 2010; Ognjanovski et al., 2014; Durkin et al., 2017; 

Ognjanovski et al., 2017; Klinzing et al., 2019; Puentes-Mestril et al., 2019). For example, in 

hippocampus, cellular indicators of synaptic strengthening increase during sleep in the hours 

following spatial or contextual learning (Ribeiro et al., 1999; Ognjanovski et al., 2014, 2017; 

Durkin et al., 2017). Other examples include motor cortex of adult mice, where dendritic 

spine growth occurs in a sleep-dependent manner immediately following motor learning 

(Yang et al., 2014) or visual cortex of juvenile cats and adult mice, where indicators of 

synaptic strengthening are present during sleep after a novel visual experience (Aton et al., 

2009, 2013; Puentes-Mestril et al., 2019). In contrast, sleep deprivation was associated with 

the disruption of the strengthening of glutamatergic synapses, and the reduction of dendritic 

spines in CA1 and DG pyramidal neurons of hippocampus (Havekes et al., 2016; Raven et 

al., 2019).

The brain’s neuromodulatory milieu changes significantly between different vigilance states 

(i.e. wake, rapid eye movement (REM) and slow-wave sleep (SWS)) (Watson et al., 2010; 

Lee and Dan, 2012). One of these neuromodulators, acetylcholine (ACh), can have dramatic 

effects on neuronal properties and synaptic transmission (Watson et al., 2010). Throughout 

the brain, wake and REM states are associated with high levels of ACh, while slow wave 

sleep (SWS) is characterized by low levels of ACh (Watson et al., 2010; Lee and Dan, 2012). 

This leads to the question of how these different vigilance states, and thus neuromodulatory 

milieu associated with them, affect memory consolidation (Genzel et al., 2014).

On the brain systems level, it has been postulated early on that ACh may regulate 

information flow between the hippocampus and neocortex. According to this hypothesis, 

neocortical signaling to the hippocampus is predominant during wake and REM, while in 
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NREM, the information flow may be reversed, with memory traces stored in hippocampus 

being transmitted back to neocortex (Buzsaki, 1996; Buzsaki, 1998; Hasselmo, 1999; 

Gais and Born, 2004; Power, 2004; Diekelmann and Born, 2010; Klinzing et al., 2019). 

This hypothesis was supported by experimental findings showing increased correlation 

between neocortical and hippocampal activity during SWS (Sirota et al., 2003). Other 

studies directly correlated the increase of post sleep performance with ACh release. 

Specifically, Gais and Born (Gais and Born, 2004) shown that experimental subjects 

experienced improvements in declarative and procedural based memory tasks following 

sleep. Subsequently, they showed that by increasing the bioavailability of ACh through 

the application of acetylcholine esterase inhibitor (physostigmine), effectively reversed the 

declarative memory task improvement observed after sleep.

On the other hand, at the cellular level, changes in the level of ACh affect neuronal 

properties (via muscarinic (Haga, 2013; Kruse et al., 2014) and nicotinic (Albuquerque 

et al., 2009) receptors) including neuronal excitability, firing responses to input current, 

and the neuron’s phase response curves (PRCs)—the change in spike timing in response 

to perturbation (Fink et al., 2013; Ermentrout, 1996). In particular, muscarinic receptors 

facilitate cholinergic regulation of outward M-type potassium current (Stiefel et al., 2009). 

This outward current reduces neuronal excitability and results in a Type II PRC. High 

concentrations of ACh blocks these receptors, resulting in a Type I excitability during 

wake and a Type II excitability during SWS. Phenomenologically, this transition in spike 

generation is described through a saddle node limit cycle bifurcation in the case of a Type 

I excitability and a Hopf bifurcation in the case of a Type II excitability (Börgers, 2017; 

Stiefel et al., 2008). Type I excitability is generally characterized by a steep input current-

frequency (I-F) curve with continuous approach to 0 Hz frequency as a function of external 

input (Figure 1A; blue curve). At the same time, the PRCs takes on only positive values 

meaning that brief excitatory input is only capable of advancing phase firing of a neuron 

(Figure 1B; blue curve). In contrast, Type II excitability in characterized by relatively flat I-F 

curves with discontinuous jump in firing frequency at the minimal firing frequency (Figure 

1A; yellow curve). Furthermore, the PRC changes from a negative phase shift response for 

lower phase values to a positive phase shift response for higher phase values (Figure 1B; 

yellow curve). This transition from Type I to Type II excitability has been shown to increase 

synchronizability in the network (Ermentrout, 1996; Börgers, 2017).

Thus, when ACh levels are high in the brain (e.g. in wake), neurons will exhibit Type I 

behaviors: they spike in response to an incoming stimulus, with spiking frequency generally 

proportional to the magnitude of the input (Stiefel et al., 2009; Fink et al., 2013). Here, 

the I-F curve is steep, indicating that increasing input leads to greater spike frequency 

responses. Additionally, the neurons exhibit a Type I PRC, which reduces the capacity 

for the synchronization of firing between neurons. During SWS (low ACh), the I-F curve 

becomes flat, reducing neuronal frequency response to incoming input. This has the effect of 

homogenizing firing frequencies in the network (observed also experimentally (Miyawaki et 

al., 2019)) while aligning neuronal spike timings more readily to phasic inputs–i.e., a Type 

II PRC (Stiefel et al., 2009; Fink et al., 2013). This transition from Type I phase response to 

Type II facilitates the increased synchrony associated with slow-wave sleep (Babloyantz et 

al., 1985; Ermentrout, 1996; Fink et al., 2013).
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We have previously investigated the reorganization in network dynamics of neurons with 

homogenous connectivity density under globally uniform ACh mediated excitability changes 

(Fink et al., 2013; Roach et al., 2018). Separately, we have also investigated network 

dynamics when the neurons in the network are differentially modulated by spatially 

heterogenous ACh levels (Yang et al., 2021). Here we investigate how changing levels 

of ACh, which modulates neuronal excitability via muscarinic receptors, can globally 

mediate changes in the information flow in networks having heterogenous connectivity, and 

subsequently initiate structural reorganization within the network. We specifically study how 

changes in ACh mediated neuronal excitability, coupled with network level spike timing 

dependent plasticity (STDP), mediate scale-free network reorganization.

The large-scale network activity of the brain is consistent with behaviors expected from 

highly heterogeneous connectivity. For example, lognormal firing frequency distributions are 

found in brain structures including the neocortex, hippocampus, cerebellum, striatum, and 

the midbrain nuclei which may indicate scale-free network structures within these regions 

(Mizuseki and Miyawaki, 2017; Scheler, 2017; Clawson et al., 2018). In concordance, 

human brain imaging has revealed functionally scale-free networks across the brain (Eguiluz 

et al., 2005). These scale-free networks are characterized by a connectivity distribution 

where a few elements (e.g., neurons) have a very high number of synaptic connections, 

while most have very few connections. These connections, on the meso-scale, are rarely 

bi-directional. Often, the highly-connected hubs can have primarily incoming or outgoing 

connections (Hillebrand et al., 2016; Budak and Zochowski, 2019).

Our results indicate a dramatic, state dependent change of information flow throughout the 

network, wherein hub cells first integrate information in a high-ACh state, and then transfer 

it to the rest of the network in a low-ACh state. We find that this effect is surprisingly 

robust against various levels of noise and network inhibition, and therefore may be prevalent 

throughout various brain modalities affected by ACh changes. We hypothesize that this 

switch provides a dynamical mechanism by which neurons are recruited into memory traces 

during sleep to promote systems memory consolidation, within and across brain modalities.

2 RESULTS

2.1 Cholinergic Modulation of Network Dynamics

To evaluate the effects of state-dependent ACh modulation on network dynamics, we 

performed simulations of excitatory networks composed of 250 biophysical models of 

neurons that included an ACh-regulated, M-type potassium current. Since the potassium 

current is inhibited by ACh, we modeled cholinergic modulation by varying the maximal 

conductance of the M-type potassium channel (gKs), which is inversely proportional to the 

relative level of ACh release (see Section 4). To implement a highly heterogeneous network 

structure, we used scale-free connectivity schemes (Barabasi, 2009), which gave rise to a 

small subset of neurons with large numbers of incoming/outgoing connections (hubs) while 

the rest of the population had few such connections.

Given the non-uniformity of nodal degree across a scale-free network, we wanted to 

assess the effects of different connection schemes on global dynamics. By applying the 
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probabilistic connection flipping algorithm (see Section 4), we were able to establish five 

scale-free networks with different distributions of in-degree percentages. By setting the 

probabilistic in-degree value pin to 0.1, we created a scale-free network in which most of 

the connections within the hub neurons were directed outwards (Supplementary Figure S1). 

We refer to these networks as “strong hub outgoing.” Conversely, by setting pin to 0.9, 

we obtained the reverse effect in which these connections are directed inwards (“strong 

hub incoming” networks). Since the total number of connections within the network was 

not modified, our algorithm resulted in an inverse change of in-degree percentage in the 

complementary neurons (non-hub neurons). We saw that the average in-degree percentage 

in the 25 neurons with the lowest degree did display a reversed connectivity pattern relative 

to the hub neurons. In addition, we created balanced networks (pin = 0.5; Suppleemntary 

Figure S1), and two moderate hub incoming/outgoing structures, with pin = 0.7 and pin = 

0.3, respectively.

First, we interrogated network dynamics as a function of maximal conductance of the 

slow muscarinic potassium channel, gKs. We observed that at gKs = 0 mS/cm2, neuron 

spiking activity seemed to be uncoordinated. However, as we increased gKs, the neurons’ 

spiking began to synchronize (for sample rasterplots please see Supplementary Figure 

S2) and exhibit oscillatory activity with dominant frequency in theta band (for spectral 

analysis of reconstructed local field potentials (LFP) please see Supplementary Figure 

S3). The transition from the random firing pattern at gKs = 0 mS/cm2 to the increasingly 

synchronous firing pattern at gKs = 0.5 mS/cm2 was coupled with a drastic reduction in 

the overall spiking frequency (Figure 2A). Moreover, the spiking frequency homogenized 

as gKs increased, with non-hub cells firing largely at the same frequency while a few hub 

cells fired at significantly higher frequency for gKs ≥ 0.5 mS/cm2. In order to quantify the 

difference in the network dynamics across the different levels of gKs, we applied metrics 

for spike coherence and synchrony by calculating the average Mean Phase Coherence 

(MPC, measuring the phase locking between neurons) and zero lag Cross Correlation (CC; 

measuring zero lag synchrony) (Figures 2B,C).

For all network configurations, MPC and CC increased as gKs increased (Figures 2B,C). 

However, the more balanced configurations (moderate hub outgoing and balanced) tended 

to have higher overall MPC and CC than the more extreme configurations (strong hub 

outgoing/incoming). Furthermore, we calculated the difference between average hub and 

non-hub MPC and CC scores (Figures 2D,E). For most network configurations, there were 

no noticeable differences in the hub and non-hub MPC, but the hubs were generally more 

synchronous than the non-hub at gKs levels higher than 0.25 mS/cm2. Additionally, we 

observed that for the balanced, moderate, and strong hub incoming configurations, the 

non-hub neurons had a higher MPC than the hub ones at lower ranges of gKs.

To assess the robustness of the phase coherence and synchrony measures for different 

connectivity frameworks, we investigated how these quantities changed as a function of 

gKs for different levels of connectivity strength (Figure 3) and external noise (Figure 

4). Connectivity strength was represented by the synaptic conductance gsyn between two 

neurons and was initialized to the same value for all neurons. Here, we tested gsyn 

values from 0.02 to 0.08 mS/cm2. We observed similar behaviors across these connectivity 
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strengths, with MPC and CC generally increasing as gKs increased (Figure 3). An exception 

to this was the weakest connectivity strength gsyn = 0.02 mS/cm2, which showed a reversal 

in MPC after peaking at gKs ≃ 0.75 mS/cm2. Interestingly, the balanced connectivity 

network obtained the highest measures of MPC and synchrony.

In these simulations, baseline external noise was defined as low amplitude (0.7 μA), high 

probability (2% chance of initiating at a given time step, 200 Hz average), random current 

pulses. To investigate the robustness of network activity patterns against higher noise levels, 

we applied supra-threshold current between 1.5 and 4 μA at a low initiation probability 

of 0.1% per time step. The overall network MPC and CC decreased with increasing noise 

amplitude (Figure 4), with the balanced network most resistant to high noise. In contrast, 

the strong hub incoming configuration was the least resistant, likely due to non-hub neurons 

receiving sparse inputs, thus having dynamics dominated by noise rather than network 

signaling.

2.2 Dynamics of E-I Networks

Since all results above were obtained from simulations of networks of only excitatory cells 

(E network), we investigated if the addition of inhibitory neurons (E-I network) would affect 

ACh-modulated network dynamics. To this end, we modified 10% of the neurons to have an 

inhibitory synaptic effect on the rest of the cells. While the excitatory neurons maintained 

their scale-free topology, connections to inhibitory neurons were uniformly random.

As with the E network, we saw a trend of increasingly synchronous neuronal spike activity 

with increasing gKs (Supplementary Figure S4). This effect was quantified and validated 

with MPC and CC (figure not shown). To evaluate changes in coherence with the addition 

of inhibitory neurons, we computed the difference in the averaged MPC scores between that 

of all the excitatory neurons within the E-I network with that of the E network. We saw that 

for all network configurations, the non-hub neurons in the E-I network displayed lower MPC 

than those of the E network at gKs higher than 0.25 mS/cm2 (Figures 5A,B). On the other 

hand, the MPC for the hub neurons in the E and E-I networks were equal, with the exception 

of those in the strong hub incoming and outgoing configurations (Figures 5C,D). Changes in 

synchrony were assessed in a similar fashion, yielding lower synchrony in the E-I network 

for both the hub and non-hub groups.

To further investigate generality and robustness of this result, we compared coherence and 

synchrony within hub and non-hub cells for networks consisting of 10, 15, 20% of inhibitory 

cells (Supplementary Figure S5).

2.3 Temporal Organization Within Neural Firing Patterns

Next we investigated emergence of additional temporal ordering, between spiking patterns 

of neuronal pairs having different connectivity, in a network composed of excitatory only 

neurons. In addition to an increase in synchrony and coherence as gKs increased, we 

observed emergence of temporal asymmetry in the neuronal spiking activity (Supplementary 

Figure S2). Namely, the spiking of neurons with lower degree lagged behind neurons with 

higher degrees. To quantify this, we used a measure known as unidirectional average mean 

distance (AMD) between every pair of neuron spike trains (please see Section 4 and also 
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(Wu et al., 2018)). A statistical AMD Z-score (AMDZ) less than −2 denoted a significant 

temporal locking between a pair of neuron spike trains Si and Sj, where Si preceded Sj. 

Conversely, an AMDZ value greater than 2 denoted a significant temporal locking in the 

opposite direction.

Specifically, we observed that at lower gKs values (i.e. high ACh), there were no discernible 

patterns of locking between neurons across the network (Figure 6A). However, at higher 

levels of gKs (gKs = 1, 1.5 mS/cm2), the upper triangle of the pairwise AMDZ matrix 

was primarily negative, suggesting that the spiking activity of neurons with higher degree 

tended to precede that of neurons with lower degree. The lower triangle of the matrix 

was predominantly positive, suggesting spiking activity of these neurons generally lagged 

behind neurons with higher degree. In order to quantify this asymmetric behavior across the 

network, we calculated an AMD asymmetry matrix by taking the difference between the 

AMDZ matrix and its transpose (figure not shown). The magnitude of the AMD asymmetry 

score denoted the consistency in the temporal locking.

To assess the overall causal relationship between the hub and the remaining non-hub 

neurons, we calculated the average of the AMD asymmetry scores in different sections of 

the asymmetry matrices (hub to hub, hub to non-hub, non-hub to hub, non-hub to non-hub). 

Only scores corresponding to existing synaptic connections were averaged. For balanced and 

strong hub incoming configurations, as gKs increased, the average AMD asymmetry scores 

for the hub to non-hub groups decreased, denoting a reliable leading of the hub activity 

(Figure 6B). The average AMD asymmetry score increased with increasing gKs for the 

non-hub to hub group, signifying the overall precession of non-hub activity to that of the hub 

group.

2.4 ACh Dependent Structural and Dynamic Network Reorganization

Next, we investigated ACh dependent reorganization of excitatory-only network 

connectivity, mediated by spike timing dependent plasticity (STDP) (Dan and Poo, 2004). 

Here, the STDP defined via a fully asymmetric rule with the synapses at which presynaptic 

neuron fires before the postsynaptic one strengthened and, conversely, the synapses at which 

presynaptic neuron fires after the postsynaptic one weakened. The amplitudes and time 

windows for the potentiation and depotentiation are identical (see Section 4). First, we 

computed the change in synaptic strength Δgsyn in four areas: the synaptic connections 

within the hub, within the non-hub neurons, from the hub to the non-hub, and from the 

non-hub neurons to the hub (see Supplementary Figure S6). In Figure 7A, at gKs = 0 mS/

cm2, synapses strengthened within the hub for all network configurations. The higher the 

in-degree percentage, the more the synapses strengthened within the hub. As gKs increased, 

the changes in synaptic strength decreased for all pin values. At gKs = 1.5 mS/cm2, in the 

moderate and strong hub incoming configurations, synaptic connections weakened; for the 

other configurations, they strengthened slightly, within about 5% of zero.

Similarly, within the non-hub group (Figure 7B) at gKs = 0 mS/cm2, Δgsyn was significantly 

positive, indicating a synaptic strengthening for all network configurations. However, for 

gKs > 0 mS/cm2, we observed an initial precipitous decline in Δgsyn and noted that all 

subsequent changes in gsyn were capped at 5%. While most configurations decreased 
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in connection strength with increasing gKs, the synapses in the balanced configuration 

remained unchanged, exhibiting only slight increases.

Thereafter, we analyzed changes in connectivity between the hub and non-hub cells. The 

synapses from hub neurons to non-hub neurons strengthened as gKs increased (Figure 7C) 

for all network configurations except strong hub outgoing, up to about a 35% increase in 

the moderate hub incoming configuration at gKs = 1.5 mS/cm2. We observed a reversed 

behavior in non-hub to hub synapses (Figure 7D); all network configurations strengthened 

connections at gKs = 0 mS/cm2, and most (with the exception of strong hub outgoing) 

weakened for higher values of gKs. The magnitude of change in synapses coming into the 

hub was similar to that of the hub outgoing synapses for a given parameter set.

In most of our network configurations (except strong hub out), NREM like (low-ACh) states 

allow for the overall strengthening of connections from the hub to non-hub neurons, and 

conversely, the weakening of the connections from non-hub to hub cells. The connections 

between hub and within non-hub neurons undergo much less pronounced reorganization. 

Therefore, we wanted to assess the effects of network reorganization during a low-ACh 

state (sleep) on the network dynamics recorded during a high-ACh state (wake). To this 

end, we compared network activity patterns during three-second segments of simulation 

at gKs = 0 mS/cm2 (high ACh state) before and after a three-second segment of STDP 

at gKs = 1.5 mS/cm2 (low ACh state). We were interested in changes in neuronal firing 

frequency between the two gKs = 0 mS/cm2 segments, as such a change was observed 

experimentally (Clawson et al., 2018). Firing frequency was measured across the two gKs 

= 0 mS/cm2 segments, and the difference between them was plotted against the frequency 

during the first gKs = 0 mS/cm2 segment (Figure 8). In all network configurations (i.e. strong 

hub-out, balanced and strong hub-in), the neurons slowed their firing rates following the 

low-ACh segment. Furthermore, each plot displayed a linear downward trend, implying that 

the neurons firing at a high frequency in the first gKs = 0 mS/cm2 segment were more likely 

to experience a larger negative change in frequency. After performing a linear regression 

on each dataset, we found slopes for all configurations to be between −0.5 and −0.6 (R2 > 

0.98).

The fact that all of the neurons here exhibit decline in firing frequency even though the hub 

to non-hub connections are strengthened, is due to the hub cells being very few in number, 

while the observed strengthening is offset by another modes of reorganization, as described 

above.

2.5 Hub Removal

Given that hub neurons were in direct correspondence to a large fraction of the network, 

they sat at a critical position for potentially mediating the dynamics within the network. In 

order to assess the role of hub neurons in cholinergically-modulated network dynamics, we 

removed these neurons from our scale-free networks and calculated the change in network 

coherence and synchrony. We observed effectively no change in pattern formation for gKs 

≃ 0 mS/cm2, as both pre- and post-hub removal MPC and Synchrony were low (Figure 9). 

However, as gKs increased, the difference in pre- and post-hub removal dynamics was more 

noticeable. This was especially true for the MPC of the hub–outgoing configurations (Figure 
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9A). The differences in Synchrony between pre- and post-hub removal were significantly 

smaller (Figure 9B). This indicated that the remaining connections, together with high gKs, 

could support synchronous bursting while the stability in phase ordering was significantly 

affected. For example rasterplots, please see (Supplementary Figure S7).

3 DISCUSSION

ACh levels throughout the forebrain have been known to vary with different wake/sleep 

states, with high cholinergic tone during wake and REM and low cholinergic tone during 

SWS (Jasper and Tessier, 1971; Marrosu et al., 1995; Watson et al., 2012). However, its 

exact role on network dynamics across these states is lesser known. Here, we concentrate 

on cholinergic modulation of cell excitability via muscarinic receptors. These receptors 

regulate conductance of the slow hyperpolarizing M-type potassium protein channel (gKs), 

modulating the neuronal membrane excitability. When M-type potassium currents are low, 

the neuron exhibits a steep input-frequency (I-F) curve and a Type I phase response 

curve (PRC) characteristic of an integrative dynamical system (Ermentrout, 1996; Fink 

et al., 2011; Rich et al., 2016). These neurons simply integrate any input signal towards 

firing an action potential, which makes the synchronization of neuronal activities difficult 

given the heterogeneity of the synaptic connections and input levels. With higher levels 

of M-type potassium current, the model exhibits a flattened I-F curve, leading to similar 

firing frequencies across the network and a Type II PRC that responds preferentially to 

specifically timed inputs, facilitating firing pattern synchronization in connected neurons. 

This observation aligns with studies where selective electrical stimulation of cholinergic 

neurons and pharmacological stimulation of muscarinic acetylcholine receptors hindered 

slow oscillating rhythmic activity characteristic of slow wave sleep state and promoted a 

more tonic firing pattern typical in REM sleep and wakeful states (Steriade et al., 1993; 

Baghdoyan and Lydic, 1999).

We are specifically interested in pattern formation within networks with highly 

heterogeneous connectivity topologies, e.g. scale-free networks (Albert et al., 2000; 

Bollobás et al., 2001). This power law degree distribution creates networks largely 

consisting of nodes with sparse connections and a small group of nodes with an extremely 

high number of connections (hubs). Additionally, within this framework, we also consider 

network structures that 1) favor connections going into the hubs (hub incoming), 2) 

have relatively equal distributions of connections beginning and terminating at the hubs 

(balanced), or 3) are biased towards connections predominantly emanating from the hubs 

(hub outgoing).

Scale-free networks are embedded within the frameworks of many complex systems such 

as the World Wide Web, social networks, metabolic organization, and protein-protein 

interaction hierarchy in many microorganisms such as E. coli (Albert et al., 2000; Jeong 

et al., 2000; Jeong et al., 2001). Many studies have discovered scale-free topologies within 

the brains of animal species including mice, rats, cats, and primates, including humans (van 

den Heuvel et al., 2016; Zamora-López et al., 2010; Harriger et al., 2012). Activity-based 

functional connectivity measures and myelin tract tracing-based structural connectivity 

studies have identified hub-like regions in areas including the hippocampus, thalamus, basal 
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ganglia structures, and various regions of the neocortex (Eguiluz et al., 2005; Bonifazi 

et al., 2009; Li et al., 2010; Van Den Heuvel and Sporns, 2011). Furthermore, a recent 

study exploring the structure of the mouse connectome sorted different scale-free topologies 

within the brain into categories based on the overall direction of connections with respect to 

these hubs (Coletta et al., 2020).

We quantified pattern formation in the network via measurement of frequency profiles 

of individual neurons, the tendency of neurons to generate population burst via network-

averaged pairwise cross-correlation measure, and stability of directional firing patterns 

between individual neurons. We also investigated network reorganization driven through 

dynamics during low-cholinergic states.

We show that at low gKs levels corresponding to high-ACh modulation, neurons fire at 

highly discrepant frequencies, with hubs firing significantly faster than the non-hub neurons. 

We also found no discernible network-wide temporal patterns of firing activities. However, 

as we increased gKs, the firing patterns throughout the network became increasingly 

synchronous (Figure 2). Our results corroborated with in vivo studies that associated wake 

states with highly heterogeneous neuronal spiking frequencies and asynchronous neuronal 

activity, whereas slow wave sleep was characterized by periods of quiescence and shorter 

periods of synchronous firing (Steriade et al., 2001; Vyazovskiy et al., 2009).

Subsequently, we explored how scale-free topologies with different in-degree distributions 

affect cholinergically-modulated network dynamics. All of our network configurations 

yielded similar behaviors of increasing network activity, coherence, and synchrony as a 

function of gKs (Figures 2B–E). However, individual MPC and CC scores differed across 

network configurations. In most cases, the balanced network configuration achieved the 

highest MPC and CC. As we shifted the network configuration away from balanced in either 

direction, the global MPC and CC decreased. These results can be assumed due to the 

balanced incoming and outgoing connections allowed for sufficient communication between 

the hub and non-hub neurons to synchronize the network. It has been implicated in literature 

that hubs not only act as signal generators, but also as means of amplifying signals from 

non-hub subnetworks to the rest of the network, thereby suggesting the importance of a 

well-balanced, bi-directional communication between the hub and the rest of the network 

(Jahnke et al., 2014).

In the strong hub outgoing configuration, the synchrony within the hub was slightly lower 

than that of the rest of the network. This may have been due to a bottlenecking effect, 

where the hub was not receiving the input necessary to tightly synchronize itself, as most of 

its connections are directed outwards. In the strong hub incoming configuration, synchrony 

within the hub was significantly higher than that of the non-hub group. This may once again 

be due to a bottleneck hindering the hub from sending output to synchronize the rest of the 

network. Even so, the trend of increasing synchrony with decreasing cholinergic modulation 

persisted for all network configurations.

We also assessed the robustness of our results against a range of synaptic connectivity 

strengths and noisy external inputs. Increasing network wide connectivity strength increased 
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activity, coherence, and synchrony, while increasing the amplitude of a random noisy 

external input led to a decrease in coherence and synchrony (Figures 3, 4). Synchrony and 

coherence increased as a function of gKs when the connectivity strength between neurons 

was strong and the amplitude of the noisy input was low.

We wanted to see if this trend was robust against inhibitory input. Since, inhibitory 

neurons constitute about 10–15% of the hippocampal population (Pelkey et al., 2017), we 

directly compared results obtained for excitatory-only network with those obtained from 

the networks having 10% of inhibitory neurons. In addition, we included comparisons of 

coherence and synchrony within hub and non-hub cells for networks consisting of 10, 15, 

20% of inhibitory cells. We observed that coherence and synchrony across the network 

were lower than those of a purely excitatory network. We suspected that random and sparse 

synapses of the inhibitory neurons caused an unequal distribution of inhibitory signals to 

be broadcast to the network, thereby decreasing overall network synchrony and coherence. 

Even so, we were able to produce a similar behavior of increasing network synchrony and 

coherence with decreasing cholinergic modulation.

While new information is encoded during wake, SWS is essential for many types of memory 

consolidation (Rasch and Born, 2013; Hasselmo, 1999). This function is mediated by SWS-

associated changes in cholinergic modulation; preventing the SWS-dependent reduction in 

ACh transmission after learning has adverse consequences for consolidation of declarative 

memory tasks (Gais and Born, 2004; Haam and Yakel, 2017). However, the mechanism by 

which changes in ACh modulation influence this process is not well understood. Since it is 

widely accepted that the neural correlate of learning and memory is most likely encapsulated 

within the ever-changing synaptic weights between neurons, we wanted to assess how levels 

of ACh affect network-wide STDP based learning (Stuchlik, 2014; Hebb, 1949; Dan and 

Poo, 2004). Generally, when interrogating all existing connections together, at gKs = 0 

mS/cm2 (high ACh), we observed a global increase in gsyn, (Figure 7). Conversely, at gKs 

≥ 1 mS/cm2 (low ACh), we saw a moderate decrease in gsyn. This result generally aligns 

with the synaptic homeostasis hypothesis, which posits a general weakening of synapses 

during sleep to counteract the global strengthening of synapses during wakefulness (Tononi 

and Cirelli, 2014), (Bushey et al., 2011; Maret et al., 2011). Our previous modeling work 

also showed STDP-mediated increases in synaptic weights in Type I neurons as well as a 

decrease in synaptic weights in Type II neurons (Fink et al., 2013).

Critically, however, we saw differential behavior of connectivity between subgroups within 

the network in our simulations. Specifically, at gKs ≥ 1 mS/cm2 (low ACh), we saw an 

inverse change in synaptic connectivity between the hub and non-hub groups (Figure 7). 

We observed an increase in the synaptic conductance from hub neurons to the rest of the 

network, accompanied by a decrease in the synaptic conductance of the synapses from 

the non-hub neurons to the hub. Because STDP dictates simultaneous strengthening of 

some synapses and weakening of others, this elucidated a strong consistent leading and 

lagging of neuronal spiking activity between the hub and non-hub neurons. In particular, 

hub neurons consistently fired action potentials before non-hub neurons, while non-hub 

neurons reliably spiked after the connecting hubs. This behavior was indeed predicted in our 
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temporal locking (AMD) analysis in simulations without STDP, showing a similar inverted 

directionality between hubs and non-hubs (Figure 6).

These results indicate a potential role of acetylcholine in regulating memory consolidation 

via a STDP mechanism. Our results showed that high levels of cholinergic modulation, 

indicative of a wakeful state, led to a strengthening of synapses predominantly within the 

hub cells, from no-hub cells to hub cells, and to lesser degree between the non-hub cells At 

the same time, low levels of cholinergic modulation representative of a SWS state led to a 

preferential strengthening of synapses from the hub to the rest of the network.

To further test how low-ACh network reorganization affects waking network dynamics, 

we performed additional simulations where the sleep reorganization phase was preceded 

and followed by a high-ACh phase. We observed that the global frequency profile 

changed significantly between the pre- and post-low-ACh states. Namely, the neurons that 

initially fired with the highest frequency during high-ACh state, that preceded network 

reorganization during low-ACh(i.e. hub cells), exhibited the largest drop in their firing 

frequency during high ACh state following this reorganization. Conversely, the neurons 

that initially fired at the lowest frequencies (i.e. non-hub neurons with the least number of 

connections) exhibited a smaller magnitude of decrease in frequency in high-ACh state 

following the low-ACh state. Various in vivo studies have shown that SWS-mediated 

frequency dependent changes in firing rates within the visual cortex of mice led to the 

homogenization of spiking frequency of hippocampal neurons (Clawson et al., 2018; Durkin 

and Aton, 2019; Miyawaki et al., 2019).

Our results further indicate that in a high-ACh state, the hub network is predominantly 

strengthened via hub-hub connections and non-hub to hub connections with additional 

strengthening taking place from within non-hub network. This is indicative of memory 

reinforcement predominantly in hub network with some input coming from non-hub cells. 

Conversely, in low ACh states, only hub to non-hub connectivity is strengthened, while all 

other connections remain unchanged or weaken. This, in turn, is indicative of information 

transfer from the hub cells to non-hub neurons.

In the presented network the hub population was very sparse as compared to non-hub group. 

Therefore, the increase of excitatory input from the hub cells was offset by the decrease 

in of the excitation coming from other network regions. Hence, we observed an overall 

decrease of firing across the cell populations. This phenomena is consistent with the synaptic 

renormalization hypothesis (Tononi and Cirelli, 2014), postulating overall depotentiation of 

synapses during sleep. However, we also show that this weakening can be highly selective.

Based on these results, if we consider that hub neurons could be playing a central role in 

regulating sensory input to the network, we hypothesize that this state-dependent network 

reorganization mechanism during wake may be responsible for the initial formation of 

a memory backbone within the hub network. Then during the subsequent SWS, the 

recruitment of new neurons (i.e., those initially outside the hub) into the memory engram 

provides the basis for systems consolidation—i.e., expansion of memory traces throughout 

the network (Roach et al., 2018; Puentes-Mestril et al., 2019). Namely, this phenomenon 
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could correspond to the recruitment of initially less active neurons into the memory 

engram within hippocampal networks, and/or mediate information transfer between the 

hippocampus and neocortex, which could provide an explanation as to the experimentally 

observed increased correlation between hippocampal and neocortical neurons during NREM 

(Sirota et al., 2003).

Finally, given the hub’s unique position as the most heavily connected neuronal group 

in the network, we suspected that the hub must play a crucial role in mediating the 

activity of the network as a whole. It is well known that while scale-free networks are 

relatively resilient against random failures at particular nodes, disruption of network hubs 

will lead to catastrophic network failure (Albert et al., 2000). For example, simulations 

knocking out a large number of highly centralized proteins led to lethality in a model 

of Saccharomyces cerevisiae, and the removal of strong functionally-connected neuronal 

tissue during glioma resection correlated to higher likelihood of postoperative language 

and auditory deficits (Jeong et al., 2001; Lee et al., 2020). In this study, we saw a 

significant decrease in overall network coherence and synchrony following the removal of 

hub neurons (Figure 9). This effect was greater in network configurations where hubs had 

high outgoing to incoming connection ratios, with the strong hub outgoing configuration 

displaying the highest decrease in post-hub removal coherence and synchrony. This result 

corroborates with previous work in scale-free networks of leaky integrate-and-fire neurons, 

where removal of hub neurons led to arrested network synchrony (Luccioli et al., 2014). 

Other studies have indicated the importance of hubs in orchestrating and maintaining signal 

synchronization throughout the network (Gómez-Gardeñes et al., 2010; Jahnke et al., 2014).

Overall, our results provide insight into the possible role of ACh in dynamical and 

structural reorganization in highly heterogenous networks. We demonstrated that high ACh 

modulation representative of wake causes a high frequency, asynchronous firing pattern 

throughout the network associated with global synaptic strengthening, while low ACh 

modulation representative of SWS causes a low-frequency synchronous firing pattern and 

general synaptic weakening. Additionally, we showed that the arrangements of neurons in a 

scale-free topology gave rise to specific behaviors within the hub and non-hub groups, where 

the hub played a prominent role in synchronizing the remainder of the network during low 

ACh modulation. These results shed light on the dynamical mechanisms underlying memory 

consolidation during sleep.

4 METHODS

4.1 Neuron Model

The biophysical model of each neuron was based on a Hodgkin-Huxley formalism (Hodgkin 

and Huxley, 1952), modified to include an M-type potassium current (Stiefel et al., 2009; 

Fink et al., 2013). The change in voltage across the cell membrane was given by

C dV
dt = − gNam∞3 (V )ℎ V − ENa − gKdrn4 V − EK − gKsz V − EK

− gL V − V L + Idrive + Inoise − Isyn
(1)
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Here, C = 1.0 μF/cm2 was the membrane capacitance, V was in millivolts, and t was in 

milliseconds. Setting gKs = 0 mS/cm2 modeled a high concentration of acetylcholine, while 

gKs = 1.5 mS/cm2 indicated a low concentration (Fink et al., 2013).

Other ionic conductance values were constant across all simulations: the sodium channel 

conductance, gNa = 24.0 mS/cm2; the delayed rectifier potassium conductance, gKdr = 3.0 

mS/cm2; and the leak conductance, gL = 0.02 mS/cm2 (Fink et al., 2013). The reversal 

potential for each ion was also held constant: the sodium reversal potential ENa = 55.0 

mV, the potassium reversal potential EK = −90.0 mV; and the leak, EL = −60 mV (Fink et 

al., 2013). Idrive was a constant externally applied current; this value was chosen from the 

frequency-current curve such that it was the highest applied subthreshold current. Inoise was 

a 2 ms current pulse of amplitude 0.7 μA/cm2, and occurred with a probability of 0.02 at 

each time step, generating noise at an average frequency of 200 Hz. Isyn was the synaptic 

current received by a given neuron.

The sodium current was governed by the steady state activation function:

m∞(V ) = 1
1 + e

−V − 30.0
0.5

. (2)

The sodium current inactivation gating variable, h, was described by:

dℎ
dt = ℎ∞(V ) − ℎ

τℎ(V ) , (3)

where the steady-state activation was described by

ℎ∞(V ) = 1
1 + e

V + 53.0
7.0

(4)

and the timescale variable was

τℎ(V ) = 0.37 + 2.78 1
1 + e

V + 40.5
6.0

. (5)

The delayed rectifier potassium current was gated by n, where

dn
dt = n∞ − n

τn(V ) . (6)

The steady-state activation was given by

n∞(V ) = 1
1 + e

−V − 30.0
10.0

(7)

Czarnecki et al. Page 14

Front Netw Physiol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the time variable was

τn(V ) = 0.37 + 1.85 1
1 + e

V + 27.0
15.0

. (8)

Finally, the slow, low threshold M-type potassium current was gated by z, where

dz
dt = z∞(V ) − z

75.0 , (9)

with

z∞(V ) = 1
1 + e

−V − 39.0
5.0

. (10)

This system of equations was solved using a fourth-order Runge-Kutta numerical scheme in 

Matlab with time step dt = 0.1 ms. Initial voltage conditions were randomly chosen from 

[−70, 0] mV, and were zero for all gating variables except for h, where h (0) = 1. Unless 

otherwise noted, each simulation evolved over 2 s. Each result was simulated independently 

ten times with new initial conditions and a new connectivity matrix.

4.2 Network Simulation

The network contained a total of 250 neurons. In the majority of simulations, we 

investigated an excitatory-only network. If the network was mixed, it contained 225 

excitatory cells and 25 inhibitory cells. In this case, the excitatory neurons formed a 

scale-free network, while connections between inhibitory neurons were random, with every 

neuron having approximately the same number of connections.

The scale-free network structure was constructed using the Barabasi-Albert Linearized 

Chord Diagram algorithm (Bollobás et al., 2001). First, we began with an empty graph 

with no nodes, denoted G1
0. Then, given a graph G1

u − 1, we generated graph G1
u by adding a 

new node, vu, to some existing node, defined vi (Bollobás et al., 2001). The probability p of 

a given node in G1
u − 1 being chosen was defined:

p =

ki
2u − 1 1 ≤ i ≤ u − 1

1
2u − 1 u = 1

(11)

Here, ki was the degree of node i, and u was the total number of nodes (Bollobás et al., 

2001). No self-connections or multi-connections were allowed; connections were initially 

bidirectional. The algorithm was executed 15 times so that the average degree of the nodes 

was 15, and the strength of the connection was initialized at wij = wji = 0.04 mS/cm2. 

Once the network was constructed, direction was assigned to each connection according to a 
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probability pin ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. First, neurons were arranged in order of decreasing 

degree, such that the neuron with label 1 had the highest degree. Then, iterating through half 

of the symmetrical connectivity matrix, a random number r ∈ [0, 1] was generated for each 

existing connection between neurons i, j. Then, we set

wij = 0 r > pin
wji = 0 r < pin . (12)

Thus, we determined the proportion of incoming to outgoing connections in the hub neurons 

(see Supplementary Figure S2), where the hub was defined as the top 10% of neurons 

by total degree, or the 25 neurons with the most connections (see Supplementary Figure 

S6). For values of pin ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, networks were referred to as “strong hub 

outgoing,” “moderate hub outgoing,” “balanced,” “moderate hub incoming,” and “strong 

hub incoming,” respectively.

Neuron i received a synaptic current from presynaptic neuron j at times tjk, when Vj > 0 mV. 

The synaptic current transmitted from j to a postsynaptic neuron i, where t ≥ tjk, was given 

by

Iij
syn = wij e−

t − tjk
τd − e−

t − tjk
τr V − Esyn . (13)

Here, τd 0.5 ms, τr 0.2 ms, and wij was the strength of the synapse from j to i (adapted from 

(Roach et al., 2018)).

For excitatory synapses, Esyn = 0 mV (Fink et al., 2013), while for the inhibitory neurons 

Esyn = −75 mV. The connection strength, or synaptic conductance, between inhibitory 

neurons was set to 0.01 mS/cm2, and remained 0.04 mS/cm2 elsewhere. The total synaptic 

current given to neuron i at each time step was described by

Ii
syn = ∑

j
Iij

syn, j ∈ wi, (14)

where wi was the set of all neurons presynaptic to i (Fink et al., 2013).

4.3 Spike Timing Dependent Plasticity

In the simulations that included STDP (Kempter et al., 1999; Fink et al., 2013), excitatory 

synaptic connections were initially weighted equally at wij = w0 = 0.04 mS/cm2 for all 

neurons i, j. The change in synaptic strength between postsynaptic neuron i and presynaptic 

neuron j was given by
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Δwij =

− Δt
ALeτSTDP

Δt > 0

− Δt
ALeτSTDP

Δt < 0
(15)

where Δt was the difference between the spike time of postsynaptic neuron i and presynaptic 

neuron j. In other words, if neuron j spiked before neuron i, the connection from j to i 
strengthened. AL = 0.002 mS/cm2 was a constant describing the maximal synaptic change 

due to learning, and τSTDP = 10 ms was a constant describing the decay rate of the weight 

change over time. Any one synapse was bounded ∈ [0, wmax], where wmax = 2 · w0, and 

synapses that did not exist at the beginning of the simulation were not created. Learning only 

occurred if the spikes of neurons i, j were within a window of 40 ms.

All parameters of the model are summarized in (Table 1). The network simulation software 

is also available at: https://github.com/J4KLin/scaleFreeGksNeuronalNetwork.

4.4 Measures

We used Mean Phase Coherence (MPC) to quantify average phase locking between 

individual cells in the network (Mormann et al., 2000). The measure was calculated pairwise 

between all neurons. A mean phase coherence of zero indicated asynchronous spiking as 

defined by a non-constant phase, while a value of one described complete phase locking 

(Mormann et al., 2000; Fink et al., 2013). It is important to note that a high MPC between 

neurons i, j indicates neuron j spikes at a constant phase relative to neuron i, not necessarily 

at the same time as neuron i (Fink et al., 2013).

Consider a pair of neurons i and j. The pairwise coherence between these two neurons was 

defined by:

σi, j = 1
N ∑

k = 1

N
eiϕk , (16)

where

ϕk = 2π tj, k − ti, k
ti, k + 1 − ti, k

. (17)

Here, tj,k was the time of the kth spike of neuron j, ti,k was the time of the spike of neuron i 
that was just before tj,k, ti,k+1 was the spike time of neuron i that was the just after tj,k, and 

N was the number of spikes of neuron j. The mean phase coherence, σi,j was calculated for 

every pair of neurons {i, j} in the network. These pairwise measures were averaged across 

the whole network. MPC was calculated only during the second half of the simulation, in 

order to avoid transients due to initial conditions in the first half.

To asses the degree of synchrony, we calculated zero-lag cross correlation by first 

convolving the spike train Si of given neuron i with a Gaussian of width σ = 1 ms. This 

Czarnecki et al. Page 17

Front Netw Physiol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/J4KLin/scaleFreeGksNeuronalNetwork


convolved spike train was rescaled by subtracting its mean, resulting in continuous trace Si*. 

The pairwise cross correlation was calculated as

Cij =
Si* ⋅ Sj*

Si* ⋅ Si* Sj* ⋅ Sj*
. (18)

The average network cross correlation was calculated as a mean of the pairwise cross 

correlation values for all neurons i, j, where i ≠ j.

To quantify the average spike ordering between pairs of spiking neurons, a metric based 

on the average minimal distance (AMD) was used (Wu et al., 2018). The pairwise AMD 

between two neurons i, j was given by the mean difference of the time of each spike k in 

spike train of neuron i, Si, to the most recent preceding spike in the spike train of neuron j, Sj 

(Wu et al., 2018). Specifically, the pairwise AMD was given by

AMDij = 1
Ni

∑
k

Δtk
j, (19)

where Ni was the number of spikes in spike train Si and Δtki  was the temporal distance 

between a spike k in Si to the nearest event in Sj (Wu et al., 2018).

In order to quantify the magnitude of temporal locking within the network, an asymmetry 

score was calculated. Let L be the length of the interspike interval of the spiketrain Si. Then 

the first and second moments (μ1 and μ2, respectively) for the spiketrain Si were given by

μ1 = 1
2T ∑

L
L2, μ2 = 1

3T ∑
L

L3, (20)

where T was the total time of the spike train Si (ms) (Wu et al., 2018). The moments were 

used to derive the mean and standard deviation of the minimal distance with respect to Si 

where the mean μ = μ1, the first moment, and the standard deviation σ = μ2 − μ1
2 (Wu et 

al., 2018). Then, the Z-score was calculated, where the Z-score Zij =
AMDij − μi

σi
. Then, the 

Z-score was used to calculate AMD asymmetry, given by Zij − Zji.

Network reorganization was quantified by the change in synaptic strength across the 

simulation. These changes were measured in different areas of the network: the hub, the 

non-hub, synapses presynaptic to the hub (non-hub to hub), and synapses postsynaptic to 

the hub (hub to non-hub). Here, the hub was defined as the top 10% of neurons by total 

degree; non-hub neurons were the remaining neurons. These areas are described visually 

in the schematic at (Supplementary Figure S6). In each of these zones, the magnitude of 

change was given by

Δgsyn = ∑ijΔwij
A ⋅ w0

, (21)
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where w0 was the initial synaptic strength, {ij} was the set of all synapses in a given region 

of the network, Δwij was the change in the magnitude of the synaptic strength of a given 

connection, and A was the number of total synapses in the given region.

In addition, we have measured spectral properties of Local field potential (LFP; 

Supplementary Figure S3). For every network simulation we summed voltages of all 

(excitatory) neurons in the network, normalized the cumulative signal and performed FFT. 

The results shown are averaged over 10 simulations each.

4.5 Measurement of Effects of Network Reorganization During Sleep on Waking 
Dynamics

Finally, to measure the effects of network reorganization during sleep on waking dynamics 

and compare them with experimental findings (Clawson et al., 2018), the network was 

allowed to evolved for 9 s total under different acetylcholine conditions. During the first 3 

seconds, gKs = 0 mS/cm2 and the weight of synaptic connections was kept constant. The 

frequency of each neuron was measured across the latter 2 seconds of this segment in order 

to avoid transients due to initial conditions. In the next 3 seconds, gKs was stepped to 1.5 

mS/cm2 and synaptic weights were allowed to evolve according to the STDP learning rule. 

In the final 3 seconds, synaptic weights were no longer allowed to change and gKs was 

returned to 0 mS/cm2; frequency was measured as above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 |. 
Transition from Type I to Type II membrane excitability as a function of magnitude of m-

current conductance, gKs, regulated by changing ACh levels (A) Neuronal Input-Frequency 

(I-F) curve for different values of gKs (blue, gKs = 0 mS/cm2; yellow, gKs = 1.5 mS/cm2). (B) 
Phase response curves (PRCs) for different values of gKs (blue, gKs = 0 mS/cm2; yellow, gKs 

= 1.5 mS/cm2). Blue and red dots denote maximal and minimal phase shifts, respectively. 

The PRC is measured by comparing perturbed vs. unperturbed firing periods when neurons 

fire at a fixed frequency. Type I neurons have a strictly positive PRC (blue) while Type II 

neurons have a biphasic PRC.
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FIGURE 2 |. 
Dynamical properties of neuronal networks under different levels of ACh modulation. (A) 
Spiking frequency averaged across sets of 10 simulations for four values of M-current 

conductance (gKs {0, 0.5, 1, 1.5} mS/cm2, violet, blue, green and yellow, respectively) 

within the strong hub outgoing (left), balanced (center) and strong hub incoming (right) 
network configurations. Shaded envelopes represent standard error of the mean. (B) 
Network-wide average of pairwise Mean Phase Coherence and (C) Cross Correlation were 

calculated across 10 independent simulations as a function of increasing gKs levels (x-axis) 

for five network configurations: strong hub outgoing (violet), moderate hub outgoing (dark 

blue), balanced (teal), moderate hub incoming green) and strong hub incoming (yellow). 

(D) Differences between hub and non-hub neurons for Mean Phase Coherence and (E) 
Synchrony as a function of increasing gKs for five network connectivity configurations, as 

listed above.
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FIGURE 3 |. 
The effect of network connectivity strength on ACh-modulated network dynamics. Four 

network connectivity strengths were modeled by setting the synaptic conductance gsyn of 

every synapse to 0.02, 0.04, 0.06 or 0.08 mS/cm2. Simulations were repeated 10 times 

for each set of parameters across different gKs values and network configurations. Average 

pairwise MPC (A) and Synchrony (B) were evaluated, showing similar trends of increasing 

MPC and Synchrony with the increase in gKs across connectivity strength parameters.
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FIGURE 4 |. 
The effect of noise on ACh-modulated network dynamics. Four amplitudes (1.5, 2.5, 3.0, 

4.0 μA) of random, low probability (0.1% per time step) external direct current impulse 

paradigms were simulated and compared to our primary low amplitude (0.7 μA), high 

probability (2%) current paradigm. Simulations were repeated ten times for each set of 

gKs value and network configuration. Network-wide, averaged pairwise MPC (A) and 

Synchrony (B) were subsequently calculated. Across all network configurations there was 

a general decrease in MPC and Synchrony with increasing noise amplitude. As with our 

primarily external current paradigm (0.7 μA amplitude), MPC and CC increased with 

increasing gKs. Shaded envelopes denoted standard error of the mean.
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FIGURE 5 |. 
Dynamics of acetylcholine-modulated neuronal networks with excitatory and inhibitory 

neurons. E-I networks were implemented by allowing 10% of neurons to have inhibitory 

synaptic connections. Difference in Mean Phase Coherence between excitatory (E) networks 

and mixed (E-I) networks for excitatory hub neurons (A) and excitatory non-hub neurons 

(B). Figures represent the mean across 10 simulations per parameter set. The difference in 

averaged Synchrony was calculated for hub (C) and non-hub (D) neurons. For both analyses, 

a positive score indicates a higher score of E networks than that of E-I networks, while a 

negative score represents the opposite relationship. The introduction of inhibitory neurons 

led to a general decrease in hub and non-hub synchrony as well as hub coherence.
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FIGURE 6 |. 
Temporal locking and information flow within the network under different levels of ACh 

modulation. (A) Pairwise Average Mean Distance (AMD) of a sample simulation for 

different levels of gks. Neurons were sorted by total degree in descending order, with the 

highest-degree neuron at position 0. Positive values indicated that neuron i typically spiked 

after neuron j, while negative values denoted that neuron i activity preceded that of neuron 

j. For gKs ≥ 1 mS/cm2, high-degree neuron spikes tended to precede those of lower-degree 

neurons. (B) Average AMD Asymmetry scores were calculated from the difference of the 

AMD matrix and its transpose, then taking the average scores within different groups of 

neuron connections (Within Hub, Within Non-hub, Hub to Non-hub, Non-hub to Hub). Each 

value was averaged across 10 simulations across gKs levels and network configurations, with 

shaded bars signifying standard error.
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FIGURE 7 |. 
Network reorganization as a function of ACh level. Change in synaptic strength is measured 

as a function of m-current (gKs ∈ [0, 1.5] mS/cm2), across 3 s of activity for different 

network configurations (strong hub outgoing (violet), moderate hub outgoing (dark blue), 

balanced (teal), moderate hub incoming green) and strong hub incoming (yellow). (A) 
change in synaptic strength measured within the hub; (B) within non hub neurons; (C) 
between hub to non hub neurons; (D) between non-hub to hub neurons. The changes were 

normalized by the weight of the initial synapses in the given area. Error bars represent 

standard error across ten independent trials.
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FIGURE 8 |. 
Network wide changes in neural firing frequencies. In this simulation, the standard network 

was allowed to evolve over 9 s as gKs values changed. For the first 3 s, gKs was held at 0 

mS/cm2 and frequency was measured. Then, gKs was stepped to 1.5 mS/cm2 and synapses 

were allowed to evolve according to the STDP rule. After 3 s, gKs was decreased to 0 

mS/cm2, STDP was deactivated, and frequency was measured. Here, the initial frequency 

of each neuron was plotted against the difference of frequency between the first and second 

gKs = 0 mS/cm2 segments, in Hz. A line was fit to each dataset; the goodness of fit was 

R2 0.993, 0.983, 0.997, from left to right. This measure was plotted for various network 

configurations, and error bars denote a standard error across ten trials.
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FIGURE 9 |. 
Effects of neuronal hub removal on ACh-modulated network dynamics. To model hub 

removal, we first performed our standard simulation for 2 s. Then, we set all synaptic 

connections associated with the hubs (incoming and outgoing) to zero, effectively removing 

the influence of these neurons from the network, and allowed the simulation to evolve for 

two more seconds. Subsequently, we calculated the difference in the average Mean Phase 

Coherence (A) and Synchrony (B) between remaining neurons pre- and post-hub removal 

for different levels of gKs and network configurations. Averages were obtained from 10 

independent simulations per parameter set and shaded bars represents standard error of the 

mean. Hub removal led to a decrease in Mean Phase Coherence and Synchrony.
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