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Insulin plays a major neuroprotective and trophic function for cerebral cell population,

thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal

survival; and enhancing memory and learning processes. Insulin resistance and impaired

cerebral glucose metabolism are invariantly reported in Alzheimer’s disease (AD)

and other neurodegenerative processes. AD is a fatal neurodegenerative disorder

in which progressive glucose hypometabolism parallels to cognitive impairment.

Although AD may appear and progress in virtue of multifactorial nosogenic ingredients,

multiple interperpetuative and interconnected vicious circles appear to drive disease

pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid

accumulation may appear as a by-product of more proximal events, especially in the

late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun

N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin

response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its

subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in

neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles,

mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation

are increasingly advocated as major pathology drivers. Pharmacological interventions

addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral

functionality, and mitophagy of diseased organelles may attenuate the adjacent

spillover of free radicals that further perpetuate mitochondrial damages and catalyze

inflammation. Central and/or peripheral inflammation may account for a local flood

of proinflammatory cytokines that along with astrogliosis amplify insulin resistance,

mitochondrial dysfunction, and oxidative stress. All these elements are endogenous

stressor, pro-senescent factors that contribute to JNK activation. Taken together,

these evidences incite to identify novel multi-mechanistic approaches to succeed in

ameliorating this pandemic affliction.
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INTRODUCTION

Brain metabolism accounts for 50% of total body glucose as
its main energy source having neurons with the highest energy
demand (1–3). Neuronal energetic dyshomeostasis is behind the
onset of numerous devastating pathologic nervous conditions,
characterized by reduced neuronal survival and an overall
deterioration of cognitive abilities (4).

Insulin physiology is as broad as meaningful. It is a sort
of central axis transecting nutrients metabolic homeostasis
to systemic growth and development, in both embryonic
and extraembryonic life. The insulin physiological umbrella
also regulates fertility and life span. Alike, this system turns
critical for neuronal growth, connectivity, survival, and integral
brain function. This definition emphasizes the catastrophic
outcomes that may result from peripheral and/or central insulin
resistance (IR) (5). In consonance with this, the postulate that
IR/energy metabolic derangements are pathogenically engaged as
a causative factor for Alzheimer’s disease (AD) and other forms
of dementia stands as an exciting puzzle in which an upstream
metabolic disorder may probably act as the proximal trigger in a
web of interconnected pathogenic circuits and vicious circles (6).

AD is a devastating neurodegenerative condition caused by
an intricate and multifaceted pathophysiology, standing as the
most common cause of degenerative dementia (7). A collection
of histopathological, imaging, metabolic, and molecular markers
characterize AD, including cerebral cortical and subcortical
atrophy, neuronal loss, synaptic terminal damages, microvascular
damages, different inflammatory reactions including reactive
astrocytosis, and significantly hyperphosphorylated Tau and
increased amyloid beta (Aβ) deposits (8).

Aside from the epidemiological association, in vitro and in
vivo studies have offered significant insight into the impact of
energy dyshomeostasis on the onset and progression of AD
pathology. Although the biological interdependence of central IR
and AD is not completely elucidated, impaired insulin signaling
associated with other neuronal metabolic derangements, a

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein;
APP/PS1, amyloid precursor protein/presenilin-1; βA, beta-amyloid; βAOs, beta-
amyloid oligomers; BBB, blood–brain barrier; CNS, central nervous system;
COX, cytochrome oxidase; CSF, cerebrospinal fluid; DAMP, damage-associated
molecular pattern; Drp-1, Dynamin-related protein 1; ER, endoplasmic reticulum;
ETC, electron transport chain; FAD, familial AD; FDG-PET, fluorodeoxyglucose
positron emission tomography; GLUT-3, glucose transporter 3; GLUT-4, glucose
transporter 4; GSK-3β, glycogen synthase kinase-3β; INF-γ, interferon gamma;
IGF-I, insulin-like growth factor type I; IGF-II, insulin-like growth factor type
II; IL-1, interleukin-1; IL-6, interleukin-6; IR, insulin resistance; IRS, insulin
response substrate; JAK-STAT, Janus kinase signal transduction and activator
of transcription; JNK, c-Jun N-terminal kinase; LOAD, late onset AD; MAPK,
mitogen-activated protein kinase; M-CSF, macrophage colony-stimulating factor;
mtDNA, mitochondrial DNA; NFT, neurofibrillary tangle; NLRP3, NOD-,
LRR-, and pyrin domain-containing protein 3; OMM, outer mitochondrial
membrane; PD, Parkinson’s disease; PDH, pyruvate dehydrogenase; PDHC,
pyruvate dehydrogenase complex; PGC-1α, peroxisome proliferator-activated
receptor gamma coactivator-1 alpha; PI3K, phosphatidylinositol 3-kinase; PPAR-
γ, peroxisome proliferator-activated receptor gamma; pTau, phosphorylated Tau;
RAGE, receptor for advanced glycation end products; ROS, reactive oxygen
species; SAD, sporadic AD; STZ, streptozotocin; TGF-β, transforming growth
factor beta; TLR, toll-like receptors; TNF-α, tumor necrosis factor alpha; T2DM,
type 2 diabetes mellitus.

local inflammatory environment with the associated oxidative
stress, appear to be crucial drivers to disrupt neuronal energy
homeostasis (9).

From the clinical point of view, AD has major presentation
forms. The less frequent familial or early-onset AD form
(FAD) debuts in subjects younger than 65 years and is
conditioned by inherited mutations in three main genes: amyloid
precursor protein (APP), presenilin-1 (PSEN1), and presenilin-
2. Alternatively, the sporadic (SAD) or late-onset AD (LOAD)
includes most of the AD subjects’ universe, mostly diagnosed
after the sixth decade of life. Apolipoprotein E (APOE 19q32.13)
epsilon4 allele has been identified as the main genetic risk
factor for the sporadic form. Of note, both clinical forms
exhibit differences not only in terms of genetic background
predisposing factors but also in their clinical presentations and
the cerebral topographic pathology form (10, 11). Moreover,
clinical, neuropathological, and molecular commonalities are
also described to bridge AD clinical forms [for review,
see (12)].

AD is now recognized as to be initiated decades before the
clinical symptoms are evident as recently reviewed (13). Mild
cognitive decline is an early indicator of pathology. It is therefore
important to evaluate systematically factors that might be causal
effects or accelerators of this pathogenic process.

In this direction, epidemiological studies support the
association between cognitive dysfunction and diabetes (14). It
is likely that the “apparently trivial” glycemia or the ensued
peripheral insulin levels somewhat impact on the brain cognitive
function (diabetes duration, blood glucose levels, the rate of
glucose tolerance, and the levels of glycated hemoglobin) all
correlate with cognitive functional performance (15, 16). This has
led some to consider dementia as a new form of type 2 diabetes
mellitus (T2DM) complication (17), and although AD can occur
independent to diabetes, the latter is considered a bona fide
risk factor for dementia and AD (18–20). Accordingly, a meta-
analysis of 28 studies concluded that in the diabetic population,
the risk for all types of dementia is increased by 73% (21).

Despite the prolonged efforts invested in disentangling
cerebral energymetabolism, critical aspects remain to be clarified,
especially in relation to energy precursors’ consumption and
metabolism. Similarly, controversies exist in relation to the
hierarchy order within the pathophysiological cascade for the
roles of Aβ and mitochondrial dysfunction. Nevertheless, it is
beyond the scope of this article to resolve these controversies.
Herewith, we aim to review some aspects of the current
knowledge of the exciting field of AD pathophysiology, focusing
on reports that point to insulin signaling in the central
nervous system (CNS) as a novel and promising pathogenic
and therapeutic field of inquiry. We outline the nosogenic
involvement of IR as a primary trigger with three interrelated
factors: (1) neuroinflammation, (2) the pathogenic role of Aβ

and p-Tau, and (3) mitochondrial dysfunction in the form of
interdependent and self-perpetuative cascades. The literature
search for this manuscript included Medline/PubMed, Google
Scholar, Scielo, and Bioline International (www.bioline.org.br)
data sources. Online English literature was searched using search
terms for conceptualization of AD.
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BRAIN INSULIN AXIS PHYSIOLOGY

The physiological spectrum of insulin is broad while playing a
definitive anabolic role by positively regulating glucose, proteins,
and fat metabolism (22). Importantly, this hormone is thought
to play a critical role in mitochondrial biogenesis (23), which
denotes its biological and evolutionary connotation.

Insulin mediates its physiological actions through binding
to tyrosine kinase activity receptors. The complex biology
of the insulin receptor signaling transduction regulation
has been previously documented (24, 25). The tyrosine
autophosphorylation allows for the gain-of-function of the
receptors and the ensued downstream phosphorylation of other
substrate proteins identified as insulin response substrates
(IRSs) 1 to 4 in mammals. The tissue-specific expression and
differential binding of downstream signaling proteins dictate a
particular and compartmental pattern of physiological actions
(26). Phosphorylated IRS proteins bind and activate catalytic
enzymes as phosphatidylinositol 3-kinase (PI3K) and a type of
phosphotyrosine phosphatase. PI3K controls metabolic events as
the translocation of glucose transporter proteins, glycogen, lipid
and protein synthesis, anti-lipolysis, and the control of hepatic
gluconeogenesis. Aside from PI3K, the RAS/mitogen-activated
protein kinase (MAPK) cascade is involved in the anabolic,
mitogenic, and pro-hypertrophic actions of insulin (27, 28).
Furthermore, activation of these pathways improves learning
and memory (29), stimulates neuronal growth, and enhances
neuronal survival (30).

Insulin is a key factor modulating the destiny of neuronal
stem cells in neurogenic niches. Insulin and insulin-like growth
factor type I (IGF-I) signaling pathways promote neurogenesis by
modulating stem cell proliferation, differentiation, and survival
(31). Contrariwise, abnormalities in insulin signaling leading
to impaired glucose metabolism or reduced glucose input into
the brain may influence the course of brain aging (32, 33).
IRS-1 and IRS-2 are major targets of inhibitory signals when
more than 50 serine/threonine residues become phosphorylated,
thus eventually leading to functional neutralization of catalytic
tyrosine. A sort of feedback of serine/threonine phosphorylation
of IRS underlies the magnitude of insulin stimulation (34).
Therefore, an intricate balance between IRS phosphorylation at
serine or tyrosine residues determines the extent and magnitude
of insulin actions (35).

The regulation of glucose transporters by the action of
insulin is endowed with an organ specificity pattern or local
compartmentalization. Accordingly, neuronal glucose uptake
and utilization are only influenced by glucose transporter
3 (GLUT-3), which is co-expressed with glucose transporter
4 (GLUT-4). Remarkably, the brain can metabolize glucose
independent of any insulin action given that glucose can simply
diffuse across the blood–brain barrier (BBB) (36).

Most brain insulin derives from the systemic circulating
pancreatic insulin, transported into the brain where it enters by
means of a selective and saturable carrier on capillary endothelial
cells of the BBB (17). Compelling evidences document that the
brain is definitively an “insulin sensitive organ” (37) and diverse
methodological approaches indicate insulin de novo synthesis in

the brain [for review, see (38)]. In line with this, physiologically
active insulin receptors and their signal transduction pathways
have been localized in several regions of the brain, intervening in
a broad spectrum of neurophysiological actions such as attention,
executive functioning, learning, and memory (38). Furthermore,
hypothalamic insulin also regulates hepatic glucose production
(39), emphasizing that central insulin establishes a functional
connection to peripheral organs with systemic repercussion.

Brain glucose metabolic fate is largely impinged by the
specific cell stripe and its metabolic demands. Exemplarily,
neurons exhibit an oxidative metabolism while astrocytes are
mostly glycolytic (40). Although brain energetic homeostasis
alterations may influence the ignition and progression of various
neurodegenerative disorders in which glucose metabolic rates
decline (40), the links within the pathogenic cascade, as the
precise role played by the different cerebral cell populations,
remains to be clarified.

CENTRAL INSULIN RESISTANCE

Since decreased brain insulin levels or insulin receptor
signaling is associated with impaired cognitive functions
and neurodegenerative diseases, the mechanisms involved in
central insulin signaling, glucose utilization, and neuronal
energetic homeostasis are currently emerging as a promising
research/interventional area (41–46).

Brain IR is simply defined as a state of failure of brain cells to
respond to insulin input (47), which may extend to reductions in
both the levels and signaling of IGF-I and IGF-II (48). Although
this lack of response to insulin could mechanistically respond
to reduced neuronal transcription or low protein expression of
insulin (49–51), its receptor (43, 49, 52), the receptor substrates
(49), and to an interference in receptors tyrosine-kinase activity
(43, 53), the latter appears as a sine qua non.

As defined by Kandimalla et al., insulin cerebral physiology
deserves far more attention given the broad physiological
implications and pathophysiological repercussions of this
“metabolic hormone” in the CNS homeostasis (54). This is simply
attested by clinical evidences that document neurodegeneration
and cognitive deterioration in hyperinsulinemic/insulin-resistant
subjects even under normal glycemic levels (55) and by the
experimental demonstrations of insulin receptor derangement
and the ensued catastrophic neuronal starvation upon
streptozotocin (STZ) intracerebroventricular administration
(56). We and others share the view that insulin axis failure
and the subsequent glucose hypometabolism are reminiscent
of neuronal pro-senescence traits and accordingly a cerebral
pro-aging condition. Thus, LOAD may represent a particular
form of “uncompensated” (57), precocious, and pathologic
organ-specific senescence supported by a dysmetabolic base. As
a matter of fact, IR, glucose hypometabolism, oxidative stress,
mitochondrial dysfunction including PGC-1 underexpression,
Aβ accumulation, mitochondrial and nuclear DNA damage, and
cognitive decline are hallmarks of both cellular senescence and
organismal aging (58). The molecular drivers bridging cerebral
aging with AD initiation and progression were exhaustively
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reviewed by Mao and Reddy (59). Yet this is an area of intense
debate and investigation given the fact that some studies
demonstrate that Aβ deposition is not a sine qua non for
hypometabolism and cognitive decline (60, 61).

Returning to insulin discussion, as excellently reviewed by
Kandimalla et al. (54), its role in the brain goes far beyond the
control of glucose uptake and utilization for energetic purposes.
The hormone is endowed with pro-survival, trophic, and anti-
apoptotic effects, thus promoting neurite growth and axonal
regeneration. Via the agonistic stimulation of the PI3K/Akt/GSK-
3β pathway, insulin prevents Aβ intraneuronal accumulation and
modulates Tau metabolism. Of note, insulin is also bestowed
with an anti-inflammatory effect that may even attenuate the
hyperglycemia-mediated inflammation (62, 63). In general terms,
insulin along with the broad intracerebral distribution of its
receptor may act as a sort of cerebral safeguard for global
neuronal physiology and healthy mental processes like behavior,
emotions, cognition, learning, and memory (64–69).

Among the mechanisms analogous shared by T2DM and AD,
it is the peripheral impaired insulin signaling that may account
for brain IR in AD (9). Members of the c-Jun N-terminal kinase
(JNK) family of MAPK have recently emerged as important
players in AD, not only because of their increased phosphorylated
expression in human postmortem brain samples and its positive
co-localization with Aβ (70) but also because of their role
in mediating degeneration and apoptosis in the brain, not to
mention its hindrance over the neuronal insulin axis physiology.
AD assembles multiple stressor factors that are known to activate
JNK pathway as oxidative stress, Aβ accumulation, neurotrophic
deprivation, and proinflammatory cytokines such as tumor
necrosis factor alpha (TNF-α) (71). JNK activation, driven by
either free radicals or proinflammatory cytokines, results in
IRS-1 serine phosphorylation (Figure 1) blocking downstream
insulin signaling. The ensued IR entails not only a glucose-related
energetic dyshomeostasis but also the central depletion of one
of the major neurotrophic factors, which account for neuronal
vulnerability and the amplification of JNK pathway activation.

Hegde et al. (72) have enriched the concept that
hyperinsulinemia and IR are integral pieces of the AD
pathophysiology conundrum and that hierarchically speaking,
the latter may simply be a consequence of the former (73).
Above all, these insulin impairments collectively translate
in the collapse of glucose homeostasis leading to cerebral
hypometabolism, neuronal damage, and cognitive deterioration
(72). Foundational (74) and subsequent studies [for review, see
(75)] have documented the remarkable variety of biochemical
outcomes associated with the interaction of insulin with
its receptors. Nonetheless, chronic exposure to insulin or
to high insulin levels, globally speaking, desensitizes the
receptor, blocking the response to insulin (73). Addressing
this problem within the AD pathology, it is known that
peripheral hyperinsulinemia is followed by an impaired
signaling process within the brain (76), which accounts
for the subsequent activation (dephosphorylated form) of
GSK-3β, thus amplifying IR, amyloid β accumulation, and
hyperphosphorylated Tau accumulation (77, 78). Conclusively,
neuronal starvation, bioenergetic failure, and neurotoxic

amyloid accumulation may be among the primary consequences
of hyperinsulinemia-mediated impairments via IR.

Multiple experimental approaches involving the
aforementioned AD-related factors rendered convincing
evidences supporting the concept that JNK activation may
account for cerebral IR [reviewed in (9)]. In line with these
evidences, mitochondrial dysfunction has also emerged as
an essential research target of the AD neuronal energetic
collapse (32) as discussed below. Irrespective to what may look
controversial across the history of findings, inhibition of tyrosine
residues phosphorylation may signify a hierarchal event for the
insulin receptor “loss-of-function” phenotype (79), which may
play a crucial pathogenic role in AD (80) and account for a
neurodegenerative process.

Despite the differences in the origin of the disorders, in their
proximal triggers, as in the individual risk factors for the two
most important clinical forms of AD, both eventually deteriorate
patients’ cognitive and behavioral abilities in a similar manner
(81). Yet it is likely that IR holds a different chronological and
hierarchal position in the pathogenicity tree for each of the forms.
We therefore share the Correia notion that IR remains as the
most notable and primary nosogenic candidate within the core
of the LOAD neurodegenerative cascade (82). Simply said, from
the IR master switch position, a downstream pathophysiological
cascade may be turned on, eliciting irreversible and unstoppable
degenerative events, via secondary drivers as Aβ, Tau, and
oxidative stress. All these drivers are integrated in perpetuative
and forward loops (83). For the familiar form, however, we
point to its numerous mutations that convergently yield errors
in APP proteolytic processing, rendering neurotoxic Aβ products
that, in synergy with Tau, trigger a downstream series of
neurodegenerative events in which inflammation, oxidative, and
IR cooperatively participate [for review, see (84)].

Since LOAD is considered by some as type 3 diabetes (85),
and given that metabolic memory is the steering wheel toward
irreversible multiorgan diabetic complications (86), including
a progressive cognitive decline (16), it is alluring to examine
how diabetes-like epigenetic-derived signatures are implicated
in the perpetuation of the multiple pathogenic events of AD.
More precisely, are the molecular drivers of metabolic memory
acting in extracranial structures (87) pathogenically involved
in central IR-associated neurodegenerative diseases? As smartly
poised by de Felice et al., an assortment of challenging pieces still
wait for clarification: (1) How does peripheral IR impact brain
metabolism? (2) How do peripheral insulin level oscillations
impact cerebral cells metabolism? (3) How do peripheral IR-
derived metabolic disorders progressively yet silently impact the
brain? (4) Is there a brain neuron subpopulation intrinsically
more susceptible to develop LOAD or any other form of
dementia upon peripheral IR? (88).

MAJOR NOSOGENIC MECHANISMS

Without the ambitious expectancy to discern a sequential
hierarchic pathogenic responsibility, and following the
conception of AD as a primary organ-specific, diabetes-like
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FIGURE 1 | Putative mechanistic model of insulin resistance via c-Jun N-terminal kinase (JNK) activation. This simplified putative model describes JNK activation

pathway as a phosphorylation target of a variety of extracellular stimuli, e.g., proinflammatory cytokines as well as intracellular stimuli, oxidative stress, and oxidized

mtDNA. Upon activation, phosphorylated JNK promotes direct serine phosphorylation of insulin receptor substrate protein IRS1, thus causing a defective IRS1

tyrosine phosphorylation and reduced phosphatidylinositide 3 kinase (PI3K) and AKT signaling in response to insulin receptor activation. Phosphorylation of serine

residues inhibits the interaction of IRS1 with the insulin receptor, thereby blocking the response to insulin. Being applicable this model for neuronal IR would lead to

disastrous consequences for most of the cellular stirpes within the brain. JNK activation by ROS-free radicals, Aβ, and hyperphosphorylated Tau promotes the

transcriptional expression of proinflammatory cytokines, which in turn may enhance the production of ROS, the mitochondrial dysfunction, and the accumulation of

neurotoxic Aβ+p-Tau, which ultimately enhance IR. Similarly, RAGE activates the transcription of proinflammatory products. A putative vicious circle would

presuppose that ROS spillover within the mitochondrial environment amplifies inflammation, impairs, and damages OXPHOS enzymes and provoke mtDNA

damages/mutations. These events ultimately synergize and amplify IR and neuronal energetic collapse, leading to the organelle fragmentation. Accordingly, the pool of

dysfunctional and fragmented mitochondria will induce neuronal demise.

disease, we review the pathogenic involvement of central
inflammation, neurotoxin accumulation, and mitochondrial
dysfunction as critical nosogenic drivers adjacent to IR/insulin
dysfunction and brain energetic dyshomeostasis.

Role of Inflammation
A wealth of evidences have emerged to link peripheral
(89) and central inflammation with IR, cerebral energy
hypometabolism, and neurodegenerative diseases, including
AD (67, 90, 91). Conceptually, the brain is susceptible to
a potential double hit interconnected inflammatory loop:
a centrally originated neuroinflammatory response; and a
systemic, peripheral cytokine storm that may invade the brain
parenchyma once the BBB is breached. Diverse studies highlight
elevated proinflammatory cytokines, chemokines, acute phase
reactants, and other inflammatory molecules in the circulation

of AD patients, with some of these cytokines as interleukin-
6 (IL-6), positively associated with cognitive decline and AD
progression (92). Moreover, in this context, IR is a constant
phenotype. Accordingly, this cytokine-induced IR is derived
from neuronal insulin signaling deficiency, which is ensued by
mitochondrial functional demise, thereby originating a vicious
circle inflammation-oxidative stress that catalyzes neuronal
energy failure (32, 69).

Cytokines drive neuroinflammation in every respect
(Figure 2), (93). IL-1, IL-6, TNF-α, and transforming
growth factor beta (TGF-β) are pathogenically involved in
AD neuroinflammatory process, which entails insulin axis
failure and, consequently, cerebral glucose hypometabolism.
Although the expression of these cytokines is induced by
the presence of Aβ peptide, they are also promote the
accumulation of Aβ peptide. Altogether, these cytokines are
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FIGURE 2 | Central neuroinflammation and consequences. Increased levels of peripheral and CNS of proinflammatory mediators support the key role of inflammation

in AD pathology. Priming of glial cells to mount a protracted proinflammatory phenotype is a critical event that seems linked to aging, circulating peripheral cytokines,

ROS, and neurotoxic amyloid β accumulation. Cross talk between microglia and astrocytes leads to the generation of proinflammatory/neurotoxic astrocytes, which

further enhance the production of inflammatory cytokines and chemokines leading to a detrimental gliosis and astrocytosis in which, for instance, central IR and

neurotoxic β amyloid accumulation are intensified. Under these conditions, mitochondrial function is further impaired, and consequently, free radicals are

over-produced. Dysfunctional mitochondrial clearance is impaired. The central proinflammatory environment accounts for the amplification of this series of interrelated

events eventually leading to progressive energetic collapse and neuronal and synapsis loss. The inflammatory cascade may become intensified when glial cells are

further activated by the presence of released DAMP ligands, for instance, oxidized mtDNA, neuronal sequestered antigens, and accumulated β amyloid. In general,

the disease is perpetuated by the interconnection of different pathogenic vicious circles, which amplify each to another.

considered as key players of a vicious circle perpetuating
AD (94). The interconnected relationship involving central
inflammation/cerebral glucose metabolism/cognition has been
documented by the intracerebroventricular administration of
STZ to otherwise normal animals (54). Intracerebroventricular
injection of STZ is associated with an intense astrogliosis
and neuronal inflammation, alterations of the brain insulin
system, decrease in glucose utilization, oxidative stress, and
ultimately progressive learning and memory deficit (95).
Other animal studies have enriched the pathogenic link
embracing inflammation-cognitive impairment. APP/PS1
double transgenic mice grafted with gut microbiota from AD
patients exhibited intestinal elevation of NLRP3 inflammasome
and systemic circulating inflammatory mediators. This
peripheral inflammatory reaction with concomitant cognitive
impairment was associated with activation of microglia in

the central hippocampus and increased expression of local
neuroinflammatory biomarkers (96).

Microglia, astroglia, and perivascular macrophages are major
cellular levers of neuroinflammation via the innate immune
system (97). These cells have a common characteristic of being
largely glucose consumers that become reactive upon peripheral
injury or systemic metabolic stress, thereby increasing the
paracrine production of proinflammatory cytokines. “Microglial
cells represent the immune system of the mammalian brain”
and consequently are critically involved in various diseases.
Activation of microglia is a hallmark of central inflammation and
conceivably of brain pathology (98). Microglial cell reactivity, via
the establishment of a local cytotoxic milieu, impairs neuronal
homeostasis. Interestingly, single-cell transcriptomics studies
showed that inflammatory gene expression can progressively
switch according to the disease state and to the proximity of the
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Aβ (99). Again, early inflammatory activation by MAPK and the
JAK-STAT pathways appeared in microglial cells even before Aβ

deposition (100, 101).
Integrative mathematical models support the pathogenic role

of microglial cell activation and reactivity. Models based on
“differential rate equations” that represent cellular cross talks
(involving microglia, astroglia, neurons, and Aβ) have indicated
that the microglial inflammatory activation acts as a sort of
“key node” for progressive neurodegeneration. Accordingly, the
model proposes microglial reactivity as a potential target for the
prevention and treatment of AD (102).

Soluble Aβ oligomers bind to microglia and fibrils via toll-
like receptors (TLR2, TLR4, TLR6, and TLR9), which are
essential components of the innate inflammatory cascade (103).
Letiembre et al. offered the first evidence for a role of the
key innate immune receptor TLR4 in neuroinflammation in
AD by demonstrating that TLR4 contributes to Aβ peptide-
induced microglial neurotoxicity (104). Activated microglia
and hypertrophic reactive astrocytes accumulate around Aβ

plaques, as observed in postmortem human AD tissue (105)
as in animal models (106). Persistently activated microglia
releases proinflammatory cytokines that contribute to exacerbate
Aβ and/or Tau-associated pathology (107). Microglial cells
neighboring Aβ plaques in AD patient brains are a source of
IL-1β, which is in correspondence with the in vitro finding that
the cytokine appears to be released by activated microglia after
stimulation with Aβ (108). Furthermore, microglial cell-derived
IL-1β favors astrocyte activation and astrocytic overexpression
of S100B and Aβ expression and deposition by modulating APP
expression and proteolysis (109, 110).

Activated microglia has been found near neurofibrillary
tangle (NFT)-bearing neurons (111). Phagocytosed Tau induces
inflammasome activation inside microglia, causing overactive
microglial state, which could be one of the mechanisms that
promote the constant inflammatory response in AD (112).

Another pathogenic stream links a failure of the mitophagy
process with the onset of a central inflammatory reaction.
As described by Fang et al., a failure in purging defective
mitochondria plays a definitive pathogenic role in AD. Hence,
mitophagy poises as a potential therapeutic intervention
to ameliorate neurodegenerative diseases via reduction of
inflammation (113). Different observations suggest that during
chronic neuroinflammation, microglia become incompetent
for Aβ plaque clearance (114). Consequently, induction of
mitophagy mechanisms to clear diseased and Aβ-overloaded
mitochondria reduces neuroinflammation (114).

Increased levels of microglia-derived cytokines as interferon
gamma (INF-γ), IL-1β, IL-6, and TNF-α induce astrocytes to
adopt a classical activation state (115), being predominantly
subclass A1 astrocytes. Although glial activation can occur
independent of Aβ stimulus, it is likely that interaction of
Aβ with astrocytes is largely responsible for the induction
of a pro-inflammatory profile and astrogliosis (116). Under
these circumstances, the beneficial properties of astrocytes are
lost given the continuous reactive gliosis and the brain injury
propagation (91). Astrocytes may therefore fail in Aβ plaque
phagocytosis and secretion of different Aβ-degrading proteases,

which may increase amyloid pathology, inflammation, and
neuritic atrophy (117). Astroglia atrophy may have far-reaching
consequences for synaptic connectivity, thereby contributing to
cognitive deficits (118). Activated astrocytes produce TNF-α,
which amplifies inflammatory demyelination. These astrocyte-
induced proinflammatory mediators have shown to produce
synaptic disturbances and neuritic dystrophy in different
AD mouse models. The astrocyte-derived proinflammatory
mediators may ultimately amplify Aβ pathology by alterations
in the homeostasis of APP processing (119). Astrocytes are
also implicated in calcium extra-synaptic glutamate receptor
activation and glutamate excitotoxicity, which accounts for the
generation of reactive oxidative species and neuronal oxidative
stress (120). Again, Figure 2 outlines the main damage pathways
of neuroinflammation.

Of paramount significance is that most of these inflammatory
mediators activate the JNK pathway, which definitively
contributes to uncouple insulin signaling (121). Mice fed
with polyphenolic anti-inflammatory diet agents exhibited an
ameliorated cognitive performance (122), which emphasizes the
pathogenic role of neuroinflammation in cognitive degeneration.
An exciting work provided by Clarke et al. showed that
intracerebroventricular administration of AD-associated Aβ

oligomers in mice elicited peripheral glucose intolerance.
Conversely, blockade of the Aβ and the endoplasmic reticulum
(ER) stress reduced neuroinflammation and attenuated
peripheral glucose intolerance. These findings indicate that
peripheral tissue glucose resistance is centrally evoked by
Aβ oligomers (123). The oligomer-induced neuronal IR is
mediated by TNF-α activation via JNK pathway with the
ensued insulin receptor inhibition, which has major negative
impact on synaptic function, synaptic plasticity, and synaptic
connectivity (124–127). This TNF-α counter-insulinic effect, in
which the insulin receptor becomes inactivated by increasing
the inhibitory phosphorylation threshold of the IRS1, has
been broadly described in diabetes (128) and in neurons
presenting Tau-pathology and NFT (129). These IRS inhibitory
phosphorylations described in AD patients’ brains and transgenic
mice lead to IR states (34), memory declines, and cognitive
impairment (130).

The multiligand receptor for advanced glycation end products
(RAGE), member of the immunoglobulin superfamily and able
to bind a heterogeneous group of ligands, is involved in a
horizon of physiological settings and pathological realms. RAGE
therefore is a pathogenic leverage in proinflammatory, oxidative,
and degenerative processes like AD (131). Increased RAGE
immunoreaction has been detected on microglia and neurons of
the hippocampus, entorhinal cortex, and superior frontal gyrus
from AD individuals.

RAGE agonistic stimulation by the cognate ligands is
associated with proinflammatory and prothrombotic events
with the ensued upregulation of chemokines, free radicals, and
proinflammatory cytokines (132). Of major significance for AD
neurodegeneration pathology is that RAGE binds Aβ peptide
with high affinity, which is supported by its ability to rapidly
transport brain-derived Aβ into the peripheral circulation (132).
The noxious duet of Aβ-RAGE develops a positive forward
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circuitry in which microglial activation enhances the expression
of macrophage colony-stimulating factor (M-CSF) and RAGE,
possibly triggering a spiral of cellular activation (133). Ghidoni
et al. have documented reduced levels of circulating soluble
RAGE in patients withmild cognitive impairment. Soluble RAGE
could therefore prevent Aβ neurotoxicity and stimulate Aβ

clearance from the brain, consistently accentuating the role of the
RAGE axis in AD pathogenesis (134).

Conclusively, neuroinflammation stands as a crucial
pathogenic driver in the pathogenesis of AD. The intricate
cascade of both central and potential peripheral inflammation
accounts for the inability of the insulin receptor signaling, which
in turn leads to neuronal energy dyshomeostasis. The activation
of JNK pathway is likely at the crossroad between inflammation
and insulin axis impairment. The central gliosis generated
further amplifies inflammation with the ensued consequences
of IR, energy dyshomeostasis, oxidative damage, and finally
the eventual neuronal bankruptcy. Central inflammation
is also linked to mitochondrial dysfunction; accumulation
of neurotoxic amyloid material, which obviously increases
mitochondrial functional demise, DNA, and protein oxidative
damage; and a failure of glial cells in purging the environment of
wrecked mitochondria (mitophagy).

Amyloid Beta, Hyperphosphorylated Tau,
and Insulin Resistance in Alzheimer
Disease
Aβ peptide 42 (Aβ42), Aβ40, and Tau phosphorylated at
threonine-18 are considered active nosogenic players in the core
of AD pathology. Accordingly, the deposition of extracellular
aggregated Aβ, along with hyperphosphorylated Tau, and
intracellular NFTs are identified as histopathological hallmarks
of AD (135, 136).

The perilous combination of Aβ and hyperphosphorylated
Tau, directly and indirectly, causes a complex and ample
neurotoxic damage explosion that impairs chemical
neurotransmission, axonal transport, and ATP synthesis-
energy availability, eventually concluding in synaptic loss and
cognitive deterioration (137). The parenchymal accumulation
of amyloidogenic material is perhaps the most distinguishing
histopathological feature of AD and the base of its clinical
expression (138). Aβ derives as a by-product of an aberrant
processing of APP by two main enzymes: β and γ secretases;
moreover, native APP appears to act in facilitating the processes
of memory and learning via synapses and dendritic spine
formation (139). Aβ peptide derived from the proteolytic
processing is basically released to the extracellular space in
health conditions during neuronal activity, whereas its levels
are controlled by local proteases. Errors in the cleavage position
may lead to the increase of the Aβ1–42 neurotoxic isoform,
which constitutes aggregates that spread the parenchymal
neuropathological damage (140). Neurotoxic Aβ intracerebral
administration is associated with a memory deficit reminiscent
to that observed in AD patients. These memory and learning
deficits are related to synaptic plasticity disruption via the
intraneuronal accumulation of Aβ (141). A parallel lane of

Aβ-mediated neuronal damage is related to the immune-
inflammatory activation triggered in glial cells leading to
neuronal and synaptic structure phagocytosis (142, 143). Thus,
Aβ intraneuronal accumulation is poised as a central driver for a
variety of synaptopathies.

Aβ metabolism is impacted by insulin and the threshold
of insulin receptor sensitivity, whereas, conversely, Aβ

interferes with insulin binding to its receptor and the expected
biological response. To briefly exemplify this assertion, a
failure in insulin receptor and/or its accessory substrates
proteins (IRS) aborts Akt phosphorylation as the downstream
inactivating phosphorylation of GSK-3β. Accordingly, this
non-phosphorylated state of GSK-3β exhibits proinflammatory
effects, obstructs glucose clearance, increases the accumulation
of Aβ via presenilins, and promotes Tau phosphorylation within
NFTs [for review, see (144)]. Contrariwise, insulin contributes to
the extracellular excretion of Aβ and to its enzymatic degradation
via the insulin-degrading enzyme (IDE) (145). Nevertheless,
insulin per se is a preferential substrate for IDE acting as
a competitive inhibitor for the enzyme, thereby indirectly
promoting Aβ accumulation (146). Of note, autopsy processing
of AD-derived brain samples has shown a reduction of the
IDE activity, which was considered a meaningful risk factor for
AD (147).

Interestingly, Aβ oligomers that accumulate inside cells can
subsequently spread its pathologic message to normal healthy
neurons via exosomes, promoting a variety of neurodegenerative
changes (148). This finding implies that exosomes may act
as potent, soluble pathology vectors in AD and offers the
opportunity to investigate its potential pathogenic similitude
with the role played by the senescence major messenger, the so-
called “senescence-associated secretory phenotype” (SASP) (149).
Of note, metabolic dysfunction is an organismal driving force
for aging and a senescence hallmark (150), with meaningful
repercussion in diabetes via the vicious cycle embracing
mitochondrial/metabolic dysfunction + free radicals spillover+
telomeric integrity (151). These disperse pathophysiology pieces
represent a constellation of commonalities between T2DM
and AD.

In pathogenic tandem to Aβ is Tau, which is responsible
for neurodegenerative events by the production of NFTs,
which ultimately harm neurons and synaptic connections
(152). Neuronal microtubules and cytoskeletal assembly are
largely accomplished by Tau proteins (153). Having said that,
it is inferable that abnormalities in Tau-cytoskeletal system
bring about filament aggregation, synaptic transmission
failure, and ultimately neuronal demise (137). Tau protein
hyperphosphorylation disassembles microtubules and
elicits a variety of cytoplasmic and axonal damages that
conclude in neuronal death (154). Tracking the regional
pattern of Tau-induced cerebral damages suggests that its
pathology disseminates in a prion-like manner, ultimately
leading to progressive cognitive deterioration (155). Tau
hyperphosphorylation is also a collateral consequence of
cerebral IR (156), whereas insulin oligomers are retained
by hyperphosphorylated Tau (157), thus hampering
insulin activity.
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TABLE 1 | Summarized synaptic damages associated with Aβ toxicity and

hyperphosphorylated Tau.

Amyloid β Hyperphosphorylated

Tau

Synaptic structural and

functional damages

◦ Synaptic plasticity

impairment (165, 166).

◦ Synaptotoxic effect

(167) with ultrastructural

synaptic damage.

◦ Synaptic loss,

destruction of axons,

and dendrites (168).

◦ Synaptic transmission

failure (169).

◦ Neuronal hyper

excitability and eventual

death (170).

➢ Mediates Aβ

postsynaptic and dendrites

toxicity/damage (160).

➢ Accumulates and harms

dendritic compartments

(171).

➢ Impairs glutamate

receptors, synaptic

trafficking, and postsynaptic

physiology. Ultimate

neuronal

degeneration/death (172).

Here is a summary of the major damages brought about A-beta and p-Tau.

Although the amyloid accumulation and the Tau
hyperphosphorylation have nurtured classic pathogenic
AD hypothesis, the identification of a primary mechanistic
connection and a nosogenic hierarchic order between Aβ and
Tau has been difficult so far (158, 159). Nonetheless, they appear
to act together in an inter-perpetuative manner. Aβ and Tau
toxicities are linked stressors in the core of AD pathophysiology
as shown by transgenic mouse models, which poise Tau as
an additional force, amplifying Aβ pathogenicity within the
postsynaptic environment and the dendritic spines (160).
Furthermore, Aβ oligomers from AD brain extracts increase
Tau phosphorylation, whereas the mechanisms mediating
this hyperphosphorylation state drive to Aβ accumulation
(161, 162). They both eventually disturb the insulin axis
function, leading to IR and further Aβ and Tau-mediated
pathology (163). Again, the onset of a vicious circle is established
between the insulin signaling system and these two synergistic
neurotoxic ingredients.

Although Tau localization from the soma to the dendrite
can be influenced and modified by intrinsic and extracellular
factors, Tau pathology is compellingly associated with cognitive
impairment in AD and other forms of dementia [for review,
see (164)]. Having summarized general elements of the Aβ and
the hyperphosphorylated Tau in a rather simplistic manner, we
will briefly outline their pathogenic involvement in neuronal
synapses and neurotransmission (Table 1). The foremost
concepts of Aβ and hyperphosphorylated Tau in synaptic
and neurotransmission pathology were comprehensively and
exquisitely reviewed by Rajmohan and Reddy (137).

That (1) synaptic and dendritic damages and
neurotransmission alterations are underlying forces driving
to loss of connectivity, memory deficit, cognitive impairment,
and dementia in general (137, 173, 174); (2) large experimental
data have been accrued the relevance of insulin axis for the
neuronal physiology and survival (6); and (3) the tremendously
negative impact of brain insulin axis bankruptcy in aging
and AD brains (6, 175, 176) judiciously vindicate insulin

interventions as an avenue to mitigate AD progression
and ultimately reduce cognitive impairment. Converging
data from animal models indicated that insulin treatment
attenuated hypometabolism, improved spatial memory, reduced
inflammation, and significantly diminished amyloidogenic
accumulation and Tau hyperphosphorylation (177, 178). These
data are validated by proof-of-concept studies that suggest an
improvement in brain glucose metabolism, as in the spheres of
memory and cognition (179–181).

Taken together, these data reinforce the notion that a finely
and steadily controlled tuning of the insulin axis is crucial
for normal neuronal metabolism and accordingly of amyloid
and Tau processing, recycling, and disposal. Central and/or
peripheral factors leading to failures in the insulin axis control
system with the subsequent aberrations in glucose processing
may be sufficient to elicit other nosogenic effectors in AD (137).

The Role of Mitochondria
More than 90% of the body’s cellular energy is generated
in mitochondria by oxidative phosphorylation. Concomitantly,
mitochondria are also the major manufacturing plant of
reactive oxygen species (ROS) via the electron transport
chain. Therefore, ATP and its by-product ROS are crucial
performers in most physiological and pathological processes,
which unquestionably emphasize the evolutionary significance
of the organelle (182, 183). Mitochondria are responsible for
broad regulatory functions in embryonic and postnatal life in a
full spectrum of cells, tissues, and organs via oxidative balance,
calcium homeostasis, and programmed cell death (184).

As already mentioned, brain IR prevails in AD and other
neurodegenerative conditions via insulin receptor desensitization
through IRS1 inhibitory phosphorylation (185). In this scenario,
mitochondrial dysfunction in neurodegenerative pathologies
is not a fortuitous event. Mounting evidences have begun
to elucidate what the missing links are, connecting IR and
mitochondrial failure in cerebral (186) and extracerebral tissues
(187). Illustratively, overexpression of PGC-1α, the master
controller of mitochondrial biogenesis and metabolism (188),
rescues both insulin signaling and mitochondrial bioenergetics
in skeletal muscle cells, poising it as the link between insulin axis
functions and mitochondrial homeostasis (189). PGC-1α levels
are found to be in a negative balance in the brains of patients
with neurodegenerative conditions, which is reasonably ensued
bymitochondrial dysfunction and oxidative stress (190, 191). The
biological preservation of PGC-1α expression has been invoked
as a preventive factor for the generation of Aβ peptides (192) as
to ameliorate neuronal loss and improve neurological symptoms
(193). Whether PGC-1α activation may prophylactically prevent
the metabolic havocs mediated by JNK activation pathway in
neuronal cells remains to be examined.

Thus, the concept of brain hypometabolism encircles the
insulin axis physiology and the complete set of mitochondrial
oxidative operations. Hypometabolism is a mitochondria-related
event (194).

Although the brain is only 2% of total body mass, this
organ operates with 20% of the oxygen and 25% of the glucose
economy, thus demonstrating its high-energy requirements
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(195). Neurons are broadly dependent on mitochondrial activity
and energy production (195). Furthermore, neuronal energetic
homeostasis depends upon functional mitochondria to cope with
their high-energy demands, especially for synaptic processes.
Contrariwise cerebral mitochondria functional collapse impairs
memory function and translates in an ensemble of degenerative
events (32). The pathogenic role of mitochondria is so clinically
meaningful that it has been stated that its damage intensity
and extension somewhat correlate with the course of the
disease (196). Accordingly, mitochondrial functional impairment
and energy dysmetabolism foster cognitive and working
memory deterioration (197). Growing evidence demonstrates
that maintaining mitochondrial bioenergetic function could
prevent these age-dependent alterations (198).

Mitochondria are also committed to provide the fuel for a
variety of ATP-dependent neuronal processes encompassing
from synaptic transmission to neurotransmitter reuptake.
Conversely, reduction of mitochondrial performance in
ATP synthesis is the core of the molecular havoc that spans
from calcium and synapsis dyshomeostasis to neuronal
apoptosis (196, 199).

The underlying pathogenic involvement of mitochondrial
dysfunction has been extensively documented in AD, including
both the early-onset familial and late-onset sporadic forms of the
disease (196, 200, 201). A collection of exciting findings shed light
on the pathogenic involvement of mitochondrial dysfunction
in age-related neurodegenerative processes, AD pathology and
Parkinson’s disease (202, 203).

Brain ultrastructural electron microscopy images dated more
than four decades ago provided the inaugural evidences of
mitochondrial morphological abnormalities in AD. Thus, the
primary differences on mitochondrial structures were established
for AD subjects and healthy-age-matched control subjects.
The ultrastructural pathology of these mitochondria describes
the organelle as smaller or dilated, shrunken and fragmented
and with misshapen broken cristae. Overall mitochondrial
size appeared reduced (204). Other studies indicated similar
ultrastructural modifications in AD’s brain vulnerable neurons
in terms of significant size reduction and other alterations
indicative of mitochondrial dynamics faults (205). In line
with this, an aberrant distribution of mitochondria was
found in pyramidal neurons of AD-affected individuals where
mitochondria appeared redistributed away from axons (206).

Above all, a major pathogenic mainstay for LOAD-affected
brain resides in fuel deficiency, particularly for glucose (207).
Fluorodeoxyglucose positron emission tomography (FDG-PET)
data definitively documented that there was a deficit in glucose
utilization by the brains of AD patients. Abnormal cerebral
glucose hypometabolism is a high sensitivity and a high
specificity indicative of AD.

Albeit evidences that hypometabolism can be detected and
predict at-risk individuals years before the symptoms onset, it
remains elusive which are the etiopathogenic drivers underlying
this pervasive process (208, 209). Thus, there is a subsisting
debate on “who-precedes-who” between glycolysis impairment
and mitochondrial dysfunction. The solid truth is that there is
an underlying defect in cerebral glucose uptake and subsequent

metabolism (210). Seminal PET studies indicated that cerebral
glucose uptake and its subsequent transformation to glucose-
6-phosphate by hexokinase is deficitary in AD (211). It was
subsequently shown that several other glycolytic enzymes are
also perturbed since the very early pre-symptomatic stages
of AD (212), which seems to stimulate a cerebral metabolic
reprogramming in search for other energy sources as ketone
bodies to overcome glucose hypometabolism (207). Nonetheless,
recent outcomes have indicated the existence of an initial
stage of reactive cerebral glucose hypermetabolism prior to
hypometabolism, for AD and other neurologic disorders in
brain-specific areas (213).

Another neuronal hypometabolism arista is based on the
negative consequence of the primary hyperinsulinemic spikes
with resulting brain functional implications. Hyperinsulinemia,
regardless of stimulating peripheral lactate production, hampers
its neuronal availability and utilization by limiting its flux
across the BBB (214). Once again, converging evidences portray
how prolonged exposure to hyperinsulinemia downregulates the
insulin receptor in critical cerebral cell lineages as glial cells,
thus reinforcing the nexus between AD and T2DM and the
contribution of insulin receptor “desensitization” with neuronal
hypometabolism (215, 216).

Hypometabolism is a bona fide pre-symptomatic AD marker
and is observed in scenarios including presenilin-1 mutation,
apolipoprotein E4 subjects, and maternal AD background and
in unrelated-to-age IR. As broadly described, central IR will
certainly attain reduced brain glucose utilization, impaired
cognitive performance, and white matter microstructural
damages (217).

In other processes in which cognition declining is a sort
of hallmark, like polycystic ovary syndrome, IR and white
matter microstructural changes have also been identified (217).
Furthermore, subjects undergoing prediabetes and diabetes
exhibit cerebral hypometabolism and cognitive and visual
memory impairments, which significantly correlate with smaller
volumes of the brain (218). In line with this, hypometabolism
appears doubly amplified in those cerebral AD-affected regions
in individuals with T2DM as compared with non-diabetic
controls (219). Taken together, all these pathologies are
pathophysiologically bridged by a primary and major failure in
glucose uptake and its posterior glycolytic transformation, which
accounts for regional cerebral hypometabolism. Nonetheless, IR
and hypometabolism are necessarily and significantly connected
to mitochondrial dysfunction (203).

Accordingly, aerobic glycolysis appears to be an evolving
biomarker of AD susceptibility, specifically for those brain
regions in which Aβ deposition predisposes to a glucose
metabolic rate beyond the physiological limits, which is
irrespective to oxygen flow for ATP generation (220, 221).
These studies inaugurated an era in which a myriad of
researches judiciously focused on the role of glucose metabolism,
mitochondrial enzymes, and OXPHOS.

AD transgenic mice and age-matched non-transgenic controls
had evidenced decreased mitochondrial respiration, decreased
pyruvate dehydrogenase (PDH) protein level, and activity
along with increased oxidative stress as early as 3 months
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of age. Mitochondrial Aβ level was significantly elevated
at 9 months. Embryonic neurons obtained from AD mice
showed significantly decreased mitochondrial respiration and
increased glycolysis, which mechanistically lines up with the
hypometabolism that precedes AD diagnosis (222). Reports
from the mid 1980–1990s addressed mitochondrial oxidative
activity describing abnormal patterns of glucose metabolism
and oxygen consumption in fibroblasts from AD patients. For
instance, Curti et al. announced that these AD-derived fibroblasts
show a far more acidic intracellular pH than the concurrent
control, a reduction of complex IV cytochrome c oxidase
activity, and a marked susceptibility to chemically induced
oxygen consumption inhibition (223). Furthermore, hybrid cells
(cybrid) demonstrated that AD platelet exhibits a deficit in
cytochrome oxidase, which could be readily transferred to cells
depleted of mitochondrial DNA (mtDNA). Ultimately, cybrid
cell lines proved to recapitulate specific biochemical, molecular,
and histologic AD traits, indicating that an mtDNA-related
dysfunction might be pathogenically involved with AD (224).
Interestingly, these biochemical changes were associated with
abnormal mitochondrial morphology in cutaneous fibroblasts
from LOAD patients, where they become significantly stretched
and formed a highly meshed network (225). This is a meaningful
message that again reinforces the notion that those AD-related
mitochondrial changes are not a brain-limited episode but
an alteration of energy metabolism homeostasis expressed in
multiple tissues (226). A confirming finding was also made more
than 20 years ago in PD patients’ cutaneous fibroblasts. The
mitochondrial bioenergetic changes observed in these PD skin
cells and comparable with those from AD patients indicate that
PD is not restricted to degenerating dopaminergic midbrain
neurons but that, instead, these are hints of an early bioenergetic
failure of extracerebral cells (227).

Other studies have described reduced activity of critical
enzymes in energy metabolism, which may account for a
primary ATP deficit [reviewed in (226)]. AD and other
neurodegenerative conditions share a significant reduction of
α-ketoglutarate dehydrogenase complex (228). These findings
were further confirmed and extended when autopsy-collected
brain samples displayed considerable reduction rates of PDH
complex, isocitrate dehydrogenase, and the α-ketoglutarate
dehydrogenase complex. On the contrary, the activity of
succinate dehydrogenase (complex II) andmalate dehydrogenase
appeared increased. Importantly, these enzyme changes proved
to have a tremendous clinical correlation, thus ratifying
the impact of mitochondrial alterations for neuronal health
(229). Similarly, using postmortem AD brain samples, Mauer
et al. demonstrated the remarkable reduction of oxidative
phosphorylation rates, particularly in cytochrome oxidase
activity. This finding was highly appreciated as indicative of brain
metabolic bioenergetics dyshomeostasis (230).

The results derived from the global microarray analysis
conducted by Reddy et al., analyzing 11,283 cDNA clones from
the cortex of APP transgenic mice at three age periods, concluded
that genes related to mitochondrial energy metabolism and
apoptosis appeared upregulated, as a compensatory response to
the toxic effect induced by APP. These findings confirm that

mitochondria and cellular energy metabolism are targeted by
the harmful toxicity of Aβ (231). The picture portraying the
failure in energy metabolism-associated enzymes was further
validated in recent years, when it was shown that blood cells
from AD patients exhibited lower expression levels of nuclear-
encoded oxidative phosphorylation (OXPHOS) subunits and
of those involved in the translation of mitochondrial-encoded
OXPHOS (232). Furthermore, mitochondria isolated from AD
triple transgenic mice models exhibit respiratory chain and
phosphorylation system impairment, along with ultrastructural
abnormal changes and oxidative imbalance, which accounted
for a reduced ATP/ADP ratio (233). Other AD transgenic mice
models are also identified by a cerebral impairment in ATP
production related to mitochondrial dysfunction (234). Taken
together, these evidences indicate that mitochondrial OXPHOS
enzymes are largely compromised in AD accounting for a sort of
Warburg-like effect, hypometabolism, and an energetic downfall.

The axonal transport system is responsible for moving
mitochondria in both anterograde and retrograde directions and
to the sites of synapses for an easy ATP provision. This is a critical
event since mitochondria-derived ATP promotes axonal growth,
calcium buffering, and importantly mitochondrial repair and
recycling (235).Microtubules andmotor proteins such as kinesin,
dynein, and the OMMare involved in this axonal transport (201).
Remarkably, these are ATP-dependent processes that demand a
presumably optimal energy metabolism from glucose processing
to mitochondrial-ATP output. A failure in this ATP-dependent
generation process will impair axonal transport, which in turn
drives the accumulation of toxic protein aggregates. Although the
molecular operators behind mitochondrial transport inhibition
in AD remains to be understood, a primary mitochondrial
motility failure is tied to a deregulated fission/fusion rate, as
to other relevant factors such as Aβ accumulation, hyper-
phosphorylated Tau, and oxidative stress (236).

Mitochondria are dynamics organelles, with constant motility,
and shape and size modifications within the cell. Accordingly,
mitochondria exhibit an actual remodeling process influenced
by environmental cues (237). Aging, neurodegenerative diseases,
and stress situations are mitochondrial fragmentation-inducing
factors (238).

As previously mentioned, Aβ fibrils and phosphorylated
Tau tangles are “hallmarks of the disease” with a high
nosogenic character and a shatterproof affinity for mitochondrial
(239). Elegantly reviewed by Chakravorty and colleagues, the
hierarchic position and the chronological window of Aβ and
hyperphosphorylated Tau in relation to AD-mitochondrial
damages are a field of intense and constant debate. There are
evidences that place dysfunctional mitochondria in a pathology
driving position, while other contradictory studies aim to Aβ

and pathogenic Tau as the major forces toward mitochondrial
dysfunction (240). Moreover, AD is a complex and multifactorial
nature-progressive process in which numerous vicious circles
and feedback loops are interconnected and cannot be discarded.
It is known that among the injurious consequences of the
neurotoxic Aβ and Tau duet, impairment of mitochondrial
transport (241), abnormal mitochondrial motility (242), and
intraneuronalmaldistribution are described, especially associated
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with Tau overexpression (243). Furthermore, conclusions derived
from triple AD transgenic mice compellingly emphasize the
synergistic impact of Aβ and Tau in impairing mitochondrial
OXPHOS, hindering ATP synthesis, over-generating ROS,
reducing mitochondrial membrane potential, and altogether
“mutilating” mitochondrial activity (244).

From the perspective of the classic “mitochondrial
cascade hypothesis” (245) for the LOAD form, mitochondrial
malfunction acts as a proximal event that causes Aβ deposition,
synaptic degeneration, and intracellular NFT formation. Indeed,
there are a wealth of studies showing that mitochondrial
dysfunction is a frequent and decisive event in AD (246). The
primary pathogenic role of mitochondria has been further
nurtured in recent years. A crucial study indicated that despite
that an individual’s AD risk is determined by both parents, the
maternal influence is far more profound than the paternal one
(247). Similarly, another study found that platelet mitochondria
cytochrome oxidase (COX) activity was lower in the children of
AD mothers when compared with children of AD fathers (248).
Ultimately, Aβ and pathogenic Tau may drive mitochondrial
damage and dysfunction (240, 249).

Cellular metabolism is definitively impinged bymitochondrial
remodeling including fission, fusion, and cristae modifications
(238). Of note, imbalances between fusion, fission, and
mitochondrial fragmentation are currently considered a major
pathogenic driver and a distinguishable characteristic of AD
and other neurodegenerative disorders (206, 238). These
mitochondrial dynamics alterations in AD are driven by the
activation of fission factors and downregulation of fusion factors
to an impaired process of mitophagy (196). Mitochondrial fission
is controlled by two GTPase genes: Fis1 and Drp1. Fis1 is
essentially localized on the OMM and regulates mitochondrial
fission. Most of Drp1 is localized in the cytoplasm, but a small
part is found in the OMM especially upon activation where it
oligomerizes and encircles the mitochondrion, thereby inducing
fragmentation (250, 251). The pro-fission activity of Drp1
is regulated by phosphorylation, ubiquitination, SUMOylation
and S-nitrosylation processes (252). Drp1 is also involved
in apoptosis induction via BAX and cytochrome c release
(238). Mitochondrial fragmentation is a hallmark of brain and
fibroblasts derived from AD patients (206). This imbalanced pro-
fission state in AD accounts for a reduction in mitochondrial
metabolic surface, which leads to abnormal mitochondrial
connectivity, impaired axonal transport, and importantly to
a bioenergetic collapse. Under these circumstances, neuronal
demise, synapse inhibition, and cognitive decline are the ultimate
consequences (225, 253, 254).

Deeping on the abnormal mitochondrial dynamics in relation
to Aβ oligomers in the AD brain samples, Manczak et al.
succeeded in the seminal demonstration that Drp1 and Fis1
increase with AD pathology evolution and that monomeric
and oligomerc Aβs interact with the pro-fission protein
Drp1 in both human AD and AβPP/PS1 transgenic mouse-
derived samples, which may ultimately translate in the AD
characteristic exaggerated mitochondrial fragmentation and
neuronal demise (237).

Mitochondria are gifted with a powerful quality control
system that assists in mitochondrial and cellular homeostasis.

This system, by mean of continuous surveillance, ensures an
appropriate mitochondrial dynamics, adequate DNA synthesis,
and normal protein folding. Furthermore, the system is
committed to purge the population of wrecked mitochondria by
a selective autophagy pathway, identified as mitophagy (250).
This process of mitochondrial tagging for subsequent recycling
seems to be activated upon the organelle’s structural damaged and
membrane potential fall down (240).

Recent evidences indicate that this process of damaged
mitochondria purging is impaired in AD, which contributed to
the intraneuronal accumulation of dysfunctional mitochondria
(255, 256). In vitro models up to human samples document
that a detrimental process of mitophagy is followed both by
synaptic dysfunction and cognitive impairment by triggering
Aβ and Tau accumulation, which are linked to oxidative
damage and cellular energy deficits. An AD model developed
in Caenorhabditis elegans proved that induction/resumption
of mitophagy reversed the memory impairment. This study
also demonstrated that mitophagy effectively reduced the levels
of insoluble Aβ1–42 and Aβ1–40 and of extracellular Aβ

plaques, via microglial phagocytosis and adjunctively by reducing
inflammation (113). Thus, a reduction in the rates of mitophagy
is an age hallmark and an AD badge, when it is associated with
Aβ and hyperphosphorylated Tau (257).

Martin-Maestro et al. identified that LOAD patient-derived
fibroblasts exhibited the same deficitary mitophagy, along with
an abnormal accumulation of mitochondria, similar to that
described in hippocampal neurons, reaffirming that mitophagy
alterations are a sort of hallmark of sporadic AD (258).

Again, the emblematic AD neurotoxins Aβ and Tau
separately or synergistically attempt against mitochondrial
function, including the processes of autophagy and mitophagy
(241). Aβ progressively accumulates within mitochondria
and impairs a variety of its functions (226, 259). Reddy’s
laboratory has extensively investigated the pathways underlying
the pathogenic impact of Aβ and Tau against mitochondrial
physiology in AD (257). This group demonstrated that Aβ and
hyperphosphorylated Tau impair the normal autophagy and
mitophagy processes by interacting with the mitochondrial
fission protein Drp1 and eventually via the interaction of Aβ

with PINK1/parkin (257). Collectively, mitochondrial functional
collapse is a triggering and/or an exacerbation factor within the
pathogenic chain encompassing IR, energy dysmetabolism,
inflammation, oxidative stress, amyloid accumulation,
and ultimately neuronal death (Figure 3). Pharmacological
interventions addressed to preserve mitochondrial biogenesis
and normal dynamics as to resume mitophagy may open
encouraging therapeutic avenues for AD. (260).

The fact that free radicals may induce about 10,000 DNA
alterations per cell per day (261) explains why oxidative stress
is broadly recognized as a senescence and pathology driving
factor (262). Furthermore, ROS/oxidative stress/mitochondrial
dysfunction and inflammation per se and act as an indissoluble,
interconnected nosogenic unit that links organismal aging,
T2DM, obesity, and AD (263, 264).

Mitochondria, routinely identified as the “powerhouse of the
cell,” are the major generator of members of the ROS family
such as superoxide anion, hydroxyl and peroxyl radicals, and
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FIGURE 3 | Alzheimer’s disease (AD)-driven primary mitochondrial dysfunction. Although it is still debated “who drives who” along the course of molecular events

leading to clinical AD, mitochondrial primary dysfunction is a well-founded hypothesis on the pathogenic cascade of AD. Mitochondrial dysfunction means that

bioenergetic derangement is broad enough to trigger and run through a series of critical pathogenic ingredients of AD. A primary defect on mitochondrial physiology

could arise from damaged mtDNA, deficit or failure of respiratory enzymes, alterations of oxygen uptake and handling, erroneous or insufficient tagging for a proper

organelle purge, etc. The onset of an abnormal mitochondrial function irrevocably leads to neuronal death.

hydrogen peroxide (206, 265–267). Although the intracellular
generation of ROS per se is an inevitable process, cells possess
numerous defense systems to counter it. Furthermore, ROS
are known to play numerous physiological roles under health
conditions including the regulation of cell proliferation, growth
factor receptor signaling, and intercellular communication (268).
ROS overproduction under certain pre-morbid or morbid
scenarios acts as a silent destructive influence that overcomes
cell detoxification mechanisms and engenders and/or amplifies
multiple molecular damage nodes. As described by Reddy’s
group, this pro-oxidative imbalanced milieu is associated with
damages of mitochondrial and cellular lipids, DNA, and
proteins (269).

Of note, mitochondrial dysfunction/oxidative stress is
considered one of the alternative mechanisms nurturing
hyperinsulinemia/IR. It is conceived that an unbalanced
generation of mitochondrial ROS as a primary event
directly hinders insulin signal transduction by IRS inhibitory
phosphorylation via JNK activation. ROS alternatively may
synergistically trigger intracellular inflammatory signaling
pathways (via NF-kB) that ultimately impair insulin
receptor system activation, accounting for a persistent
inflammation-mediated IR (270–272).

ROS are capable of destroying the inner mitochondrial
membrane system and consequently the ETC, which generates
an additional destructive vicious circle given by further ROS
overproduction, extensive oxidative stress damages, and major
ETC failure. Under this scenario, ATP synthesis is impaired,
and mitochondria become functionally collapsed and a self-
destructive organelle (273).

Compelling evidences attests the broad horizon of pathogenic
commitment of mitochondrial dysfunction/oxidative stress in

AD development and progression. Similarly, numerous studies
document how Aβ pathogenically cooperates with ROS, enters
into the mitochondria, dismantles the ETC system aggravating
the ROS leakage, damages the mitochondrial cisternae system,
and eventually extinguishes ATP cellular production. The
richness of data supporting these exciting findings has incited
the search for mitochondria-targeted antioxidants [for review,
see (274)]. The cellular damage brought by oxidative stress in
AD is far-reaching, expansive, perpetuative, and long-lasting.
Consequently, we have approached to summarize oxidative
stress consequences, as follows: (1) impairs mitochondrial
dynamics and increases the rate of mitochondrial fission,
which further amplifies the bioenergetic mitochondrial
dysfunction and neuronal demise (275); (2) impairs the
activity level of intermediary metabolism enzymes as aconitase,
glutamine synthetase, creatine kinase, PDH, and α-ketoglutarate
dehydrogenase as described for AD brains and cells exposed to
Aβ (276–278), leading to further bioenergetic dyshomeostasis
(279); (3) induces cerebral and peripheral inflammation
by stimulating the release of mitochondrial components
into the cytosol, which activates innate immune response
mechanisms, via an inflammasome-dependent pathways
(238); (4) the recognition of these mitochondrial products as
DAMPs induces an interferon-like response that amplifies and
polarizes inflammation, thereby altering mitochondrial dynamic,
membrane permeability, and the bioenergetic work (238); (5)
ROS and lipid peroxidation contribute to phosphorylate Tau
with the ensued enhancement of more SOD deficiency and
exacerbation of the mitochondrial dysfunction (269); (6) given
that mtDNA is relatively unprotected, its proximity to the main
source of ROS and the unavailability of an efficient repair system
turn mtDNA far more vulnerable to chemical damages than its
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FIGURE 4 | Putative Alzheimer’s disease (AD) pathogenic integrative mechanism. Inflammation (either peripheral or central), IR, mitochondrial functional impairment,

and the excessive production of ROS with the ensued oxidative damage are concatenated and mutually cooperate as pathogenic drivers. It is likely that one of these

four ingredients can consistently drive to others so that a hierarchy of events may turn irrelevant. Inflammation breaches the BBB with the downstream consequences,

elicits a neurotoxic environment, and triggers glial and astrocyte activation with further cytokine spillover. Oxidative stress may be an inflammation by-product that in

turn amplifies inflammation. Concurrently, free radicals may turn on inflammatory pathways. Moreover, proinflammatory cytokines trigger IR by imposing a

loss-of-function pattern of phosphorylation in insulin receptor substrate 1. Importantly, obstruction of cerebral insulin physiology translates neuronal cell vulnerability to

inflammation, mitochondrial impairment, and oxidative stress and may be an amplifying factor to each of these nosogenic links. Furthermore, the functional collapse of

cerebral insulin leads to increase of β amyloid accumulation, neurotoxicity, and ultimately neuronal demise. Impaired mitochondrial function either by an acquired or

inherited defect or via β amyloid accumulation may turn sufficient to dismantle cerebral cell homeostasis.

nuclear counterpart. MtDNA oxidative damage is associated
with a variety of mutations that mostly affect the core enzymes
of the bioenergetic activity. Therefore, the consequences are
predictably disastrous (196). (7) The ROS-induced failure in
mitochondrial membranes stability potential predisposes to
the opening of the mitochondrial permeability transition pore;
eventually, this allows for cytochrome c and other pro-apoptotic
proteins to leak, triggering the apoptotic caspase cascade (280);
(8) ROS also exhibit a synergistic pathogenic cooperativity
with Aβ, which further intensifies mitochondrial and neuronal
damages and neurotoxicity (249, 273).

Taken together, these evidences provide a substantial
foundation to consider mitochondrial functional impairment
and ROS/oxidative stress as a critical node in AD pathology
given its commitment in neuronal energetic bankruptcy. It is
far more than convincing that ROS/oxidative stress contributes

to and derives from IR and that it plays a critical role in
neuronal damage expansion and cognitive deficit amplification
(281). Finally, mitochondrial transplantation has recently
emerged as a hopeful therapeutic tool in order to restore
neuronal homeostasis, survival, connectivity, and regeneration
in neurodegenerative diseases. It still remains challenging how
and when to precisely deliver the salutary mitochondrial message
to the diseased substrate (282).

CONCLUDING REMARKS

Interestingly, numerous phenotypic traits support the notion that
AD is not a CNS-circumscribed disease. Similarly, this seems
to be the truth for other devastating neurodegenerative process.
The pathogenesis of AD is convoluted and multifactorial, which
hampered the identification of critical molecular therapeutic
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targets for a definitive mitigation. A simple journey across
the years of research and publications denotes that although
there have been undeniable progresses in understanding the
original molecular mechanisms underlying this complex disease,
dozens of gaps still remain to be filled, not to mention
the imperative of identifying the hierarchic pathophysiological
sequence of events. Understanding this hierarchical order and
its related molecular signaling pathways will advance therapeutic
approaches. Conceivably, causes and consequences will be
judiciously segregated and grouped. Contemporary research in
AD is multifactorial and productive; and its findings and output
are likely comparable with those seen in cancer research.

There is an emerging constellation of novel targets and
potential therapeutic candidates that may revolutionize
future medical approaches, ranging from intracerebral iron
accumulation to an anticipated epigenetic dysregulation of a
variety of genes in asymptomatic patients. The presence of
chronic inflammation, IR, oxidative stress, and brain/peripheral
mitochondrial dysfunctions are, moreover, major and repeatedly
identified drivers of AD pathology. Whether primary or
secondary in origin, brain chronic IR may underlie the reputed
cerebral hypometabolism and consequently may initiate a
neurodegenerative cascade that translates in mitochondrial
failure and neuronal energetic dysfunction with the adjacent
oxidative stress and neuroinflammation. The pathogenic
responsibility of this cascade is well-sustained, and glucose
hypometabolism correlates with symptoms of severity, synaptic
dysfunction, and cognitive impairment. Impaired cerebral
glucose metabolism is also invariantly reported in type 2
diabetes, and its consequences can readily account for most
of the structural and functional anomalies of AD. A deficient
insulin and IGF-I activity may link the two diseases given the
dramatic relevance of the hormone in superior nerve structures
as in βA and Tau metabolism and turnover. We consequently
consider the quartet of chronic inflammation, IR, oxidative
stress, and mitochondrial dysfunction in a proximal position
to neurotoxic amyloid deposits. These aspects are depicted in
Figure 4 in an integrative fashion.

Irrespective to the number of questions that still remain
unanswered as how to prevent proinflammatory cytokine
endovascular elevation or how the peripheral-derived
proinflammatory molecules impact on brain cells, the truth
is that for both AD and T2DM, IR is greatly impinged by IRS-1
functional obstruction. Solid science from more than 20 years
ago attests that proinflammatory cytokines induce central and
peripheral IR via increased IRS-1 serine phosphorylation with a
concomitant decrease of activating phosphorylation on tyrosine
residues. In close resemblance to T2DM, AD-derived exosome

biomarkers reflect the inflammation-associated imprinting on
insulin receptor signaling components. Thus, the similitude of
these basic and primary underlying mechanisms presupposes
the possibility of a common “druggable” target. Druggable goals
may entail how to prevent inflammation and/or how to elude
the consequences of inflammation over the insulin receptor
signaling system. New therapeutic perspective can also target
the AD-diseased mitochondria. Mitochondrial dysfunction may
precede the onset of AD. Again, to what extent IR leads to
mitochondrial dysfunction remains elusive. Moreover, AD as a
pathological and overexpressed form on an organ-specific aging
may also incite to target PGC-1α in its intersection with DNA
damage, mitochondrial turnover, and functional homeostasis.
These are all perhaps future druggable targets. Furthermore,
finding the pharmacological tools to ensure appropriate diseased
mitochondrial purge could theoretically ensure neuroprotection
and age-associated cognitive decline. Accordingly, a sort of
“integral mitochondriotherapy” tool is called to show up in the
avenues of brain bioenergetics correction. Harnessing brain
energy metabolism will provide novel and effective preventive
and therapeutic alternatives for AD and other neurological and
psychiatric disorders.
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