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Abstract: Renal fibrosis is regarded as the common final pathway leading to chronic kidney diseases;
macrophages and myofibroblasts play important roles in the development of fibrosis. F344 rats were
injected once with cisplatin (CDDP; 6 mg/kg BW) for renal lesions. Here, immunophenotypical
characteristics of macrophages and lymphocytes in CDDP-induced rat renal lesions were investigated
histopathologically; the CDDP-induced renal lesions consisted of tissue damage at the early-stage,
worsen the damage and commencement of interstitial fibrosis at the mid-stage, and progressive
fibrosis at the late stage; the KIM-1 expression and x-SMA* myofibroblast area reflected renal tubular
damage/abnormal regeneration and renal interstitial fibrosis, respectively. CD68" M1 macrophages
began to increase at the mid-stage, with increased mRNA expressions of M1-related cytokines
(INF-y, TNF-« and IL-6), and then slightly decreased at the late-stage. CD163* M2 macrophages
showed a gradually increased number at the mid- and late-stages, accompanied by increased TGF-{31
mRNA expression (a fibrogenic factor). Double immunofluorescence using fibrotic samples at the
late-stage revealed that 62.0-78.0% of CD68* M1 macrophages co-expressed CD163, indicating that
M1/M2 macrophages may contribute to progressive renal fibrosis in cooperation; further, MHC class
II-expressing macrophages had a tendency towards M1 polarization, whereas CD204-expressing
macrophages towards M2 polarization. In addition, CD4* and CD8* T cells were increased at the
late-stage. Collectively, progressive renal interstitial fibrosis may be developed by complicated
mechanisms that arose via interaction of M1/M2 macrophages (inflammatory for M1 and anti-
inflammatory for M2) and T cells reacting to CD4 (for helper) and CD8 (for cytotoxicity). This study
would provide some information on the pathogenesis of renal fibrosis based on inflammatory cells.

Keywords: cisplatin; M1/M2 macrophages; T lymphocytes; renal fibrosis; rats

1. Introduction

Regardless of initial causes, renal fibrosis is regarded as the common final pathway
leading to chronic kidney diseases (CKD). The lesion is characterized histopathologically
by an excessive accumulation and deposition of extracellular matrices (ECMs) in the
interstitium. CKD ultimately results in renal dysfunction and end-stage renal failure, and
the patients require dialysis or transplantation. The pathogenic mechanism of renal fibrosis
should be clarified to prevent the progression.

Generally, macrophages and myofibroblasts play important roles in the development
of fibrosis [1,2]. Myofibroblasts are mesenchymal cells capable of producing ECMs, and
transforming growth factor-p1 (TGF-f31) is an important factor for the activation of myofi-
broblasts [3]. Macrophages produce TGF-31 [4]. In renal fibrosis, TGF-1 may promote
tubular epithelial cell transdifferentiation into myofibroblasts (epithelial-mesenchymal
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transition; EMT) and enhance interstitial deposition of ECMs produced by myofibrob-
lasts [5,6]. Therefore, macrophages are crucial in the pathogenesis of renal fibrosis [1].
Moreover, macrophages can contribute to the promotion or resolution of inflammation,
removal of apoptotic cells by phagocytosis, and support of cell proliferation following
tissue injury, indicating that macrophages have heterogeneous functions [7,8].

Like Thl and Th2 in T helper cells, macrophages are classified as M1 (classically
activated) and M2 (alternatively activated) types [9]. M1 macrophages are induced by
interferon-y (IFN-y) and are characterized by active production of inflammatory cytokines,
reactive nitrogen and oxygen intermediates, and promotion of Thl response. In contrast,
M2 macrophages are activated by IL-4 and associated with the resolution of inflammation
and promotion of tissue remodeling and fibrosis [10]. Such macrophage plasticity is
called M1/M2 polarization. Generally, the change of M1/M2 phenotypes of macrophages
easily occurs in vitro; however, such events may not always be corresponding to that in
pathological lesions in vivo because there are complicated factors in the body that should
influence the functions of macrophages [11]. The histopathological /immunohistochemical
approach of M1/M2-macrophages in vivo is very important.

To investigate the histopathological alterations of macrophages in pathological settings,
therefore, the analysis of expression profiles of cell surface molecules are useful [9]. In the
present study, by using renal fibrosis lesions induced in rats by cisplatin with renal toxicity,
we performed the immunohistological phenotyping of macrophages using antibodies
against cell surface molecules. CD68 is an antigen on lysosomal and endosomal membranes
related to phagocytic activities [12], and its expression is regarded as an M1 macrophage
marker [13,14]. CD163 is a receptor for hemoglobin-haptoglobin complexes and a member
of the scavenger receptor cysteine-rich group B family. CD163 expression is regarded as a
marker for M2 macrophages [15].

Although the appearance of macrophages was observed in rat renal fibrosis [16,17],
the immunohistochemical characteristic of macrophages and lymphocytes have not yet
been analyzed on the basis of the concept of M1/M2-macrophage polarization. The con-
cept of M1/M2 polarization may be a key for understanding the pathogenesis of renal
fibrosis, which would provide a basis for macrophage-centered diagnostic and therapeutic
strategies [10]. We also investigated immunohistochemically the participation of lympho-
cytes, which may be related to M1/M2 polarization. Our results suggest that M1/M?2
macrophages, as well as T cells, may contribute to the progressive renal fibrogenesis after
tubular injury.

2. Materials and Methods
2.1. Experimental Procedures

Five-week-old male F344/DuCrj rats (106-146 g; Charles River Japan, Hino, Shiga,
Japan) were housed in an animal room controlled at 22 & 3 °C and with a 12 h light-dark
cycle and fed a standard diet (DC-8, CLEA Japan, Inc., Tokyo, Japan) and filtered tap water
ad libitum. After one-week acclimatization, twenty-four rats received a single intraperi-
toneal injection of cisplatin (CDDP, cis-diamminedichloroplatinum; Nippon Kayaku Co.
Ltd., Tokyo, Japan) at a dose of 6 mg/kg body weight. Three rats were examined on each
ofdays1,3,5,7,9,12, 15 and 20 after CDDP injection. Three rats as control received an
equal volume of physiological saline in the same manner and were examined on day 0.
All rats were euthanized under deep isoflurane anesthesia. Experimental protocols were
performed according to the Institutional Guidelines for Animal Care and Use (Nos. 23-24
and 25-85) in Osaka Prefecture University.

2.2. Histopathology and Immunohistochemistry

Renal tissues were immediately fixed in 10% neutral buffered formalin or periodate-
lysine-paraformaldehyde (PLP) solution and embedded in paraffin with AMeX (acetone,
methyl benzoate and xylene) method [18]. Deparaffinized formalin-fixed sections were
stained with hematoxylin and eosin (HE) for morphological examination and with the azan-
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Mallory stain for collagen deposition. Deparaffinized PLP-fixed sections were immune-
stained with primary antibodies and peroxidase-conjugated secondary antibody (Histofine
simple stain MAX-PO; Nichirei, Tokyo, Japan). Details of the primary antibodies are
listed in Table 1. Tissue sections were immunostained by Histostainer (Nichirei). Positive
reactions were visualized with 3,3'-diaminobenzidine tetrahydrochloride (DAB; Nichirei),
and the sections were then lightly counterstained with hematoxylin. For negative controls,
tissue sections were treated with mouse or rabbit non-immunized serum instead of the
primary antibody. Positive cells were counted in five randomly selected 40 x fields in
the corticomedullary junction in which interstitial fibrosis occurs in this rat model [19].
Areas of myofibroblasts reacting to x-SMA (the most reliable marker for this cell type) were
measured in five different fields of the corticomedullary junction using an image analyzing
software (WinROOF, Mitani Corp., Fukui, Japan); because blood vessel-constituting smooth
muscle react to x-SMA [20], blood vessels were excluded for the analysis. In addition, a
semiquantitative evaluation was made for interstitial fibrosis degree based on HE-stained
and azan-Mallory-stained sections: no-fibrosis (—), slight degree (1+), moderate degree
(2+), severe degree (3+) and more severe degree (4+) in the affected corticomedullary
region [20].

Table 1. Primary antibodies used for immunohistochemistry and immunofluorescence.

Antibody Type Dilution Pretreatment Source
CD163 (ED2) Mouse monoclonal 1/300 - AbDSerotec, Oxford, UK
CD68 (ED1) Mouse monoclonal 1/500 10 ug/mL proteinase K, 20 min Merck Millipore, MA, USA
MHC class II (OX-6) Mouse monoclonal 1/300 Microwaving in citrate buffer, 20 min AbDSerotec, Oxford, UK
CD204 (SRA-E5) Mouse monoclonal 1/500 Microwaving in citrate buffer, 20 min Transgenic Inc., Kumamoto, Japan
x-SMA Mouse monoclonal 1/1000 - Dako, CA, USA
CD4 Mouse monoclonal 1/2000 - AbDSerotec, Oxford, UK
CD8 Mouse monoclonal 1/200 - AbDSerotec, Oxford, UK
CD20 Goat polyclonal 1/200 Microwaving in citrate buffer, 20 min ~ Santa Cruz Biotechnology Inc., TX, USA
KIM-1 Goat polyclonal 1/500 - Immunology Consultants

Laboratory, OR, USA

2.3. Double Immunofluorescence

Ten-pm fresh-frozen sections from the kidney of control and CDDP-injected rats were
used for double immunofluorescence; the antibody pairs were CD68 in combination with
CD163, MHC class IT and CD204, as well as CD163 with MHC class I and CD204. After
fixation in cold PLP solution for CD68/CD204 combination and in cold acetone: methanol
(1:1) solution for other combinations, the sections were incubated with 10% normal goat
serum for 30 min, followed by reaction with the primary antibody overnight at 4 °C.
After rinsing in PBS, the sections were incubated for 45 min with the goat anti-mouse
IgG-conjugated with Alexa 568 (Invitrogen, Carlsbad, CA, USA). Then, the sections were
incubated at room temperature for an hour with the following second primary antibodies
labeled with fluorescent dye: Alexa 488-labeled CD68 (AbD Serotec, Oxford, UK) for
CD68/CD163 and CD68/CD204 combinations; Alexa 488-labeled CD163 (AbD Serotec,
Oxford, UK) for CD163/CD204; Alexa 488-labeled MHC class II (AbD Serotec, Oxford,
UK) forCD68/MCH class Il and CD163/MHC class II. The sections were cover-slipped
with Vectashield™ mounting medium containing 4’,6-diamidino-2-phenylindole (DAPT)
(Vector Laboratories Inc., Burlingame, CA, USA) for nuclear staining and analyzed using a
virtual slide scanner (VS-120; Olympus, Tokyo, Japan). Cells co-expressing CD68/CD163,
CD68/MHC class II, CD163/MHC class II, CD68 /CD204, and CD163/CD204 were counted
in five randomly selected 40 x fields of the corticomedullary junction.

2.4. Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

Renal tissues collected from the corticomedullary junction were immediately im-
mersed in RNAlater reagent (Qiagen, Hilden, Germany), kept overnight at 4 °C and stored
at —80 °C until use. Total RNA was extracted from renal tissues using an SV Total RNA iso-
lation system (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
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Two and a half pg of total RNA was reverse-transcribed with Superscript VILO reverse
transcriptase (Life Technologies, CA, USA). Real-time PCR was performed using Thunder-
bird Probe qPCR mix (Toyobo Co. Ltd., Osaka, Japan) with TagMan gene expression assays
(Life Technologies, Carlsbad, CA, USA) or Thunderbird SYBR qPCR mix (Toyobo) in a
PikoReal real-time 96 PCR system (Thermo Scientific, Waltham, MA, USA). Tagman probes
for IL-6 (Assay ID: Rn01410330_m1), IL-10 (Assay ID: Rn00563409_m1), IL-4 (Assay ID:
Rn01456866_m1), and 3-actin (Assay ID: Rn00667869_m1) were used. The primers used in
the SYBR Green real-time PCR system are listed in Table 2. The data were calculated using
the comparative C; method (AAC¢ method) and normalized by the expression of B-actin
mRNA as an internal control.

Table 2. Real-time RT-PCR primers.

Primer NCBI Symbol Forward Reverse

IFN-y Ifng tcgcacctgatcactaacttcttc cgactccttttcegcettec
TNF-« Tnf tgectcagcectctteteatte gctectctgettggtggttt
TGF-31 Tgfvl cttcagctccacagagaagaactge  cacgatcatgttggacaactgctce
KIM-1 Havcerl gtctgtattgttgecgagtgga gttgtgaotcttgttggagea
[-actin Actb taaagacctctatgccaacac ctectgettgetgatccacat

IFN-y—interferon-y, TNF-x—tumor necrosis factor-«, TGF-p1—transforming growth factor-1, KIM-1—kidney
injury molecule-1, NCBI—The National Center for Biotechnology Information.

2.5. Statistical Analysis

Data were statistically analyzed by the one-way analysis of variance (ANOVA) fol-
lowed by Dunnett’s multiple comparison test to investigate the kinetics against controls.
Values of p < 0.05 were considered significant from controls [14].

3. Results
3.1. Histopathology of CDDP-Induced Rat Renal Lesion

Control kidneys showed normal renal histological architecture (Figure 1A). On days
1 and 3 after CDDP injection, renal proximal tubular epithelial cells, especially at the S3
segment in the corticomedullary junction, underwent swelling with nuclear degeneration
(Figure 1B); the degeneration was more clearly seen on day 3. On days 5 and 7, renal
epithelial cells of the affected tubules were desquamated (Figure 1C,D), and then, the
tubules were variously dilated, being lined by regenerating flattened or cuboidal epithelial
cells. In addition, inflammatory cells began to be seen around the affected renal tubules
and their lumina. On days 9 (Figure 1E), 12, and 15, the regenerating epithelial cells
showed variable morphology (flattened, polyhedral, and cuboidal), indicating abnormal
regeneration; around the variously dilated renal tubules, interstitial fibrosis was developed,
accompanied by inflammatory cells. On day 20, interstitial fibrosis was more progres-
sive, particularly around the renal tubules with incompletely regenerating epithelial cells
(Figure 1F); inflammatory cells were continuously observed.

mRNA expression of kidney injury molecule-1 (KIM-1), a well-known biomarker for
renal proximal tubule injury [21,22], was increased significantly on days 5-15 (Figure 2A),
being consistent with histological tubular damage. The immunoreaction to KIM-1 was seen
mainly in cuboidal or flattened epithelial cells in the damaged renal tubules (Figure 2B).
The KIM-1 expression reflected the histopathological findings of renal tubular damages/
abnormal regeneration.
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Figure 1. Histopathology of cisplatin (CDDP)-induced rat renal lesions. (A) In the control kidneys
(fibrosis degree, —), no significant change is observed. (B) On day 1 (fibrosis degree, —) following
CDDP injection, renal proximal tubular epithelial cells in the corticomedullary junction show nuclear
alterations. (C) On day 5 (fibrosis degree, 1+), the renal proximal tubular epithelial cells show
swelling and desquamation. (D) On day 7 (fibrosis degree, 2+), the affected tubules are dilated,
showing complete desquamation, and lined partly by regenerating epithelial cells; infiltration of
inflammatory cells (arrow) are seen in the injured lumina. (E) On day 9 (fibrosis degree, 3+), fibrosis
is observed in the interstitium around the affected tubules with variously dilated lumen. (F) On day
20 (fibrosis degree, 4+), the damaged renal tubules lined by incompletely regenerating epithelial cells
and fibrosis are seen around these tubules. HE stain, bar = 50 um.

3.2. Collagen Deposition and Myofibroblast Appearance in CDDP-Induced Rat Renal Lesion

In the kidneys of control and on days 1 and 3, interstitial fibrosis was not seen (fibrosis
degree, —) in the affected corticomedullary junction. Collagen fibers stained blue with the
azan-Mallory method began to be gradually seen around the affected renal tubules on days
5 (—~1+), 7 (1+~2+), 9 (2+~3+), and 12 (2+~3+); the deposition degree became gradually
severe on days 15 (3+~4+) and 20 (3+~4+) (Figure 3A,B). Inmunohistochemically, on day
7, a-SMA* myofibroblasts began to clearly appear in the interstitium around the affected
renal tubules lined by abnormal regenerating epithelial cells. On day 9 onwards, the area
of x-SMA™ myofibroblasts showed a significant increase with a peak on day 15 (Figure
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3C,D), in comparison to controls. The area of x-SMA-positive myofibroblasts sufficiently
reflected the degrees of progressive interstitial fibrosis.
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Figure 2. CDDP-induced renal lesions in rats. (A) mRNA expression of kidney injury molecule-1
(KIM-1) in the control and CDDP-injected rats on days 1 to 20; Dunnett’s test, *, significantly different
from controls at p < 0.05. (B) Immunohistochemistry for KIM-1; arrows indicated immune-positive
regenerating epithelial cells of the affected tubules on day 9. Bar = 50 pm.
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Although the lesions were overlapping to each other, based on the renal tubular
damage/interstitial fibrosis, the renal failure induced by CDDP injection were regarded as
following: tissue damage/cell injury at the early-stage on days 1-3, abnormal regeneration
of damaged tubules and commencement of fibrosis at the mid-stage on days 5-9, and
progressive fibrosis at the late-stage on days 12-20.

3.3. Macrophages Appearing in CDDP-Induced Rat Renal Lesion

Along with CD68* (M1) and CD163* (M2) macrophages, macrophages reacting to
MHOC class IT and CD204 were evaluated in the CDDP-induced renal lesion.

3.3.1. CD68* Macrophages

In the control and affected kidneys on days 1 and 3, a small number of CD68*
macrophages were seen in the corticomedullary junction (Figures 4A and 5A). The number
of CD68" macrophages increased significantly from day 5 onwards, with a peak on day 9
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(Figure 4A). CD68" macrophages were distributed around the damaged renal tubules and
within their lumen (Figure 5B,C).
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Figure 3. Evaluation of interstitial fibrosis of CDDP-induced rat renal lesions. (A) The azan-Mallory
stain; in the control kidneys, collagen fibers are not seen in the interstitium (fibrosis degree, —).
(B) The azan—-Mallory stain; on day 20, severe fibrosis (fibrosis degree, 4+) (arrows) is seen in the
interstitium. (C) Immunohistochemistry for a-smooth muscle action (x-SMA); x-SMA-positive
myofibroblasts are seen in the increased fibrosis (fibrosis degree, 4+) (arrows). Bar = 50 pum. (D) The
percentage of x-SMA-positive area in the control and CDDP-injected rats on days 1 to 20; Dunnett’s
test, ¥, significantly different from controls at p < 0.05.
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Figure 4. The number of macrophages reacting to CD68 (A, for M1), CD163 (B, for M2), MHC class II (C), and CD204 (D) in
the control and CDDP-treated kidney on days 1-20. Note that the kinetics of these macrophages in comparison to controls
differ from each other. Dunnett’s test, *, significantly different from controls at p < 0.05.
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Figure 5. Immunohistochemistry for CD68 (A-C), CD163 (D-F), MHC class II (G-I), and CD204
(J-L) in the control and CDDP-treated kidneys. A few CD68" macrophages (arrows) are seen in
the corticomedullary junction of control kidneys (A), whereas many macrophages reacting CD68
(arrows) are present around the affected renal tubules on days 5 (B) and 9 (C). In contrast to control
(D), many CD163* macrophages (arrows) are seen on days 5 (E) and 20 (F). Increased numbers of
MHC class II* macrophages (arrows) are seen exclusively around the affected renal tubules on days
9 (H) and 20 (I), in contrast to control (G). Only a few CD204* macrophages are present in the control
(J) and on day 20 (L), whereas, on day 5, CD204* macrophages are increased (K). Note that there are
differences in the distribution and location of these macrophages from each other. Counterstained
with hematoxylin. Bar = 50 um.

3.3.2. CD163* Macrophages

A few CD163* macrophages were observed in the control and affected kidneys on
days 1 and 3 (Figures 4B and 5D). The number of CD163" macrophages was significantly
increased on days 5 to 20; that is, a large number of CD163* cells were distributed mainly
in the interstitium of the renal medulla (Figure 5E,F); the positive cells were rarely seen
within the damaged renal lumen.

3.3.3. MHC Class II* Macrophages

A few MHC class IT" macrophages were seen in the control and affected kidneys on
days 1 to 7 (Figures 4C and 5G). On day 9, the number of MHC class II* macrophages
was quickly increased in the corticomedullary junction, showing the statistical significance
(Figures 4C and 5H). On days 12 to 20, the number of MHC class II* macrophages retained
increased, and the positive cells were seen exclusively around the damaged renal tubules
(Figure 5I).
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3.3.4. CD204* Macrophages

In the control and affected kidneys on days 1 and 3, only a few CD204* macrophages
were seen (Figures 4D and 5]). The number of CD204* macrophages was significantly
increased on days 5 to 12 (Figures 4D and 5K). The number was then decreased to the
control level on days 15 and 20 (Figures 4D and 5L). CD204* macrophages were seen
mainly around the affected renal tubules and within their lumen (Figure 5K).

3.4. M1/M2 Macrophage Polarization in CDDP-Induced Rat Renal Lesion

In order to investigate the macrophage polarization for M1 (CD68) or M2 (CD163) type,
double immunofluorescence with combinations of CD163/CD68 (Figure 6A), CD68/MHC
class II (Figure 6B), CD163/MHC class II (Figure 6C), CD68/CD204 (Figure 6D), and
CD163/CD204 (Figure 6E) were conducted in the affected kidneys at the late-stage, because
progressive fibrosis with increasing macrophage number was seen mainly on days 12,
15 and 20. On the examination points, the percentage of CD163*/CD68" cells to CD68*
cells was from 62.0 to 78.0%; CD68* /MHC class II* cells to MHC class II* cells ranged in
percentage from 33.2 to 80.3%, whereas CD163* /MHC class II* cells to MHC class II* cells
from 9.8 to 16.4%, indicating the polarization of MHC class II" macrophages toward CD68*
M1 type; CD68* /CD204* cells to CD204* cells ranged in percentage from 25.0 to 45.5%,
whereas CD163* /CD204" cells CD204" cells from 71.2 to 80.0%, indicating that CD204*
macrophage had a tendency to CD163* M2 polarization.

CD163/CD68/ CD163/MHC class II/

CD204/CD68/ CD204/CD163/

Figure 6. Double immunofluorescence for CD163/CD68 (A), CD68/MHC class II (B), CD168/MHC class II (C),
CD68/CD204 (D), and CD163/CD204 (E) in CDDP-induced renal lesions on day 9. Yellow color (arrows) indicates
double-positive reactions. Blue indicates nuclei stained with 4’,6-diamino-2-phenylindole (DAPI). Bar = 20 pm.

3.5. M1- and M2-Related Factors in CDDP-Induced Rat Renal Lesion

Renal expression of IFN-y, TNF-«, and IL-6 as M1-related inflammatory factors and
TGF-$3, IL-10, and IL-4 as M2-related anti-inflammatory factors [1,23] was analyzed.

mRNAs of IFN-y (Figure 7A) and TNF-« (Figure 7B) significantly increased on days
5 to 15 and on days 5 and 7, respectively. IL-6 mRNA (Figure 7C) increased earlier than
that of IFN-y and TNF-q; the expression significantly increased on days 3, 5 and 9. TGF-{31
mRNA significantly increased on days 7 to 20 (Figure 7D). mRNAs of IL-10 and IL-4 did
not show any significant changes.
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Figure 7. mRNA expressions for M1-related factors such as IFN-y (A), TNF-« (B) and IL-6 (C), and for M2-related factor
TGF-31 (D) in the control and CDDP-treated kidneys on days 1-20. Expression levels were normalized byf3-actin RNA
level. Dunnett’s test, *, significantly different from controls at p < 0.05.

3.6. Lymphocyte Appearance in CDDP-Induced Rat Renal Lesion
3.6.1. CD4" T Lymphocytes

In the control and affected kidneys on day 1, a small number of CD4" T cells were
sporadically seen without showing significant changes (Figures 8A and 9A). The number
of CD4"* T cells was significantly increased on days 3 to 20; in particular, the markedly
increased number retained on day 9 onwards (Figure 8A), and the positive cells appeared
mainly around the damaged renal tubules (Figure 9B,C).
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Figure 8. The number of lymphocytes reacting to CD4 (A), CD8 (B) and CD20 (C) in the control and
CDDP-treated kidneys on days 1-20. Note that the kinetics of these lymphocytes to controls differs
from each other. Dunnett’s test, *, significantly different from controls at p < 0.05.
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Figure 9. Immunohistochemistry for CD4 (A-C), CD8 (D-F) and CD20 (G-I) in the control and
CDDP-treated kidneys. In contrast to control (A), the number of CD4* T lymphocytes(arrows) are
increased on day 9 (B) and aggregated CD4" T cells (arrows) are seen around the affected renal
tubules on day 20 (C). In contrast to control (D), CD8* T cells (arrows) are increased on day 9 (E) and
tend to aggregate around the affected renal tubules on day 20 (F). In contrast to control (G) and on
day 20 (I), CD20" B cells (arrows) are increased on day 7 (H). Note that the distributions of these
lymphocytes are different from each other. Counterstained with hematoxylin. Bar = 50 um.

3.6.2. CD8* T Lymphocytes

A few CD8* T cells were seen in the control and affected kidneys on days 1-7, without
significant changes (Figures 8B and 9D). Then, the number of CD8" T cells showed a
significant increase on days 9 to 20 (Figure 8B), and the positive cells were observed
diffusely or focally around the damaged renal tubules (Figure 9E,F).

3.6.3. CD20* B Lymphocytes

There were a small number of CD20* B cells in the control and affected kidneys on
days 1 and 3 (Figures 8C and 9G). On days 5 and 7, the number of CD20* B cells was
significantly increased, showing a transient increase (Figures 8C and 9H); however, the
positive cell number was much less than that of CD4* and CD8* T cells. Thereafter, CD20*
B cells were suddenly decreased to control levels on day 9 onwards (Figures 8C and 9I).

4. Discussion

Experimentally induced rat renal fibrosis by CDDP injection has been used, mainly
focusing on injured renal tubules and interstitial fibrosis [16,19,20,24]. The degrees and
progression of interstitial fibrosis seen in the present rat renal failure were generally cor-
responding to those reported previously [16,20]. Renal fibrosis is characterized by the
appearance of myofibroblasts [20]. The myofibroblasts reacting to x-SMA was increased
with advancing renal fibrosis in CDDP-injected rats [20], as seen in the present study. It is re-
ported that there are myofibroblasts co-expressing to a-SMA /vimentin or x-SMA /desmin,
indicating that myofibroblasts show various cytoskeletons; in addition, renal myofibrob-
lasts express Thy-1 (CD90; immature stromal stem marker) [20]. Because the pericytes
show a positive reaction to Thy-1, renal myofibroblasts may be originated partly from
immature mesenchymal cells [20]. Further, the myofibroblasts may be developed via the
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EMT evoked from incompletely regenerating renal tubules [24]. The CDDP-induced rat
renal fibrosis resembles those of human renal progressive fibrosis like CKD [20].

The pathogenesis of renal fibrosis remains to be fully investigated [25], particularly
in terms of inflammatory cell reaction. In human CKD and renal failure animal models,
macrophage infiltration is a common pathological feature [26]. Macrophages may play an
important role in the pathogenesis. The present immunohistochemical results in CDDP-
induced rat renal lesions showed that M1 macrophages reacting to CD68 began to increase
on day 5, with a peak on day 9; thereafter, the CD68" M1 macrophages gradually decreased
until day 20. Expression of M1-related inflammatory factors such as IFN-y, TNF-oc and
IL-6 began to increase on days 3 and 5 and retained increased mainly at the mid-stage. The
appearance of CD68" M1 macrophages generally corresponded to increased M1-related
inflammatory factors. Histopathologically, the injury of renal epithelial cells by CDDP
began to be seen clearly on day 3, and the injury lesions became greater in severity on
days 5 and 7; the damaged renal tubules were characterized by swelling, necrosis and
desquamation of epithelial cells [19,20]. Additionally, mRNA expression of KIM-1, a marker
of renal injury [27], began to significantly increase on day 5, with the continuous expression
until day 15; KIM-1 immuno-expression was seen mainly in abnormally regenerating
epithelial cells of damaged tubules. Collectively, CD68" macrophages appearing mainly at
the mid-stage may participate in the progressive renal injury which was caused initially by
CDDRP. It is known that M1 macrophages promote tissue injury by producing inflammatory
factors [9,28].

Generally, fibrosis after tissue injury is regarded as a healing process [25]. In the
present renal failure by CDDP, renal interstitial fibrosis began to be seen clearly on days 7
(fibrosis degree 1+~2+) and 9 (fibrosis degree 2+~3+) and subsequently occurred progres-
sively on days 12 (fibrosis degree 2+~3+), 15 (fibrosis degree 3+~4+) and day 20 (fibrosis
degree 3+~4+). The interstitial fibrosis degrees corresponded to the appearance of x-
SMA™ myofibroblasts. Interestingly, CD163* M2 macrophages began to increase on day
5 and retained the increased number until day 20. It is considered that in contrast to M1
macrophages, M2 macrophages have roles of anti-inflammatory functions and fibrogene-
sis [9,25]. TGF-B1, which is the most powerful factor for fibrogenesis [3,25], was increased
on days 7 to 20, being generally similar to the appearance of CD163" M2 macrophages.
Collectively, progressive renal interstitial fibrosis in the present study at the mid and late-
stages on days 9 to 20 may be associated with the appearance of CD163" M2 macrophages
and increased TGF-31.

It has been considered that M1/M2 macrophage phenotypes could be interchangeable
depending on microenvironments [7,10,14]. Double immunofluorescence with CD68/CD163
showed that CD68" macrophages, which simultaneously expressed CD163, were seen at
the late-stage with the development of fibrosis. It is likely that M1 macrophages could
undergo a phenotypic switch towards M2 macrophages. The appearance of CD68* /CD163*
macrophages with both phenotypes of M1/M2 types may have attributed to progressive
renal damage by showing biphasic functions of tissue injury (for M1 type) and fibrosis (for
M2 type). Previously, it was reported that M1-/M2-macrophages contribute in a cooperated
manner to the development of pseudo-lobules (surrounded by fibrotic lesions) in chemically
induced rat cirrhosis [13]. In order to investigate the M1/M2 polarization of MHC class
IT* and CD204* macrophages, the double immunofluorescence with combinations of
CD68/MHC class II and CD163/MHC class II or CD68/CD204 and CD163/CD204 were
conducted. Particularly, at the end stages on days 9 to 20, the number of MHC class II*
macrophages expressing concomitantly CD68 was much greater than that of CD163* /MHC
class II" macrophages. Apparently, MHC class II" macrophages showed a tendency of
M1 polarization. On the contrary, the number of CD68*/CD204* macrophages at the late-
stage was much lower than that of CD163*/CD204" macrophages, indicating that CD204*
macrophages may have functional properties towards M2 polarization. It is reported
that MHC class II antigen expression may be included in the M1 macrophage pathway;,
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whereas M2 macrophage phenotype is also associated with scavenger receptors such as
CD204 [1,29].

Besides macrophage infiltration, the recruitment of lymphocytes is another important
event in renal interstitial fibrosis [22]. CD4" T cells were increased on days 3 to 20, with the
plateau on day 9 onwards. On day 9 onwards, MHC class II* macrophages began to be
concomitantly increased. More interestingly, CD4" T cells and MHC class II* macrophages
tended to appear around the damaged renal tubules at the late-stage. Because CD4* T cells
stimulate macrophages to generate inflammatory mediators [1], and MHC class IT* cells
are known to present the processed antigens to CD4" T cells, CD4" T cells may act with the
relation of MHC class II* macrophages with the polarization into M1 macrophages. In fact,
it is reported that CD4* T cells contribute to the progress of renal fibrosis [30,31].

CD8* T cells also began to be increased from day 9 onwards. M2 macrophages are
reported to suppress CD8* T cell-mediated cytotoxicity to tubular cells by producing anti-
inflammatory cytokines [26]. The appearance of M2 macrophages may be a pathological
event against the cytotoxicity by CD8* T cells. Apparently, the present progressive renal
fibrosis seen at the late-stage may be developed by the attendance of complicated cell types:
presumably, cooperation between M1 macrophages and CD4" T cells, and confrontation
between M2 macrophages and CD8* T cells.

The number of CD20"* B cells was transiently increased at the mid-stage on days 5
and 7. A study on mouse unilateral ureteral obstruction model showed that the early-
stage accumulation of B cells in the affected kidney accelerated monocyte/macrophage
mobilization and infiltration, leading to aggravated fibrosis [32]. The significance of
CD207B cells remains to be investigated because the number of CD20* B cells was much
lower, as compared with T cells reacting to CD4 and CD8.

In conclusion, the present study demonstrated the possible pathogenesis of CDDP-
induced rat renal interstitial fibrosis, based on the immunohistochemical analyses of
M1/M2 macrophage polarization and appearance of lymphocytes. CD68* M1 macrophages
appeared with increased M1-related factors relating to tissue damage. In progressive
renal interstitial fibrosis developed at the late-stage after tissue damage, an increased
number of CD163" M2 macrophages were consistently seen, and there were macrophages
reacting simultaneously to both CD68 and CD163; furthermore, MHC class II* macrophages
showed a polarization into M1 macrophages, whereas CD204" macrophages were toward
M2 polarization. Along with M1/M2 macrophages, CD4* and CD8* T cells showed an
increase at the late-stage. The progressive fibrosis may be developed by complicated
functions that arose via the interaction of M1/M2 macrophages (inflammatory M1 and anti-
inflammatory M2) and T cells reacting to CD4 (for helper) and CD8 (for cytotoxicity). It is
interesting to investigate more detailed functions of macrophages and lymphocytes, as well
as the mutual relationship of these cells, in progressive renal fibrosis, particularly by using
the technique of macrophage depletion, because there were somewhat differences in the
distribution and kinetics of these inflammatory cells; studies on inflammatory cells would
contribute to therapeutic strategies for CKD. This is the first trial of detained analyses (such
as M1/M2 macrophage polarization) of inflammatory cells in vivo in CDDP-induced rat
renal fibrosis.
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