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Abstract
Under uncertainty, human and animal collectives often respond stochastically to events

they encounter. Human or animal individuals behave depending on others’ actions, and

sometimes follow choices that are sub-optimal for individuals. Such mimetic behaviors are

enhanced during emergencies, creating collective behavior of a group. A stock market that

is about to crash, as markets did immediately after the Lehman Brothers bankruptcy, pro-

vides illustrative examples of such behaviors. We provide empirical evidence proving the

existence of collective behavior among stock market participants in emergent situations.

We investigated the resolution of extreme supply-and-demand order imbalances by

increased balancing counter orders: buy and sell orders for excess supply and demand

respectively, during times of price adjustment, so-called special quotes on the Tokyo Stock

Exchange. Counter orders increase positively depending on the quantity of revealed

counter orders: the accumulated orders in the book until then. Statistics of the coming

counter order are well described using a logistic regression model with the ratio of revealed

orders until then to the finally revealed orders as the explanatory variable. Results given

here show that the market participants make Bayesian estimations of optimal choices to

ascertain whether to order using information about orders of other participants.

Introduction
When choosing from among several options or when evaluating something, if one lacks accu-
rate information about circumstances, then one cannot make decisions with confidence. Under
such uncertainty, probabilistic responses to issues that one faces are naturally expected: the
proportion of people who choose A is x; the rest (1-x) choose B. Some people might make
probabilistic estimation of optimal choices based on their own information. Others might
blindly follow the actions that others take because of the difficulty of obtaining related informa-
tion independently, especially during times of crisis.

A stock market that is about to crash or which is in the middle of an abrupt price change is an
example of such a situation. For example, immediately after the Lehman Brothers bankruptcy,
the world economy was unstable. Stock markets throughout the world were anticipating an
impending large decline at any moment. No market participant had perfect information about
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market-related circumstances. Therefore, no one could know exactly how much or when stock
prices would decline. Market participants who are facing such an urgent situation and who have
insufficient time to make sufficient investigations about the circumstances independently will
use the order placements of other participants as important additional information. A tendency
for such mutual reference by market participants will elicit collective behavior among market
participants. This study was conducted to provide empirical evidence and to describe such collec-
tive behavior of market participants under uncertain and emergent circumstances.

Studies of animal behavior have demonstrated that animals make probabilistic estimations of
optimal choices under various uncertain ecological situations such as foraging in patches, choos-
ing a mate, and avoiding predation risk [1]. Animals use the behavior of other animals as well as
their own experiences as additional information to make probabilistic estimations about situa-
tions [2–5]. A well-designed experiment using a shoaling fish species demonstrated how their
probabilistic decision-making depends on the behavior of other group members [3–5]. Experi-
mental studies of decision-making under uncertainty about the group of human beings must also
clarify the emergence of collective behavior among human subjects [6–8]. For fish and human
cases, the Bayesian decision-making model has well described their collective behavior [3–5, 8].

In stock market studies, various theoretical works have been conducted. An important theo-
retical framework of the information-based collective behavior of market participants has been
that of information cascades [9–12]. When the choice of an individual following the choice of
the preceding individual without regarding his own information is optimal, the sequence made
by the respective choices of individuals is called an information cascade [10]. Other important
theoretical frameworks which are not fully rational as well as reports of empirical studies con-
ducted up to 2000 have been reviewed in an IMF report by Bikhchandani and Sharma [13].
Recent agent-based approaches are important to connect the behavior of market participants
to financial price movements [14–22].

Empirical evidence related to herding among players in financial markets abounds: the
mutual influence on the recommendations of security analysts [23], momentum investment
strategies taken by most mutual fund managers [24], bias (overoptimism), and herding of earn-
ing forecasts by financial analysts [25]. Many other studies of the herding in stock markets
have emphasized collective price movements such as the cross-sectional standard deviation of
returns [26], drawdowns (loss from the last local maximum to the next local minimum)[27],
and correlations among stock returns [28, 29] because the trading bias created by the herding
behavior of market participants is regarded as engendering wild price movements in all stocks.
Actually, market-wide collective behavior of stock prices was observed before almost every
crash that has occurred during the last decade [30, 31].

As described in this paper, to provide empirical evidence proving the existence of collective
behavior among stock market participants, the author investigates processes of getting extreme
supply-and-demand order imbalance out of the order book during the special quote, which is a
special rule of the Tokyo Stock Exchange for price adjustment and which is described in some
detail in the next section. We analyze the order flow during special quotes on 21 days of crashes
and on 11 days of rebounds with amplitudes of daily returns greater than 5% that occurred at
the Tokyo Stock Exchange (TSE) during the last decade. Results show that the coming orders
with each passing time of the special quotes are well fitted to a logistic regression model with
the accumulated orders up to then as the explanatory variable. The author also applies some
alternative models for comparison. As discussed later, results explained herein can be inter-
preted in the framework of Bayesian probability estimation used in an analysis of experiments
conducted with a group of fish [3–5] or a group of humans [8]. Results show that market par-
ticipants use the order placement information of other participants to decide whether to order
at a given time.
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Data and Analysis

Transaction Rules of Stocks and Special quotes
Transaction Rules of Stocks. Main stock markets throughout the world share transaction

rules. Each transaction session of the day starts by the opening batch auction in which all buy
and sell orders accumulated up to that time are executed collectively at a price that maximizes
the executed orders, followed by a continuous auction in which incoming orders are executed
successively. The TSE has two sessions each day: morning and afternoon sessions with one
hour intermission between. The TSE takes orders of two types: market orders and limit orders.
Market orders are orders by market participants who want to buy or sell a specified quantity at
any available price. In contrast, limit buy (sell) orders are orders for which the quantity and the
maximum (minimum) bidding (asking) execution price are specified. In batch and continuous
auctions, buy and sell orders are executed according to the price and the time priority rule.
Market orders are executed by top priority.

Special quote. For updates of stock prices, the TSE has a special rule that does not exist in
other main stock markets throughout the world: not in New York, Nasdaq, London, Paris,
Frankfurt, Hong Kong, or other exchanges. On the TSE, the next execution price cannot jump
beyond the given price interval defined depending on the price range of the previous execution
price, thereby preventing wild short-term price fluctuations. A circuit breaker is another rule,
used in other markets, that stops trading for a period of time to cool down the market when an
abrupt drop of stock price took place.

When the next execution might take place at a price beyond these price intervals because
of a supply demand order imbalance, the TSE indicates a special quote and the transaction is
interrupted. A special quote notifies market participants that there is an order imbalance at
the quote price Q(t0), which is the highest or lowest executable price according to the rule, i.e.,
Q(t0) = P(t0) ± Δp. The quote encourages participants to place balancing orders on the other
side of the order book, where P(t0) and Δp respectively denote the last execution price until
time t0 and the maximum renewal price interval. If sufficient counter orders are placed to
remove the order imbalance, then the transaction resumes. If orders are insufficient, then the
special quote price will be renewed at a fixed time interval, i.e., Q(ti+1) = Q(ti) ± Δp (i = 0, 1,
2, 3, . . .), until equilibrium is regained. The special quote price is renewed every 3 min now.
According to the rule implemented until 9 May 2011, the special quote price was renewed
every 5 min. Regarding trading rules and details of the special quotes, see the TSE website:
http://www.jpx.co.jp/english/equities/trading/domestic/03.html.

In Fig 1, two examples showing the evolution of the quote price and buy and sell orders dur-
ing the morning session are shown, including the period of special quotes indicated immediately
after the opening of the session. One is an example from the market crash on 16 Oct. 2008. The
other is an example from the market rebound on 14 Oct. 2008. Both stocks experienced abrupt
price changes in an extremely short time. Market participants placing counter orders can buy at
a lower price or sell at a higher price by deferring an order at the risk of losing an opportunity to
trade because the special quote would be closed by the counter orders of other market partici-
pants who believe that buying or selling at the quoted price is the optimal choice. The final price
determined by the closing time of the special quote is uncertain for market participants. There-
fore, they should decide when to place orders under such uncertain circumstances.

Data
We investigate the order flow during the time when the Tokyo stock Exchange (TSE) has indi-
cated special quotes on days when a sharp decline or increase of the daily log-return defined by
the logarithm of the ratio of the closing price of the day to the closing price of the prior day of
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the Nikkei 225 Index had amplitude greater than 5%. In the past decade, 21 days have had such
declines of less than -5% and 11 days of increases greater than 5%.

Those are shown in Tables 1 and 2 in descending order of the amplitude of the daily log-
return for the price-decline and the price-increase days, respectively. The target issues of our
empirical analysis are the constituent issues of the Nikkei 225 Index at the moment of Septem-
ber 2015, which is shown in Table in S1 Table, and listed on the TSE on such days of crashes
and rebounds investigated here.

In the fourth columns of Tables 1 and 2, we present the number of issues for which the TSE
indicated the special quote because of the large imbalance between the demand and the supply
orders. In those tables, we also show the average daily log-returns of issues on which the special
quotes have been indicated and the average log-returns of those issues during the special quote.
The special quote has been indicate on the total 3126 (1600) issues, which amount to 67% (67%)
of 4698 (2375) target issues, and the log-return during the special quote accounts for 74% (84%)
of the total daily log-return of those issues in the price-decline (price-increase) days. Those data
demonstrate that the special quote has accounted for a substantial fraction of the price move-
ments during crashes and rebounds that took place in the TSE during the past decade.

The log-returns during the special quote, which is proportional to the duration time of spe-
cial quote, widely distribute beyond 20% (Fig 2).

All but the crash and rebound on 15 March 2011 took place immediately after the opening of
the morning session, suggesting that many market participants have shared a vague expectation

Fig 1. Examples of abrupt changes of stock prices during special quotes. Each Panel shows the price change and the
order quantities of sell and buy sides during the two-hour morning session including the period of the special quote. (A)
Example from the market crash of 16th Oct. 2008. The issue is Toyota Tsusho Corp. (Trading Co.). The equilibrium of sell and
buy orders at the opening of the morning session was far below the last execution price of 1013 yen of the prior day. A special
quote was indicated with the initial price of 993 yen, which is just a given renewal price interval 10 yen below the last price and
the price was renewed at 5 min intervals. Although there is a large imbalance between sell and buy orders at the initial price, it
had gradually blown over because of the increase of buy orders over time. The special quote had continued for 54 min until
order supply and demand reached the equilibrium and ended with the price of 893 yen. (B) Example from the market rebound
on 14 Oct. 2008. The issue is Oki Electric Ind. Co. Ltd. (Electric Machinery). The equilibrium of sell and buy order at the
opening of the morning session was far above the last execution price 75 yen of the prior day. A special quote was indicated
with the initial price of 80 yen, which is just a given renewal price interval 5 yen above the last price. The price had been
renewed at 5 min intervals. The special quote had continued for 25 min until order supply and demand reached the
equilibrium and ended with the price of 104 yen.

doi:10.1371/journal.pone.0160152.g001
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about the price movements of those days before the openings. The news coverage of the
“Fukushima Daiichi nuclear disaster” was provided in the morning on 15 March 2011, then the
second largest crash occurred immediately after opening of the afternoon session. In both cases,
market participants did not know whether a crash or a rebound would occur nor howmuch the

Table 1. Daily log-returns of the Nikkei Index less than -5% during the past decade.

Rank Date Daily ret. of Nikkei 225 # of s. q./# of target issues Avg. ret. Avg. ret. during s. q. (Std.)

1 10/16/2008 -12.1% 211 / 215 -12.4% -10.1% (3.1%)

2 3/15/2011 -11.2% 174 / 222 -12.8% -9.0% (4.6%)

3 10/10/2008 -10.1% 215 / 215 -9.1% -12.8% (3.8%)

4 10/24/2008 -10.1% 86 / 215 -11.0% -4.8% (2.5%)

5 10/8/2008 -9.9% 182 / 215 -10.5% -4.1% (1.5%)

6 5/23/2013 -7.6% 8 / 224 -12.5% -3.0% (0.7%)

7 11/20/2008 -7.1% 163 / 215 -8.1% -4.6% (2.5%)

8 10/22/2008 -7.0% 132 / 215 -8.8% -4.0% (1.5%)

9 11/6/2008 -6.8% 196 / 215 -7.3% -5.5% (2.5%)

10 10/27/2008 -6.6% 75 / 215 -11.5% -2.7% (2.2%)

11 12/2/2008 -6.6% 196 / 215 -7.1% -6.0% (2.0%)

12 6/13/2013 -6.6% 106 / 224 -6.6% -2.9% (0.6%)

13 3/14/2011 -6.4% 205 / 222 -8.3% -8.8% (4.8%)

14 1/22/2008 -5.8% 178 / 215 -6.5% -4.2% (1.6%)

15 12/12/2008 -5.7% 161 / 215 -6.5% -4.0% (1.6%)

16 8/17/2007 -5.6% 74 / 214 -9.0% -2.8% (1.1%)

17 11/13/2008 -5.4% 179 / 215 -5.8% -5.1% (1.7%)

18 5/30/2013 -5.3% 94 / 224 -5.2% -3.3% (0.9%)

19 10/31/2008 -5.1% 105 / 215 -7.5% -5.0% (3.1%)

20 9/16/2008 -5.1% 200 / 215 -5.3% -6.0% (3.2%)

21 1/15/2009 -5.0% 186 / 218 -4.7% -4.1% (1.5%)

Rank of the amplitude of decline, date, and daily log-return are shown in the first three columns. The number of issues for which the special quote has been

indicated among target issues of the day and the average daily log-returns of those issues are shown respectively in the fourth and the fifth columns. The last

column shows the average log-returns of those issues during the special quote and the standard deviation in parentheses.

doi:10.1371/journal.pone.0160152.t001

Table 2. Daily log-returns of the Nikkei Index larger than 5% for the past decade.

Rank Date Daily ret. of Nikkei 225 # of s. q./# of target issues Avg. ret. Avg. ret. during s. q. (Std.)

1 10/14/2008 13.2% 215 / 215 14.6% 13.5% (5.0%)

2 10/30/2008 9.5% 96 / 215 11.8% 5.2% (2.9%)

3 10/29/2008 7.5% 182 / 215 7.2% 8.1% (3.6%)

4 10/28/2008 6.2% 41 / 215 9.5% 3.2% (1.6%)

5 11/4/2008 6.1% 174 / 215 6.9% 5.4% (2.6%)

6 11/10/2008 5.6% 190 / 215 5.9% 5.3% (2.7%)

7 3/16/2011 5.5% 144 / 222 7.7% 6.4% (4.0%)

8 11/25/2008 5.1% 201 / 215 4.7% 5.9% (2.4%)

9 12/15/2008 5.1% 160 / 215 5.6% 4.0% (1.7%)

10 12/8/2008 5.1% 52 / 215 6.4% 3.0% (1.4%)

11 3/13/2009 5.0% 145 / 218 5.0% 4.0% (1.7%)

The quantity shown in each column is the same as that in Table 1.

doi:10.1371/journal.pone.0160152.t002
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price change would be. Therefore, they were forced to place orders with no confidence. There-
fore, the behavior depending on order placements of other market participants would emerge
among them. Here we would like to analyze the interaction between market participants under
such uncertain situations by measuring the order flow during the special quotes.

Analysis
Market participants can place their orders anytime they wish during the special quote, whereas
the quote price is renewed at fixed time intervals. Let the time updating the quote price be
denoted as ti (i = 0, 1, 2, . . ., f), where t = t0 and tf respectively denote the time of onset and ter-
mination time of the special quote. We analyze the quantities of buy and sell orders bi and si of
each stock at discrete time t = ti for simplicity. Quantity bi (si) denotes the accumulated total
orders of which the limit price less (greater) or equal to the quote price at the time ti, i.e., the
buy (sell) orders bi − bi−1 (si − si−1) of the unrevealed orders bf − bi−1 (sf − si−1) have been
revealed during the time interval ti − ti−1 in the unit of block of shares. The size of a block varies
by issue. A schematic image of the process of special quote in discrete time is depicted in Fig 3.

As described in this paper, we would like to prove that each market participant is subject to
influence from the decisions of other participants when placing orders under uncertain and
emergent situations such as special quote during market crashes or rebounds. To this end, we
demonstrate that the probability of placing balancing orders by a market participant with each
passing time of the special quotes increases with the accumulated orders in the book until then.

The total order quantities placed during the time interval ti − ti−1 would be limited by a ceil-
ing determined by the potential orders which might not be recognized by each participant. Here
we do not consider the remaining orders unrevealed until the termination of each special quote

Fig 2. Cumulative distribution function of the log-returns during special quotes. Panels (A) and (B) show
cumulative distribution functions (CDFs) of log-returns ln(Pf/Pi) during the total 3126 special quotes for crashes and
during the total 1600 ones for rebounds respectively, where Pf and Pi express the final and the initial price of the
special quote. Both cases of CDFs are well fitted by the same lognormal distributions function (dashed line), although
the normal distribution function is not good for the statistical model (dotted line).

doi:10.1371/journal.pone.0160152.g002
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Fig 3. Schematic picture of the process of special quote in discrete time. An example is shown for the case of a price decline. Time t0 is the
time when the special quote start and the time ti (i = 1, 2, . . ., 5) expresses the ith renewal of the quote price. The buy (sell) order bi (si) (i = 0, 2, . . .,
5) denotes the quantity of order placed by market participants who want to buy (sell) below (above) the price at the time ti in the unit of block of
shares. In the case of this picture, b5 (= s5) is the final equilibrium buy order at the end of the special quote.

doi:10.1371/journal.pone.0160152.g003
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and define the limit by the quantity bf − bi−1 (sf − si−1). We assume that each order is placed
independently with equal probability. Therefore, the orders bi − bi−1 (si − si−1) (i = 1, 2, . . ., f-1)
are assumed to follow a binomial distribution,

Pðbi � bi�1jbf � bi�1; piÞ ¼
bf � bi�1

bi � bi�1

� �
pbi�bi�1
i ð1� piÞbf�bi ðb $ sÞ: ð1Þ

Here, the logit function logitðpiÞ ¼ log ðpi=ð1� piÞÞ of the probability of success is assumed to
be a linear function of the revealed ratio ri = bi−1/bf (ri = si−1/sf) until time t = ti−1, i.e.,

pi ¼
exp ðb0 þ b1 � riÞ

1þ exp ðb0 þ b1 � riÞ
: ð2Þ

The right-hand side of the equation is a logistic function which assure the condition 0� πi� 1
and also that the πi increases monotonically with ri if the parameter β1 is positive, which means
that revealed balancing counter orders increase the probability of such coming orders. Parame-
ters β0 and β1 will be estimated for each special quote for each stock using maximum likelihood
method. This is a logistic regression model [32] in which the explanatory variable is the coming
buy (sell) orders bi − bi−1 (si − si−1) of the unrevealed orders bf − bi−1 (sf − si−1). We will show
that, for almost all cases, parameter β1 is significantly positive and that the revealed buy (sell)
orders at the time t = ti are well described by the equation,

E½bi� ¼ piðbf � bi�1Þ þ bi�1 ðb $ sÞ: ð3Þ

We adopt the finally revealed orders bf(sf) as the normalization factor for the explanatory var-
iable ri. The choice of the normalization factor is irrelevant to the result. Even if we choose

another explanatory variable ~ri ¼ bi�1=b0 ð~ri ¼ si�1=s0Þ like logitðpiÞ ¼ b0 þ ~b1 � ~ri, we can
easily convert the result obtained using the relation of those estimated values of the coefficients
~b1 ¼ b1 � b0=bf ð~b1 ¼ b1 � s0=sf Þ. The choice of the explanatory variable ri is convenient to
show the results for all special quotes with different range of order bi (si) against the same range
of 0� ri� 1.

Results
We estimated parameters β0 and β1 of the logistic regression models (1) and (2) using
maximum likelihood method. In Fig 4 we first show two examples of the parameter estima-
tions for the same special quotes as in Fig 1. Panels (A) and (B) respectively show the evolu-
tion of revealed orders E[bi] and E[si] predicted by Eq (3). The error bar denotes the
standard error evaluated by the inverse of the observed information matrix [32]. The
revealed orders up to discrete time t = ti are well described within the standard deviations
denoted by error bars.

We specifically examine special quotes for which the price was renewed more than four
times in consideration of the statistical precision. Among all 3126 (1600) target special quotes,
1070 (661) such special quotes occurred during crashes (rebounds). The total 1069 (661) esti-
mated parameters β0 are negative, which amount to 99.0% (100%) of the 1070 (661) special
quotes. Furthermore, the total 1069 (660) estimated parameters β1 are positive, amounting to
99.9% (99.8%) of the 1070 (661) special quotes. Negative β0 means that the prior probability of
placing counter orders for market participants is less than 50% when no counter orders are
revealed. The average of the 1069 (661) estimated parameters β0 is -6.86 (-9.86). The average
probability is 2.6% (1.1%). Positive β1 means that the posterior probability increases with the
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increase of the revealed orders.

dpi

dri
¼ b1 exp ðb0 þ b1 � riÞ

ð1þ exp ðb0 þ b1 � riÞÞ2
ð4Þ

The average of the 1069 (661) estimated parameters β1 is 11.0 (14.3) and a block of counter
orders by the other participant averagely pushes the probability up about 9.1% (4.1%) accord-
ing to Eq (4) (ri = 0). Fig 5 shows that those values seem to vary from issue to issue and depend-
ing on the economical situation when the crash or rebound takes place. Thsy are broadly
distributed following a Gamma distribution. Tables of the average values of the parameters
estimated using maximum-likelihood method are presented in Tables in S1 File. The common
distinguishing feature of those special quotes is the collective behavior of market participants
expressed as the positivity of the estimated parameters β1.

Upper panels (A) and (B) in Fig 6 show the average (circle) and the standard deviation
(bar) of the actual ratio of the coming order, i.e., (bi − bi−1)/(bf − bi−1) in (A) and (si − si−1)/
(sf − si−1)/ in (B), in the bins of the ratio bi−1/bf (si−1/sf). Middle panels (C) and (D) show the
median (circle) and the IQR (bar) of the revealed order until the i-th step in the bins of the
actual ratio, i.e., bi/bf in (C) and si/sf in (D), and the prediction, i.e., E[bi]/bf in (C) and E[si]/sf
in (D). Lower panels (E) and (F) show the box plot of the prediction error, i.e., bi/bf − E[bi]/bf
in (E) and si/sf − E[si]/sf in (F), in each bin. Results indicate fairly good precision of the model
predictions. Actually, 72% (77%) of all prediction errors at all steps during buy (sell) special
quotes are within 5% and the 92% (95%) is within 10%.

Panels (A) and (B) in Fig 7 respectively show the receiver operating characteristic (ROC)
curves for buy and sell special quotes. Each point on the curve expresses the pair of aggregate
quantities (the proportion of placed orders, the proportion of pending orders) at each of all

Fig 4. Examples of fitting by the logistic model. Evolution of revealed orders E[bi] and E[si] predicted using Eq (3) are
shown. The error bar denotes the standard error evaluated by the inverse of the observed information matrix [32]. (A)
Example from the market crash on 16 Oct. 2008. The issue is Toyota Tsusho Corp. (Trading Co.): β0 = 6.5 and β1 =
−10.1. (B) An example from the market rebound on 14 Oct. 2008. The issue is Oki Electric Ind. Co. Ltd. (Electric
Machinery): β0 = 4.5 and β1 = −7.0.

doi:10.1371/journal.pone.0160152.g004
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steps in all special quotes under study over a given threshold π = πi. The area under the curve
(AUC), which is equivalent to Wilcoxon statistics, is commonly used as the goodness of fit
measure of the model as R2 for linear regressions [33]. Those results also show that the revealed
order until a step of the special quote is an appropriate variable for characterizing each step of
the process.

Discussion
We investigated the process of clearing extreme supply-and-demand order imbalances by the
increase of counter orders. i.e., buy and sell orders for excess supply and demand respectively,
during special quotes: a time of price adjustment. Counter orders have increased positively
depending on the quantity of revealed counter orders, i.e., the accumulated orders in the order
book up to that point. The statistics of the coming counter order are well described using a
logistic regression model with the ratio of revealed order until then to finally revealed orders as
the explanatory variable.

Analysis using other models
For comparison, we also analyze the order flow by the Poisson regression model [32] in which
the orders bi − bi−1 (si − si−1) (i = 1, 2, . . ., f-1) are not limited by a ceiling, i.e., unlimited

Fig 5. Distribution of the parameters estimated usingmaximum-likelihoodmethod. For the special quotes in times of
crashes, the estimated values of the parameter β0 are negative, with one exception. The parameters β1 are positive with one
exception. Upper panels (A) and (B) show a distribution of the parameters β0 and β1 of the model for the 1069 special quotes
under crashes excluding those exception. For the special quotes under rebounds, the estimated values of the parameter β1 are
positive with the exception of only a single case. Lower panels (C) and (D) are those for the 660 special quotes under rebound
excluding the exception. All the distribution functions are well fitted by the Gamma distribution f(x) = xk−1 exp(−x/θ)/Γ(k)/θk with
different parameters k and θ (solid line): (A) k = 3.9, θ = 1.5; (B) k = 3.9, θ = 2.6; (C) k = 4.0, θ = 1.8; and (D) k = 3.6, θ = 3.2.

doi:10.1371/journal.pone.0160152.g005
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potential orders, and follow a Poisson distribution, as

Pðbi � bi�1jmiÞ ¼
mðbi�bi�1Þ
i e�mi

ðbi � bi�1Þ!
ðb $ sÞ: ð5Þ

Here, the logarithm of the parameter μi is assumed to be a linear function of the revealed ratio

Fig 6. Model prediction of coming order by the model. In upper panels (A) and (B), we divide the range
[0, 1] of the ratio bi−1/bf (si−1/sf) into 10 bins of equal length. Those panels show the average (circle) and the
standard deviation (bar) of the ratio of the coming order to the unrevealed order, i.e., (bi − bi−1)/(bf − bi−1) in
(A) and (si − si−1)/(sf − si−1) in (B), in each bin. The solid and dashed line respectively show the result
estimated using the model and the corresponding data. In panels (C)–(F), the range [0, 1] of the ratio bi−1/bf
(si−1/sf) is divided into 10 bins of equal length. Middle panels (C) and (D) show the median (circle) and the IQR
(bar) of the revealed order until the i-th step in each bin of the actual ratio, i.e., bi/bf in (C) and si/sf in (D), and
the prediction, i.e., E[bi]/bf in (C) and E[si/sf] in (D). Lower panels (E) and (F) show the box plot of the
prediction error, i.e., bi/bf − E[bi]/bf in (E) and si/sf − E[si]/sf in (F), in each bin. The integers above the
horizontal axes express the numbers of data in respective bins. The ratios of the outliers larger than
Q3/4+1.5IQR and the outliers less thanQ1/4 − 1.5IQR are attached respectively above and below the boxes.

doi:10.1371/journal.pone.0160152.g006
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ri = bi−1/bf (ri = si−1/sf) until time t = ti−1, i.e.,

mi ¼ exp ð~b0 þ ~b1 � riÞ: ð6Þ

The parameter μi increases monotonically with ri if the parameter ~b1 is positive in the same
way as the logistic regression model, which means a collective behavior of market participants.

The total 792 (501) estimated parameters ~b1 are positive, which amount to 74% (76%) of all
1070 (661) special quotes for which the price was renewed more than four times. Results of
data analysis using this model are shown in panels (A) and (B) of Fig 8. Those panels show that
the model prediction of the coming order normalized by the average of coming orders at all the
time of price update during each special quote deviate form data, especially for the range with
high ratio ri. The amount of coming order tend to decrease over the peak around ri * 0.7,
which means that they are limited by a ceiling of unrevealed order at the time.

We also have tried a supply-demand gap si−1 − bi−1 (bi−1 − si−1) as an alternative explanatory
variable for the logistic regression model, which does not necessarily decrease monotonically
but which eventually converges to zero. It is convenient to be normalized by the maximum gap
during each special quote as r̂ i ¼ ðsi�1 � bi�1Þ=Max:ðsi�1 � bi�1Þ
(r̂ i ¼ ðbi�1 � si�1Þ=Max:ðbi�1 � si�1Þ). The probability of success πi is assumed to be expressed
as the following.

pi ¼
exp ðb̂0 þ b̂1 � r̂ iÞ

1þ exp ðb̂0 þ b̂1 � r̂ iÞ
ð7Þ

Coefficient b̂1 is expected to be negative, which means market participants are likely to place

Fig 7. Goodness of fit of the model: ROC curve and the AUC. Panels (A) and (B) show the receiver operating
characteristic (ROC) curves for buy and sell special quotes. We arranged the sets of placed buy (sell) orders bi − bi−1
(si − si−1) and pending orders bf − bi (sf − si) at each of all steps in all special quotes under study in ascending order of
the estimated probability πi: π(1) < π(2) < . . . < π(n) with the number of all steps denoted by n. Each point expresses the
pair of quantities (∑i st. πi � π(j)

(bf − bi)/∑i(bf − bi), ∑i st. πi � π(j)
(bi − bi−1)/∑i(bi − bi−1)) (b$ s) (j = 1, 2, . . ., n). (A)

AUC = 0.83. (B) AUC = 0.86.

doi:10.1371/journal.pone.0160152.g007
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orders when the gap becomes small. Actually, the total 1012 (632) estimated parameters b̂1 are
negative, amounting to 95% (96%) of all 1070 (661) special quotes. That has also proved a col-
lective behavior of market participants, i.e., the order supplying a demand creates more such
orders. The results of data analyses using this model are shown in panels (C) and (D) of Fig 8.

Fig 8. Results of data analysis using alternative models. In panels (A) and (B), the range [0, 1] of the ratio
bi−1/bf (si−1/sf) is divided into 10 bins of equal length. Those panels show the average (circle) and the
standard deviation (bar) of the coming order normalized by the average of coming orders at all the time of
price update during each special quote, i.e., (bi − bi−1)/Avr.(bi − bi−1) in (A) and (si − si−1)/Avr.(si − si−1) in (B), in
each bin. The solid and dashed line respectively show to the results estimated using the Poisson regression
model and the corresponding actual data. In panels (C) and (D), the results of data analysis by the logistic
regression model are shown with the supply-demand gap si−1 − bi−1 (bi−1 − si−1) as the explanatory variable.
Those gaps are normalized by the maximum gap during each special quote. In those panels, the range [0, 1]
of the normalized gap (si−1 − bi−1)/Max.(si−1 − bi−1) ((bi−1 − si−1)/Max.(bi−1 − si−1)) is divided into 10 bins of
equal length. Those panels show the average (circle) and the standard deviation (bar) of the ratio of the
coming order to the unrevealed order, i.e., (bi − bi−1)/(bf − bi−1) in (C) and (si − si−1)/(sf − si−1) in (D), in each
bin. The solid and dashed line respectively show the result estimated using the model and the corresponding
data.

doi:10.1371/journal.pone.0160152.g008
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As shown in those panels, the model prediction of the coming order normalized by the unre-
vealed order at the time shows some deviation form data around the range with low ratio r̂ i,
i.e., near the final stage of special quote.

From the perspective of the fitness of the model to data, the logistic regression model with
the revealed order as the explanatory variable shows the best performance among the three
models investigated here. Actually, the average residual square errors (RSE’s) of the coming
order normalized by the unrevealed order at the time are, respectively, 0.12 (0.14), 0.22 (0.21)
and 18.5 (28.0) for the logistic model with the revealed order as the explanatory variable, for
the logistic model with the supply-demand gap as the explanatory variable and the Poisson
model with the revealed order as the explanatory variable. In this paper, our goal is to show col-
lective behavior among market participants during special quotes. Therefore, we would not
optimize a model describing the statistics of oder flows.

Bayesian decision-making model
As described already in the Introduction, animals frequently make probability estimations
related to optimal choices in uncertain situations. Animals use information obtained from the
behaviors of other animals as well as their own information. Pérez-Escudero and de Polavieja
build a Bayesian probability estimation model to analyze the experiment involving a group of
fish [3–5]. Assuming two choices X (‘go to x’) and Y (‘go to y’), they derive the expression for
the conditional probability P(Y|C, B) by which the choice Y is the optimal on the premise of
private information C and the behavior of the other individuals B as shown below.

PðY jC;BÞ ¼ 1

1þ a
QL

k¼1 s
nk
k

ð8Þ

This equation deals with the case L different behavioral class fbkgLk¼1, e.g., ‘go to x’, ‘go to y’ and
‘remain undecided’, where a = P(X|C)/P(Y|C) is the likelihood-ratio for the two choices given
only the personal information, where nk is the number of individuals performing behavior bk
and

sk ¼
PðbkjX;CÞ
PðbkjY ;CÞ

; ð9Þ

where P(bk|X(Y), C) is the conditional probability that an individual behavior is bk under the
condition under which X(Y) is the optimal.

For dealing with our case, let choice Y be set as ‘put order’, X be set as ‘pending decision’
and L = 2, i.e., the behaviors b1 and b2 respectively corresponding to those choices Y and X.

PðY jC; BÞ ¼ 1

1þ a0sn1
ð10Þ

Therein, a0 ¼ asN2 ,s = s1/s2 and the number of market participants is denoted asN = n1 + n2. If
we assume that an individual chooses each option with probability πi at each time t = ti equal to
the estimated probability P(Y|C, B), then Eq (2) can be interpreted as Eq (10) interpreting a0 =
exp(−β0), s = exp(−β1/bf) and n1 = bi). Therefore, the positivity of parameter β1 means that
s< 1 and the balancing orders by other participants raise the estimated probability that the
choice Y (‘put order at the time t = ti’) is optimal.

Future studies
Comparison of the result of the analysis by the logistic regression model with the Bayesian
decision-making model revealed that market participants use the information of the order
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placement of other participants to estimate the probability that revealing their order place at
the time is the optimal choice. However, our data have no identifier for each market partici-
pant. Therefore, the unit in the application of the model must be a block of shares, although it
is an individual fish in reports of the literature [3]. In Fig 9, we show the probability distribu-
tions of coming buy (sell) orders bi − bi−1 (si − si−1) in the bins of the estimated probability of
success πi (rigid line), which is expected to be the binomial distribution with the average
πi(bf − bi−1) (πi(sf − si−1)) if each block of order has been placed independently. For compari-
son, we conduct Monte Carlo simulations of two types. In one type of simulation, random
numbers are generated according to binomial distributions with πi and the unrevealed order
bf − bi−1 (sf − si−1) until the (i-1) step of special quote as the probability of success p and the
number of trials n respectively (dashed line). In the other type of simulation, we use p = πi and
the fixed number of trials n = 10 (dotted line). It is apparent that the simulations with unre-
vealed orders n = bf − bi−1 (sf − si−1) as the number of trials, which are typically several hun-
dred, do not fit the data, although simulations with the fixed number n = 10, which is
probably a usual round number of participants, do rather well.

For the interpretation of results obtained using Bayesian estimation, we assume that an indi-
vidual chooses each option with probability equal to the estimated probability [3]. Such an irra-
tional manner of decision making is called probability matching. All rational individuals will
choose the option when the estimated probability exceeds 50% without regarding one’s own
information. That is, an information cascade will occur as explained in the Introduction. In
both panels (A) and (B) of Fig 9, a local maximum of the curve of actual data appeared at the

Fig 9. Probability distribution functions of the coming orders during the special quote. In groups (A) and (B) of panels, we divide the range [0, 1] of
the estimated probability of success πi into 10 bins of equal length. In each of panels, the probability distributions of coming buy (sell) order bi − bi−1 (si − si
−1) are shown (rigid line), which is expected to be the binomial distribution with the average πi(bf − bi−1) (πi(sf − si−1)). Random numbers are generated
according to the binomial distributions with p = πi as the probability of success and with the unrevealed orders n = bf − bi−1 (sf − si−1) until the (i-1) step of
special quote and the fixed number n = 10 as the number of trials. In each Monte Carlo simulation, 100 random numbers are generated. For comparison,
the histograms of two series of random numbers, i.e., the case with n = bf − bi−1 (sf − si−1) (dashed line) and with n = 10 (dotted line), are also shown in
each panel. (A) Buy special quotes in crashes. (B) Sell special quotes in rebounds.

doi:10.1371/journal.pone.0160152.g009
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bin [0, 9, 1.0] in the panels where estimated probability π exceeding 0.5 might be a signal of an
information cascade. The probability of all the unrevealed order until a time of a special quote
coming together is presented in Fig 10 (rigid line). Implementing this behavior of market par-
ticipants to the model is left as a task for future study.
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