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Aspergillus ochraceus, generally known as a food spoilage fungus, is the representative
species in Aspergillus section Circumdati. A. ochraceus strains are widely distributed in
nature, and usually isolated from cereal, coffee, fruit, and beverage. Increasing cases
suggest A. ochraceus acts as human and animal pathogens due to producing the
mycotoxins. However, in terms of benefits to mankind, A. ochraceus is the potential
source of industrial enzymes, and has excellent capability to produce diverse structural
products, including polyketides, nonribosomal peptides, diketopiperazine alkaloids,
benzodiazepine alkaloids, pyrazines, bis-indolyl benzenoids, nitrobenzoyl
sesquiterpenoids, and steroids. This review outlines recent discovery, chemical
structure, biosynthetic pathway, and bio-activity of the natural compounds from A.
ochraceus.
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INTRODUCTION

Filamentous fungi in the genus Aspergillus are well known for their important roles in lifesaving
drugs, devastating toxins, or mass-produced industrial enzymes. Aspergillus is currently subdivided
into 27 sections by the physiologic, phenotypic, and DNA sequence data (Houbraken et al., 2020). A.
ochraceus, the representative species in Aspergillus section Circumdati (Visagie et al., 2014), is
generally known as a food spoilage fungus and is widely isolated from cereal, coffee, fruit, beverage,
soil, and marine environments due to their environmental tolerance and fast growth. Ochratoxin A
(OTA) makes A. ochraceus notorious for their role as contaminants in mycotoxigenic food and feed.
Moreover, increasing cases have suggestedA. ochraceus acts as human and animal pathogens causing
onychomycosis (Xu et al., 2021), allergic bronchopulmonary aspergillosis (Hassanzad et al., 2019),
and otomycosis (Ghibaudo and Peano, 2010). Some novel IgE-binding proteins have been identified
from A. ochraceus, indicating the allergenic potency of mycelial proteins (Roy et al., 2021). Recently,
A. ochraceus has been found in a SARS-CoV-2 positive immunocompetent patient in Iran (Koehler
et al., 2020), and also can cause COVID-19 associated pulmonary aspergillosis (Hakamifard et al.,
2021). On the other hand, the adaption of Aspergillus to shifting environments lead to the formation
of a particular set of proteins (Day and Quinn, 2019; Wang et al., 2022b). A. ochraceus has been an
important source of industrial enzymes like protease (El-Khonezy et al., 2021; Komarevtsev et al.,
2021; Zhu et al., 2021), esterase (Romero-Borbón et al., 2018) and tannase (Aracri et al., 2019).
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Several medicinal metabolites, such as an intermediate for the
synthesis of desogestrel and eplerenone, are characterized fromA.
ochraceus (Wang X. et al., 2020; Li et al., 2021). SomeA. ochraceus
strains have shown the mycoremediation potential to remove
petroleum hydrocarbons (Bilen Ozyurek et al., 2021), and the
remarkable capability for converting biodegradable waste to
value-added end products for commercial applications
(Jathanna and Rao, 2022).

Secondary metabolites (SMs) play important roles both as a
food spoilage fungus and as an industrial strain for bio-
production (Figure 1). A. ochraceus as a food spoilage fungus
exhibits a remarkably versatile secondary metabolism. Most SMs
are derived from polyketides synthases, non-ribosomal peptides
synthases, and terpene synthases, and used to defend their habitat
or inhibit the growth of competitors (Macheleidt et al., 2016).
And these compounds are likely to remain in the food chain after
the occurrence of A. ochraceus in food substrate. From the
perspective of drug discovery, many compounds have been
isolated from A. ochraceus and screened for bio-activities. In
fungi, the genes required for the biosynthesis of SMs are generally
clustered on the chromosome. A growing number of Aspergillus
genomes impressively shows numbers of unknown biosynthetic
gene clusters (BGCs) of SMs, which considerably exceed the
number of identified SMs, indicating their potential production of
novel structural compounds (Keller, 2019). It has been well
summarized that the linkage between SMs with their BGCs in
the different Aspergillus spp. (Frisvad and Larsen, 2015;
Romsdahl and Wang, 2019; Yu et al., 2021). However,
although lots of compounds have been isolated from A.

ochraceus, no other BGCs have been identified except for the
OTA BGC. Reviewing the SMs and biosynthetic diversity from A.
ochraceus would give insights into the understanding and
utilization of this fungus.

In this review, we have critically scrutinized the existing
reports to provide an overview of the various SMs produced
by A. ochraceus. Considering the structural characteristics and
biogenetics, these compounds could be classified as polyketides,
nonribosomal peptides, diketopiperazine alkaloids,
benzodiazepine alkaloids, pyrazines, bis-indolyl benzenoids,
nitrobenzoyl sesquiterpenoids, steroids, et al. In addition, we
present the bioactivities and the possible biosynthetic pathway
of some compounds, which are ignored due to the shading of
mycotoxin OTA.

SECONDARY METABOLITES FROM A.
OCHRACEUS

Ochratoxins
The most common A. ochraceus product described is ochratoxin
A (1) (Figure 2). It was first discovered fromA. ochraceus isolated
from sorghum grain in South Africa in 1965 (van der Merwe
et al., 1965b). Since then, more than 90 kinds of foodstuffs such as
cereal, beer, coffee, cheese, and meat products have been found to
contribute to OTA dietary exposure (Ostry et al., 2013). Recently,
some A. ochraceus strains were re-classified as A. westerdijkiae
based on the β-tubulin sequence andmorphological identification
(Cui et al.; Durand et al., 2019). Surprisingly, a genome mining

FIGURE 1 | The important roles of the fungus Aspergillus ochraceus.
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study demonstrated the integral cluster of OTA was not found in
the A. ochraceus genome, (Gil-Serna et al., 2020), while the strain
A. ochraceus fc-1, re-classified as A. westerdijkiae, has been
reported to contain an intact cluster (Wang et al., 2018; Wang
et al., 2022a).

Biological toxic studies performed on rats, trout, and mice
demonstrated the carcinogenic potency of OTA (Kanisawa and
Suzuki, 1978). The International Agency for Research on Cancer
evaluated the experimental evidence for carcinogenicity as
sufficient and classified OTA as a possible human carcinogen
(group 2B) (IARC, 1993). Additionally, OTA was well
documented in its nephrotoxicity, immunotoxicity,
myelotoxicity, genotoxicity, embryotoxic, and teratogenicity in
many species (Pfohl-Leszkowicz and Manderville, 2007; Malir
et al., 2013a; Malir et al., 2013b).

OTA consists of a para-chlorophenolic moiety containing a
dihydroiso-coumarin group that is amide-linked to
L-phenylalanine. OTB (2) and OTC (3) were also isolated
from A. ochraceus as the dechloro and ethyl ester
derivatives of OTA. In similar toxicity tests, (2) and (3)
were proved to be non-toxic at a thousand-fold higher dose
level compared with (1) (Van der Merwe et al., 1965a). The
metabolism of OTA has been extensively studied over the past
decades. After in vitro incubation of OTA with the microsomes
of human, rat, and pig, hydroxylated derivatives 4(R)-OH-
OTA, 4(S)-OH-OTA (Størmer et al., 1981) and 10-OH-OTA
(Størmer et al., 1983) have been detected. The α-
chymotrypsine and carboxypeptidase from homogenates of
the pancreas and small intestine led to the cleavage of the
peptide bond in OTA and yield OTα (Hansen et al., 1982).
Several derivatives occur naturally in the animal body by
biotransformation, including OTA open lactone (OP-OA)
(Gillman et al., 1999), OTA quinone (OTQ) (Gillman et al.,
1999), OTA hydroquinone decarboxylated (DC-OTHQ)
(Faucet-Marquis et al., 2006), conjugate OTA quinone-
glutathion (OTQ-Glutathion) (Dai et al., 2002), OTA
methyl ester (OTA-Me) (Li et al., 2000), Ethylamide OTA
(OE-OA) (Xiao et al., 1995), tyrosine OTA (OTA-tyrosine)
(Creppy et al., 1990) and so on (Malir et al., 2016).

The biosynthetic pathway of (1) was first investigated by
exploring the related metabolites. Labeling study by the
introduction of [1-14C] L-phenylalanine into the culture of A.
ochraceus lead to the detection of radioactivity in the
phenylalanine moiety of (1), indicating L-Phenylalanine was
the precursor of (1) (Steyn et al., 1970). [2-14C]acetate and [2-
14C]malonic acid radiolabeling experiments indicated malonic
acid was involved in the isocoumarin moiety biosynthesis but not
in the phenylalanine moiety biosynthesis (Ruhland et al., 1996),
and the isocoumarin moiety most derived via acetate
condensation.

Advances in sequencing technology make scientists realize the
dihydrocoumarin moiety of (1) is catalyzed by polyketide
synthase (PKS) and the polyketide moiety of (1) is linked to L-
phenylalanine catalyzed by non-ribosomal peptide synthetase
(NRPS) (Huffman et al., 2010; Wang et al., 2015). In 2018, a
consensus biosynthetic gene cluster was identified by
comparative genomic analyses among OTA-producing fungi.
And the biosynthetic pathway was clarified by discovering the
intermediate metabolites in OTA gene disruption mutants.
Briefly, OtaA (PKS) utilized acetyl-CoA and malonyl-CoA to
synthesize 7-methylmellein by condensation, which was oxidized
to OTβ by cytochrome P450 OtaC. Then, OtaB (NRPS) combined
OTβ and L-phenylalanine to synthesize (2) by catalyzing the
formation of an amide-bond. (2) was chlorinated by the
halogenase OtaD to form (1). Recently, a cyclase gene otaY
was proved to be involved in the biosynthesis of (1)
(Figure 2). OtaY was speculated to catalyze the cyclization
process of 7-methylmellein (Ferrara et al., 2020; Ferrara et al.,
2021).

Polyketides
Polyketides occur in various organisms including fungi, bacteria,
and plants. They are recognized as one of the most important
categories of SMs. Polyketides have a common biosynthetic
origin of small carboxylic acids such as acetate, propionate,
and, rarely, butyrate, with diversity in structure (Palmer and
Alper, 2019). Several polyketides have been isolated from A.
ochraceus.

FIGURE 2 | The structure and biosynthesis of ochratoxins.
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As shown in Figure 3, mellein (4) and 4-hydroxymellein (5),
structurally similar to the dihydroisocoumarin moiety of (1), are
also produced by A. ochraceus (Cole et al., 1971; Moore et al.,
1972). The biosynthesis of (4) starts with the condensation of
acetyl-CoA and malonyl-CoA, and acetyl units would be added
until the pentaketide is formed (Huff and Hamilton, 1979), just
like the biosynthesis 7-methylmellein in OTA. Compound (4)
and its derivatives exhibit an array of bio-activities such as
antitumor, antifungal, antibacterial, and anti-inflammatory
(Hussain et al., 2015; Mdachi, 2016).

Xanthomegnin (6) and viomellein (7) are mycotoxins
produced by Penicillium viridicatum, A. melleus, A. sulphureus,
as well as A. ochraceus (Stack and Mislivec, 1978; Kamiya et al.,
2017). It was reported that the toxicity of P. viridicatum strain 66-
68-2 was due to (6), (7), rubrosulphin, viopurpurin, and
brevianamide A, instead of (1) or citrinin (Stack et al., 1977).
Gene inactivation experiments suggested (6) and (7) originated
from the same polyketide pathway (Nicolaisen et al., 1996;
Kandemir et al., 2015).

Diaporthin (8) and orthosporin (9) were also characterized
from A. ochraceus (Harris and Mantle, 2001). (8) was reported to
reproduce symptoms of canker in Chestnut trees and (9) could

cause irregular brown spots on the leaves of oats (Hallock et al.,
1988). The difference between the two compounds is the
replacement of the methoxy by hydroxyl moiety on the
benzene ring. Structurally, we hypothesize that one PKS could
be responsible for the biosynthesis of these compounds.

Another array of SMs found in A. ochraceus was aspyrone
(10), dihydroaspyrone (11), asperlactone (12), aspinonene (13),
isoaspinonene (14), trienediol (15), and dienetriol (16), with the
bioactivities of anti-microbial and anti-nematode (Fuchser
et al., 1994; Kimura et al., 1996; Fuchser and Zeeck, 1997;
Yurchenko et al., 2019). (10) and (13) have structural
similarities and belong to the growing family of fungal
epoxides. They contain a C9 carbon skeleton and one oxirane
ring at a similar position and share the same biosynthetic
pathway. The unknown PKS catalyzes the biosynthesis of an
intermediate metabolite β-hydroxy acid, followed by
modification of post-polyketide enzymes. A rearrangement of
the carbon skeleton forms a branched pentaketide, and the
aldehyde intermediate is either oxidized or reduced to yield
(10) and (13), respectively (Fuchser et al., 1995; Fuchser and
Zeeck, 1997). Recently, asperochratides A-J (17-26), which
belong to aspyrone co-metabolites, have been isolated from

FIGURE 3 | The structure of polyketides in Aspergillus ochraceus.
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A. ochraceus and found to exert significant cytotoxic effects on
BV-2 cell line (Zou et al., 2020). Aspinolides A-C (27-29) are
pentaketides with different precursors from (10)/(13),
indicating the different PKS pathways. Generally, PKS
catalyzes the biosynthesis of an intermediate metabolite
hydroxy acid, followed by cyclization by a thioesterase to
form a 10-membered lactone. The intermediate lactone is
further modified following two pathways (reductase
and acylase) to form (28) and (29) (Fuchser and Zeeck,
1997). Given their interesting structure and bioactivity,
total synthesis by different approaches has been
explored (Pilli et al., 2000; Ghosh and Rao, 2007; Chowdhury
et al., 2009).

Organic acids derived from PKS pathways such as penicillic
acid (30) (Frank et al., 2019), dihydropenicillic acid (31),
secalonic acid (32) (Yamazaki et al., 1971), and mesaconic
acid (33) (Zou et al., 2017) were isolated from A. ochraceus
stains. (30) caused significant problems in animal and human
health, and (32) showed antimicrobial activity against Bacillus
subtilis and Piricularia oryzae. 2, 10-dimethyl 4-hydroxy-6-oxo-
4-undecen-7-yne (34) and 4-(3-methyl-2-butenyl) oxy 1-phenyl
acetic acid (35) were actively produced in an A. ochraceusmutant
strain by UV irradiation (Awad et al., 2005).

Nonribosomal Peptides
Non-ribosomal peptides are synthesized by multi-modular
NRPSs from building blocks of 20 kinds of proteinogenic
amino acids and non-proteinogenic amino acids such as
ornithine and β-alanine (Wang et al., 2016; Stevenson
et al., 2019). They have been optimized for a certain
function in the native producer during years of evolution,

as well as represent a promising basis for the development of
substances with excellent activities. Generally, most of the
non-ribosomal peptides described from A. ochraceus are
cyclic peptides.

As shown in Figure 4, aspochracin (36) is a cyclotripeptide
composed of N-methy-L-alanine, N-methy-L-valine and L-
ornithine (Chang et al., 1969). (36) demonstrated contact
toxicity to the first instar larvae and eggs of silkworm.
However, the insecticidal activity completely diminished in
hexahydroaspochracin (37), indicating the triene in the side
chain has been involved in molecular bioactivity. JBIR-15
(38), of which the N-methyl alanine is replaced by alanine
compared to (36), was isolated from A. sclerotiorum
(Motohashi et al., 2009). Violaceotide A (39) was extracted
from a solid rice medium of A. ochraceus (Frank et al., 2019)
and its structure was elucidated as cyclic tetrapeptide with
L-threonine, L-O-methy-tyrosine, N-methy-L-alanine and
L-lsoleucine. (39) showed anti-inflammatory activity with a
high inhibitory rate (Liu et al., 2018).

Most fungi can produce siderophores under iron deficiency
or other iron-related conditions. Hydroxamate-type
siderophores, classified into fusarinines, coprogens, or
ferrichromes, were mostly found and characterized in fungi
(Garnerin et al., 2017). A large number of ferrichromes were
isolated from iron-deficient cultures of A. ochraceus (Jalal
et al., 1984). Ferrichromes are cyclic hexapeptides composed
of three Nδ-acyl-Nδ-hydroxy-L-ornithine, one glycine, and two
variable amino acids (alanine, serine, or glycine) linked by
peptide bonds. The structures of ferrichrysin (40), ferrirubin
(41), and asperchromes (42-53) were shown in Figure 4.
Serine and alanine participate in the formation of these

FIGURE 4 | The structure of nonribosomal peptides in Aspergillus ochraceus.
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molecules as the variable amino acids; the acetyl and
anhydromevalonyl are acyl groups linked to ornithine. Des
(diserylglycyl)ferrirhodin (54) does not follow the typical
ferrichrome structure. It is a linear siderophore consisting
of three Nδ-cis-anhydromevalonic acid-Nδ-hydroxy- L-
ornithine moieties linked by peptide bonds. The absence of
a cyclic hexapeptide ring in des (diserylglycyl)ferrirhodin leads
to a bathochromic shift withpH value decreasing from 2.0 to
1.7, indicating the change of iron-binding property (Jalal et al.,
1984). It is rare among microorganisms that A. ochraceus
produces various siderophores derived from a common
cyclic hexapeptide ring with the N-acyl side chain
surrounding the iron atom. Their diversity of function and
structure is worthy to be further explored.

Diketopiperazine Alkaloids
Diketopiperazine alkaloids are commonly isolated from fungi
with excellent biological activities such as anticancer,
antimicrobial, antiviral, antioxidant, and immunomodulatory
(Hu et al., 2019; Wang M.-H. et al., 2020). Diketopiperazine
alkaloids, with a stable six-membered ring backbone, are cyclic
dipeptides formed by the condensation of two amino acids
through peptide bonds by NRPS (Jia et al., 2019). A. ochraceus
is capable of producing abundant diketopiperazine alkaloids with
structural diversity and biological activity (Figure 5).

Indole diketopiperazine alkaloids are the main compounds in
A. ochraceus, which were characterized by condensation of a
complete tryptophan and other amino acids such as tryptophan,
proline, and alanine (Ma et al., 2016). Brevianamide F (55),

FIGURE 5 | The structure of diketopiperazine alkaloids in Aspergillus ochraceus.
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formed by condensation of a tryptophan and a proline without
any modification, is the common precursor of many indole
diketopiperazines. It was first isolated and characterized from
P. piscarium and subsequently found in A. ochraceus
(Vinokurova et al., 2003; Liu et al., 2018). Notoamide family
compounds [B (56), C (57), F (58), I (59), and M (60)] were also
isolated from A. ochraceus (Liu et al., 2018; Hu et al., 2021). (56)
possesses the pyranoindole ring, with molecular similarity with
avrainvillamide (61), sclerotiamide (62), and stephacidin A (63)
(Sugie et al., 2001; Qian-Cutrone et al., 2002; Cui et al., 2009).
Possible biosynthetic rules have been suggested:
deoxybrevianamide E was first catalyzed to (63) then to (56),
followed by branching to notoamide A or (62) (Kato et al., 2007).
(57) and M (60) are prenylated indole diketopiperazine alkaloids,
which contain diketopiperazine and isoprenoid moieties or
structures derived thereof. Isopentenylation usually gives
compound biological and pharmacological properties distinct
from their non-prenylated precursors (Li, 2010). Brevianamide
B (56) and C (57) showed moderate cytotoxicity against HeLa
and L1210. It is worth mentioning that (57) can induce G2/M-cell
cycle arrest at a concentration of 6.3 mg/ml (Kato et al., 2007).
(63) showed cytotoxic activity against various human tumor cell
lines, while bisindole diketopiperazine alkaloid stephacidin B
(64), the dimer of (63), exhibited more potent antitumor
activities (Qian-Cutrone et al., 2002). Taichunamide D (65), as
an N-methylsulfonyl derivative of 6-epi-stephacidin A first
isolated from A. taichungensis, was also found from A.
ochraceus (Liu et al., 2018).

Speramides A (66) and B (67), featured by the fusion of a
pyrrolidine ring to bicyclo-[2,2,2] diazaoctane subunit, were
derived from the precursor (55). Since the structure of (66)
has a similarity to (63), it is proposed that (63) could be
converted to (66) through oxidation and rearrangement.
Evaluation of their bioactivity demonstrated that (66) had
moderate antimicrobial activities against Pseudomonas
aeruginosa (Williams et al., 1990; Chang et al., 2016).

Asperochramides A-D (68-71) is another group of indole
diketopiperazine alkaloids isolated from A. ochraceus (Liu
et al., 2018). (68) and (69) are a pair of epimers assigned with
the same planar structure. The significant difference between (68)
and (70) is the cyclization of 2-isopentenyl and the replacement
of 1-isopentenyl by hydroxyl. Removing the two isopentenyl
forms (71). Bio-activities studies demonstrated that (68) has
anti-inflammatory potential (Liu et al., 2018).

Most of the diketopiperazine alkaloids isolated from A.
ochraceus are directives of precursor condensing of tryptophan
and a proline. However, epiamauromine (72), which was
stereochemically different from amauromine (Takase et al.,
1985) characterized by condensation of two prenylated
tryptophan, and N-methylepiamauromine (73) were isolated
from A. ochraceus (de Guzman et al., 1992). Cycloechinulin
(74) is formed by condensation of tryptophan and an alanine
(de Guzman et al., 1992). And tetrapeptide diketopiperazine
waspergillamide B (75) is a conjugate of p-aminobenzoic acid,
Gly, hydroxy-Val, and hydroxy-Leu residues. Nitro-substituted
diketopiperazines are rare compounds with excellent activity
(Quezada et al., 2017; Frank et al., 2019).

Circumdatins
The circumdatins are a group of benzodiazepine alkaloids, first
discovered in 1999 from a terrestrial isolate of the fungus A.
ochraceus (Rahbæk and Breinholt, 1999). Structurally, the core
chemical structure of benzodiazepines is the fusion of a
benzene ring and a diazepine ring (Bhathiwal et al., 2022).
Until now, thirteen compounds in the circumdatin family have
been reported (circumdatins A-N). Biologically, circumdatin
derivatives are generated from an amino acid and two
anthranilic acids. Structural diversity of circumdatins
depends on the type of amino acid and the different
substituents. For example, circumdatins A (76) (Rahbæk
and Breinholt, 1999; Ookura et al., 2008), B (77) (Rahbæk
and Breinholt, 1999; Ookura et al., 2008), D (78) (Rahbæk and
Breinholt, 1999), E (79) (Rahbæk and Breinholt, 1999), H (80)
(Lopez-Gresa et al., 2005), J (81) (Zhichkin et al., 2010) and M
(82) (Wang et al., 2019) contain proline, circumdatins C (83)
(Rahbæk and Breinholt, 1999), F (84) (Rahbæk and Breinholt,
1999), G (85) (Dai et al., 2001), I (86) (Zhang et al., 2008), L
(87) (Peng et al., 2013) and N (88) (Hu et al., 2021) contain
alanine and circumdatin K (89) (Peng et al., 2013) contains
glycine molecular structure, respectively (Figure 6). Most of
the compounds were isolated from the genus Aspergillus, e.g.,
A. ochraceus, A. westerdijkiae, A. ostianus, and A. petrakii,
while the (86) was isolated from the genus Exophiala (Zhang
et al., 2008). In addition, a derivative 2-hydroxycircumdatin C
(90) has been found in endophytic fungus A. ochraceus (Cui
et al., 2009). As reported, A. ochraceus consistently produces
circumdatins. Cycloanthranilylproline (91), isolated from A.
ochraceus, is a kind of benzodiazepine alkaloid while not
included in the circumdatin family (Nakatani et al., 2004;
Frank et al., 2019). (91) derives from a proline and one
molecule of anthranilic acid, and contains the fusion of a
benzene ring and a diazepine ring.

Circumdatins demonstrated inhibitory activity similar to
other inhibitors of the mammalian mitochondrial respiratory
chain (Fontana et al., 2001). For example, the IC50 value of
(80) against NADH oxidase is around 1.5 μM, indicating
its potential to develop new tools for insect control (Lopez-
Gresa et al., 2005). (83), (85), and (86) exhibited an
ultraviolet-A protecting activity, which was better than the
sunscreen agent oxybenzone (Zhang et al., 2008). (90) showed
great DPPH radical-scavenging activity, which was more
potent than the well-known butylated hydroxytoluene with
an IC50 value of 9.9 mm (Cui et al., 2009). (78) demonstrated
potential as an agent for neuroprotective effects by
attenuating LPS-induced pro-Inflammatory responses
(Zhang et al., 2020). Several compounds have been
evaluated for their cytotoxicity, while no evidence provides
to prove their cytotoxicity.

The biosynthesis of circumdatin remains to be explored in
A. ochraceus and other fungi due to its structural complexity.
However, the biosynthetic gene cluster of anthramycin and
sibiromycin, which belong to the benzodiazepine family, have
been identified clearly (Hu et al., 2007; Li et al., 2009),
indicating NRPS might be involved in the biosynthesis of
circumdatins.

Frontiers in Chemistry | www.frontiersin.org August 2022 | Volume 10 | Article 9386267

Chen et al. Secondary Metabolites in Aspergillus ochraceus

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pyrazines
Pyrazines occur frequently in nature and are produced by plants,
animals, and microorganisms (Ong et al., 2017). Several pyrazine
compounds have been identified in A. ochraceus (Figure 7) and

they are screened by bio-activities studies. Flavacol (92),
neoaspergillic acid (93), and deoxy-β-hydroxyneoaspergillic
acid (94) were first identified as pyrazine metabolites in 1972
(Yamazaki et al., 1972). Subsequently, neohydroxyaspergillic acid

FIGURE 6 | The structure of circumdatins in Aspergillus ochraceus.

FIGURE 7 | The structure of pyrazines in Aspergillus ochraceus.
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(95), β-hydroxyneoaspergillic acid (96), deoxyneo-β-
hydroxyaspergillic (97), and 3-isobutyl-6-(1-hydroxy-2-
methylpropyl)-2(1H)-pyrazinone acid (98) were also found in
A. ochraceus (Maebayashi et al., 1978). More recently, ochramides
A-D (99-102) were isolated from the fermentation broth of a
marine coral-derived strain in a nutrient-limited medium (Peng
et al., 2018). All of these compounds are derived from two leucine
molecules with different modifications. It is suggested the first
step of modification on the side chain is hydroxylation on the α
position, followed by dehydration and rehydration on the β
position. Three molecules of neoaspergillin chelate with one
atom of iron, one atom of aluminum, or one atom zirconium
to form ferrineoaspergillin (103), aluminiumneoaspergillin
(104), and zirconiumneoaspergillin (105), respectively.
N-hydroxy-ochramide B chelating with aluminum forms
ochralate A (106).

It is reported the pyrazine compounds are biosynthesized
from NRPS. The identification of a dihydropyrazine N,N′-
dioxide metabolite proposes a noncanonical NRPS pathway
for pyrazine derivatives through genome mining of
Pseudomonas (Kretsch et al., 2018). A gene cluster containing
an NRPS-like encoding gene in A. flavus is responsible for the
synthesis of aspergillic acid (107) by NRPS-like gene
inactivation experiment (Lebar et al., 2018). Structurally,
(107) and (93) are closely related isomers. Many fungi from
Aspergillus spp. can produce (93) and its hydroxylated analogs,
and the genome mining shows they all harbor the homologs
BGC of (107), indicating the same biosynthesis pathway
between (107) and (93) (Lebar et al., 2019).

Bis-Indolyl Benzenoids
Ochrindoles A-D (108-111) were isolated from the sclerotia of A.
ochraceus (de Guzman et al., 1994) (Figure 8). Structurally, (108-
110) are bis-indolyl benzenoids, and (111) is bis-indolyl quinone.
Members of these bis-indolyl structures have been reported from
fungal metabolites, such as terriquinones from A. terreus (Balibar

et al., 2007), kumbicins from A. kumbius (Lacey et al., 2016),
asterriquinol from A. sclerotiorum (Whyte et al., 2000). These
compounds typically contain prenyl groups at various positions
on the indole moieties or the central benzenoid ring. The
biosynthesis of bis-indolyl benzenoids and quinone has been
extensively investigated. Briefly, an aminotransferase converts L-
tryptophan to the indole pyruvic acid, and two molecules of
indole pyruvic acid are dimerized by a single-module NRPS to
form the bis-indolyl benzenoid skeleton. Then, the
oxidoreductase, prenyltransferase, methytransferase
successively play the catalytic function to form the
corresponding products. Ochrindoles showed moderate activity
against the corn earworm Helicoverpa zea, fungivorous beetle
Carpophilus bemipterus, as well as bacterial Bacillus subtilis (de
Guzman et al., 1994).

Nitrobenzoyl Sesquiterpenoids
Sesquiterpenoids are abundant in nature, while nitrobenzoyl
sesquiterpenoids are rare from natural sources. Until now,
only several nitrobenzoyl sesquiterpenoids have been identified
from marine-derived fungi A. ochraceus and A. insulicola
(Belofsky et al., 1998; Fang et al., 2014; Tan et al., 2018).
Insulicolides A-C (112-114), 14-O-acetylinsulicolide A (115),
9-deoxyinsulicolide A (116), and 6β, 9α-dihydroxy-14-ρ-
nitrobenzoylcinnamolide (117) were isolated and characterized
from marine-derived A. ochraceus (Figure 9). The significant
inhibitory activities against the growth of renal carcinoma cells
indicate these compounds possess antitumor potential (Tan et al.,
2018).

Steroids
Steroids function as components of cell membranes or signaling
molecules in living cells, with four rings arranged in a specific
molecular configuration. As shown in Figure 10, 7-nor-
ergosterolide (118), featured by a γ, δ-unsaturated
pentalactone B-ring system, is the first 7-norsteroid of
naturally occurring and isolated from A. ochraceus. In
addition, 3β,11α-Dihydroxyergosta-8,24(28)-dien-7-one (119)
and 3β-Hydroxyergosta-8,24(28)-dien-7-one (120) were
identified from the same fungal strain and exhibited selective
cytotoxic activity against tumor cell lines (Cui et al., 2010).
Recently, a new ergostane-type sterol derivative ochrasterone
(121), gymnasterone D (122), isocyathisterol (123), herbarulide
(124), and demethylincisterol A2 (125) have been obtained (Hu
et al., 2021; Tong et al., 2022). (123) was first discovered from A.
ustus with weak antibacterial activity (Liu et al., 2014).
Previously, in a bioactivity-guided search for new compounds
in a marine sponge Homaxinella sp., the degraded (125)
displayed significant cytotoxicity when it was tested against
a panel of five human solid tumor cell lines (Mansoor et al.,
2005).

Others
As shown in Figure 11, alkaloids ochraspergillic acids A (126), B
(127), the adducts of dihydropenicillic acid (31) and o- or ρ-
aminobenzoic acid, were produced when A. ochraceus co-culture
with Bacillus subtilis (Frank et al., 2019). Feeding experiments by

FIGURE 8 | The structure of bis-indolyl benzenoids in Aspergillus
ochraceus.
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FIGURE 9 | The structure of nitrobenzoyl sesquiterpenoids in Aspergillus ochraceus.

FIGURE 10 | The structure of steroids Aspergillus ochraceus.

Frontiers in Chemistry | www.frontiersin.org August 2022 | Volume 10 | Article 93862610

Chen et al. Secondary Metabolites in Aspergillus ochraceus

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


adding either anthranilic acid or L-tryptophan to a solid rice
medium also demonstrated the production of (126), indicating
anthranilic acid and L-tryptophan are building blocks of
ochraspergillic acids. Ochrazepines A-D (128-131) are
dimerized from 2-hydroxycircumdatin C (90) and aspyrone
(10) through a nucleophilic addition to epoxide (Fan et al.,
2019). Semi-synthesis by nucleophilic addition reactions
confirmed the speculation that (10) possibly underwent a SN1-
like process to form the more stable allyl carbon positive ion,
immediately followed by reaction with the oxygen anions of (90)
to yield two pairs of epimers (128)/(129) and (130)/(131),
respectively. The change of bioactivity of these compounds
due to conjugation indicated the formation of hybrids
provides more natural products for bioactivity studies.
L657,398 (132), with broad antifungal activity, is a pyrollidine
isolated from the mycelium ofA. ochraceus in liquid fermentation
(Schwartz et al., 1988). Ochracesol A (133), which contains an
oxazole ring, exhibited anti-PD activities on SH-SY5Y cells (Hu
et al., 2021). Di-(2-ethylhexyl) phthalate (134), ergosta-4,6,8
(14),22-tetraen-3-one (135), and a beta-carboline alkaloid
perlolyrine (136) have also been found in A. ochraceus (Hu
et al., 2021).

DISCUSSION

Common fungi, especially A. ochraceus, are regularly
underestimated for their biosynthetic potential, which deserves

our recognition. Here, we comprehensively review the known
SMs produced by A. ochraceus, and discuss their bioactivities and
biosynthetic pathway. A. ochraceus produces a range of
polyketides, nonribosomal peptides, diketopiperazine, terpenes,
and other alkaloids. Except for the mycotoxins OTA, (6) and (7),
these compounds possess antimicrobial, antiviral, anti-insect,
antitumor, antioxidant, and anti-inflammatory activities. Thus,
A. ochraceus strains could be valuable sources of compounds in
the areas of medicine and agriculture.

In terms of fungi, a large number of natural products have
been isolated from A. ochraceus until now. Nonetheless,
several strategies have been used for enhancing the
chemical diversity of microorganisms. Different media used
in the cultivation of A. ochraceus leads to the production of
different compounds. For example, when several inorganic
salts or organic supplements are added to the solid rice
medium culture, A. ochraceus is found to produce different
metabolites, resulting in discovering the novel compounds;
and this strategy verifies the OSMAC (One Strain MAny
Compounds) theory (Frank et al., 2019). Grimm-Allen iron-
limited medium allows A. ochraceus to secrete the extracellular
siderophores (Jalal et al., 1984). Furthermore, the cultivation
of two different microbial strains (A. ochraceus and B. subtilis)
together leads to the induction of (126) and (127), which are
not previously observed in the independent culture of each
strain (Frank et al., 2019). Genetically, the changes in the
cultural environment alter the gene expression profiles, hence
activating silent SM gene clusters (Keller, 2019). For example,

FIGURE 11 | The structure of other secondary metabolites in Aspergillus ochraceus.
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a total of 64 backbone SM genes, which are responsible for the
biosynthesis of the chemical skeleton, are differentially
expressed when A. nidulans undergoes a fungal-fungal
cocultivation, leading to the activation of 14 aspernidine
derivatives (Wang et al., 2022b).

Although a large number of compounds have been discovered
in A. ochraceus, some of them are derived from the same
biosynthetic pathway, e.g., (8) and (9) (Harris and Mantle,
2001). In fact, the number of genes encoding biosynthetic
enzymes clearly outnumbers the identified compounds in A.
ochraceus (Gonçalves et al., 2021). Finally, we remind the
scientific community not to discredit the ability of A.
ochraceus to produce natural products and encourage them to
explore unexpected natural products through manipulating
nutritional or environmental factors.
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