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Lack of estrogen receptor α in astrocytes of progranulin-deficient mice
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Abstract. 	Progranulin	(PGRN)	is	a	multifunctional	growth	factor	with	functions	in	neuroprotection,	anti-inflammation,	and	
neural	progenitor	 cell	proliferation.	These	 functions	 largely	overlap	with	 the	actions	of	 estrogen	 in	 the	brain.	 Indeed,	we	
have	previously	shown	that	PGRN	mediates	the	functions	of	estrogen,	such	as	masculinizing	the	rodent	brain	and	promoting	
adult	neurogenesis.	To	evaluate	the	underlying	mechanism	of	PGRN	in	mediating	the	actions	of	estrogen,	the	localization	of	
estrogen	receptor	α	(ERα)	in	the	brains	of	wild-type	(WT)	and	PGRN-deficient	(KO)	mice	was	investigated.	First,	double-
labeling	immunofluorescence	was	performed	for	ERα	with	neuronal	nuclei	(NeuN),	ionized	calcium-binding	adaptor	molecule	
1	(Iba1),	and	glial	fibrillary	acidic	protein	(GFAP),	as	markers	for	neurons,	microglia,	and	astrocytes,	respectively,	in	female	
mice	in	diestrous	and	estrous	stages.	ERα-immunoreactive	(IR)	cells	were	widespread	and	co-localized	with	NeuN	in	brain	
sections	analyzed	(bregma	–1.06	to	–3.16	mm)	of	both	WT	and	KO	mice.	In	contrast,	expression	of	ERα	was	not	observed	in	
Iba1-IR	cells	from	both	genotypes.	Interestingly,	although	ERα	was	co-localized	with	GFAP	in	WT	mice,	virtually	no	ERα	
expression	was	discernible	in	GFAP-IR	cells	in	KO	mice.	Next,	the	brains	of	ovariectomized	adult	female,	adult	male,	and	
immature	female	mice	were	subjected	to	immunostaining	for	ERα	and	GFAP.	Again,	co-localization	of	ERα	with	GFAP	was	
observed	in	WT	mice,	whereas	this	co-localization	was	not	detected	in	KO	mice.	These	results	suggest	that	PGRN	plays	a	
crucial	role	in	the	expression	of	ERα	in	astrocytes	regardless	of	the	estrous	cycle	stage,	sex,	and	maturity.
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Progranulin	(PGRN)	is	a	glycoprotein	that	works	as	a	growth	
factor with multiple functions, such as neuroprotection, anti-

inflammation,	and	proliferation	of	neural	progenitor	cells	[1–3].	In	
the	rodent	brain,	PGRN	is	mainly	expressed	in	the	cingulate	and	
piriform	cortices,	the	pyramidal	cell	layer	and	dentate	gyrus	of	the	
hippocampus,	the	amygdala,	the	ventromedial	and	arcuate	nuclei	of	
the	hypothalamus,	and	the	Purkinje	cell	layer	in	the	cerebellum	[4,	
5].	We	have	demonstrated	that	PGRN	is	predominantly	expressed	in	
neurons,	and	after	brain	injury,	PGRN	is	also	expressed	in	activated	
microglia	but	not	in	astrocytes	[2,	6].	In	2006,	a	heterozygous	mutation	
of	the	PGRN	gene	was	reported	as	one	of	the	major	factors	causing	
frontotemporal	 lobar	degeneration	(FTLD)	[7,	8].	Subsequently,	
PGRN	deficiency	was	shown	to	be	involved	in	the	development	of	
other	neurodegenerative	diseases	such	as	Alzheimer’s	disease	[9],	
amyotrophic	lateral	sclerosis	[10],	and	neuronal	ceroid	lipofuscinosis	
(NCL)	[11].
We	have	reported	that	PGRN	is	involved	in	sexual	differentiation	

of	the	rodent	brain	during	the	neonatal	period	[12,	13]	and	adult	
neurogenesis	 in	 the	dentate	gyrus	of	 the	hippocampus	 [6,	14],	
using	rats	and	PGRN-deficient	mice	that	we	have	generated.	PGRN	
deficiency	results	in	a	decrease	in	ejaculation	incidence,	an	increase	

in	aggression,	and	anxiety	in	males,	with	histological	changes	in	
the	brain	including	a	larger	volume	of	the	locus	coeruleus	[15]	and	
a	 thicker	density	of	Purkinje	cell	dendrites	[16].	In	addition,	we	
recently	demonstrated	that	PGRN	deficiency	exacerbates	neuronal	
damage,	neuroinflammation,	and	lysosomal	biogenesis	in	activated	
microglia	following	traumatic	brain	injury	(TBI)	[2,	17].	We	have	also	
shown	that	aged	PGRN-deficient	mice	present	NCL-like	pathology,	
as	well	as	TAR	DNA	binding	protein-43	aggregates,	a	characteristic	
feature	of	FTLD,	and	that	these	pathological	changes	are	the	result	
of	lysosomal	dysfunction	[18].	The	expression	of	PGRN	in	the	brain	
was	reported	to	be	upregulated	by	injury	[2,	3],	exercise	[6],	and	
estrogen	treatment	[14,	19].
It	is	well	known	that	estrogen	has	a	potent	neuroprotective	func-

tion,	as	well	as	functions	 to	 induce	sex	differences	of	 the	brain	
during	the	neonatal	period	and	sexual	behaviors	in	adulthood.	For	
example,	estrogen	protects	neurons	by	reducing	astrogliosis	 in	a	
TBI	model	 [20]	and	 improves	 locomotor	 functions	after	spinal	
cord	injury	[21].	In	addition,	estrogen	promotes	neurogenesis	after	
ischemia	[22,	23]	and	enhances	proliferation	of	neural	progenitor	
cells	[24].	Thus,	PGRN	and	estrogen	have	common	neuroprotective	
properties	in	the	brain.	Indeed,	we	have	previously	demonstrated	
that	PGRN	mediates	at	least	some	of	the	actions	of	estrogen,	such	
as	masculinization	of	 the	rodent	brain	[12,	13]	and	induction	of	
hippocampal	adult	neurogenesis	[14,	19].	In	the	present	study,	to	
evaluate	the	underlying	mechanism	of	the	role	of	PGRN	in	mediating	
the	function	of	estrogen,	the	localization	of	estrogen	receptor	α	(ERα),	
a	classic	well-studied	subtype	of	estrogen	receptors,	in	the	brain	of	
PGRN-deficient	mice	was	assessed	using	immunohistochemistry,	
and	interesting	cell	 type-specific	suppression	of	ERα	expression	
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was	observed	in	astrocytes	of	PGRN-deficient	mice.

Materials and Methods

Animals
Adult	female	(8-	to	11-week	old),	male	(9-week	old),	and	immature	

female	(5-week	old)	C57BL/6J	wild-type	(WT)	and	PGRN-deficient	
(KO)	mice	[13]	of	the	same	genetic	background,	bred	in	our	labora-
tory,	were	used.	Food	and	water	were	available	ad libitum,	and	the	
animals	were	housed	in	a	controlled	temperature	of	23	±	1°C	and	
under	a	12	h	light-dark	cycle	(lights	on	at	0700	h).	Vaginal	smears	
were	taken	from	adult	female	mice	to	monitor	estrous	cycles,	and	
mice	in	diestrous	or	estrous	stages	were	used.	Some	female	mice	were	
ovariectomized	(OVX)	1	week	before	being	used.	In	all	experimental	
groups,	 three	animals	were	used,	except	 for	WT	females	 in	 the	
estrous	stage	(n	=	4).	All	experiments	were	conducted	following	the	
Guidelines	for	the	Care	and	Use	of	Laboratory	Animals,	Graduate	
School	of	Agricultural	and	Life	Sciences,	The	University	of	Tokyo.

Histological analysis
Brains	of	 the	mice	were	sampled	after	decapitation	and	 im-

mersed	in	4%	paraformaldehyde	(Wako,	Tokyo,	Japan),	dissolved	
in	phosphate-buffered	saline	(PBS)	for	48	h,	in	15%	sucrose/PBS	for	
24	h,	and	30%	sucrose/PBS	for	48	h,	embedded	in	OTC	compound	
(Sakura	Finetek	Japan,	Tokyo,	Japan),	and	stored	at	–80	°C	until	cut.	
Coronal	sections	(30-μm	thick)	from	the	bregma	–1.06	to	–3.16	mm	
of	the	brain	were	produced	using	a	cryostat	(Carl	Zeiss,	Oberkochen,	
Germany)	and	stored	in	anti-freezing	buffer	(0.1	M	PBS,	30%	ethylene	
glycol,	20%	glycerol)	at	–20°C	until	use.	Three	sections	(anterior,	
middle,	and	posterior	portion	of	the	bregma	–1.06	to	–3.16	mm)	
were	washed	in	PBS	for	10	min,	incubated	in	Block	Ace	solution	
(4	mg/ml,	Megmilk	Snow	Brand,	Tokyo,	Japan),	and	dissolved	in	
0.3%	Triton	X-100	in	PBS	(PBST)	for	2	h	at	room	temperature	(r.t.).	
For	double	immunostaining,	sections	were	incubated	with	primary	
antibodies	for	ERα	(rabbit	anti-ERα,	C1355;	1:500,	EMD	Millipore	
Corporation,	Billerica,	MA)	and	each	cell	marker:	mouse	anti-neuronal	
nuclei	(NeuN)	as	a	marker	of	neurons	(A60;	1:1000,	EMD	Millipore	
Corporation),	goat	anti-ionized	calcium-binding	adaptor	molecule	1	
(Iba1)	as	a	marker	of	microglia	(ab5076;	1:400,	Abcam,	Cambridge,	
UK),	and	goat	anti-glial	fibrillary	acidic	protein	(GFAP)	as	a	marker	
of	astrocytes	 (ab53544;	1:2000,	Abcam)	for	16	h	at	4°C.	After	
washing	in	0.03%	PBST,	sections	were	incubated	with	Alexa	Fluor	
Dye-conjugated	secondary	antibodies	(1:1000;	Invitrogen,	Carlsbad,	
CA);	Alexa	Fluor	594	goat	anti-rabbit	IgG	(H	+	L)	and	Alexa	Fluor	
488	goat	anti-mouse	IgG	(H	+	L)	for	double-staining	of	ERα	and	
NeuN,	and	Alexa	Fluor	594	donkey	anti-rabbit	IgG	(H	+	L)	and	
Alexa	Fluor	488	donkey	anti-goat	IgG	(H	+	L)	for	ERα	and	Iba1	
or	GFAP,	in	0.3%	PBST	for	2	h	at	r.t.,	and	washed	in	0.03%	PBST.	
Finally,	sections	were	mounted	on	MAS-coated	slides	and	sealed	
with	Fluoromount	(Diagnostic	Biosystems,	Pleasanton,	CA)	and	
coverslips	(Matsunami	Glass,	Osaka,	Japan).	Images	were	obtained	
with	a	microscope	(BX-53;	Olympus,	Tokyo,	Japan)	equipped	with	
a	CCD	camera	(DP73;	Olympus)	and	then	merged	using	Adobe	
Photoshop	(version	CC	2015;	Adobe	Systems,	San	Jose,	CA).

Antibody absorption test
We	synthesized	a	peptide	with	the	same	sequence	as	the	antigen	

used	to	produce	the	ERα	antibody	used	in	the	present	study	(amino	
acids	585–599	of	the	mouse	ERα	sequence;	TYYIPPEAEGFPNTI,	
TORAY	Research	Center,	Tokyo,	Japan).	The	ERα	peptide	was	
dissolved	 in	PBS	and	mixed	with	ERα	antibody	solution	(20:1,	
molar	ratio)	at	4°C	overnight.	A	mixture	of	antibody	and	peptide	
was	used	for	the	primary	antibody.

Results

A	double-labeling	 immunofluorescence	study	was	performed	
to	characterize	ERα-immunoreactive	(IR)	cells	in	the	brain	of	the	
mice	sampled	on	the	day	of	estrus	(n	=	4	for	WT	mice,	n	=	3	for	KO	
mice)	and	diestrus	(n	=	3	for	each	genotype).	ERα	immunoreactivity	
was	observed	in	brain	sections	containing	the	cortex,	hippocampus,	
amygdala,	thalamus,	and	hypothalamus	of	both	WT	and	KO	mice,	
and	since	the	same	results	were	obtained	among	these	brain	regions,	
representative	images	of	the	dentate	gyrus	(DG)	in	the	hippocampus	
and	the	dorsomedial	nucleus	of	the	hypothalamus	are	shown	in	Fig.	1. 
These	brain	regions	were	selected	because	neurogenesis	in	the	DG	is	
promoted	by	estrogen	[14],	and	the	hypothalamus	is	the	major	target	
of	estrogen	[25,	26].	ERα	and	NeuN	co-staining	was	often	observed	
(Fig.	1A),	whereas	ERα-IR	cells	were	never	Iba1-positive	(Fig.	1B)	
in	the	brains	of	both	genotypes.	In	contrast,	co-localization	of	ERα	
and	GFAP	was	not	discernible	in	five	of	six	KO	mice,	whereas	these	
two	markers	showed	co-localization	in	WT	mice	(Fig.	1C).	In	one	
KO	mouse	at	the	estrous	stage,	ERα	immunoreactivity	was	observed	
in	GFAP-IR	cells	(data	not	shown).	These	results	imply	that	PGRN	
plays	an	important	role	in	ERα	expression	in	astrocytes	regardless	of	
the	estrous	stage.	Absorption	controls	showed	no	ERα-IR	signals	in	
the	brains	of	both	WT	and	KO	mice	(Supplementary	Fig.	1:	online	
only),	confirming	the	specificity	of	the	antibody	used.
Subsequently,	to	evaluate	the	effect	of	endogenous	estrogen	on	

the	possible	regulation	of	ERα	expression	by	PGRN	in	astrocytes,	
double-immunostaining	of	ERα	and	GFAP	in	the	brains	of	adult	
OVX,	adult	male,	and	immature	female	mice	(n	=	3	for	each	group,	
Fig.	2)	was	performed.	Co-localization	of	ERα	and	GFAP	was	not	
observed	in	the	brains	of	all	KO	mice	used,	whereas	these	markers	
co-localized	well	in	the	brains	of	WT	mice,	suggesting	that	estrogen	
is	not	involved	in	the	regulation	of	ERα	expression	by	PGRN.

Discussion

The	present	study	suggests	that	PGRN	plays	a	crucial	role	in	the	
expression	of	ERα	in	astrocytes	regardless	of	estrous	cycle,	sex,	
and	maturity.	In	the	rodent	brain,	it	has	been	reported	that	ERα	is	
mainly	localized	to	the	cortex,	hippocampus,	amygdala,	thalamus,	
and	hypothalamus	[27–29],	and	that	both	neurons	and	astrocytes	
express	ERα	[30–33].	Consistently,	in	the	present	study,	ERα	im-
munoreactivity	was	observed	in	neurons	and	astrocytes	of	these	brain	
regions	in	WT	mice.	However,	in	the	KO	mice,	ERα	expression	in	
astrocytes	was	not	detected	in	practically	all	animals	used,	whereas	
all	KO	mice	showed	ERα	expression	in	neurons.	We	have	previously	
demonstrated	that	PGRN	is	expressed	in	neurons	and	microglia,	
but	not	in	astrocytes	[2,	6].	Astrocytes	are	reported	to	interact	with	
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neurons	through	signal	transduction	via	the	synapse	[34]	and	with	
microglia	during	brain	inflammation	[35].	Thus,	PGRN	possibly	
affects	neurons	or	microglia	to	regulate	ERα	expression	in	astrocytes.	
Another	possible	mechanism	is	that	PGRN	is	produced	and	secreted	
from	neurons,	and	acts	on	astrocytes	to	control	the	expression	of	ERα,	
since	PGRN	is	a	secretory	glycoprotein	detected	in	cerebrospinal	
fluid	[36].	In	the	present	study,	ERα	immunoreactivity	was	observed	
in	GFAP-IR	cells	of	one	adult	female	KO	mouse	of	15.	The	reason	
for	this	exceptional	case	is	currently	unknown,	but	the	possibility	
that	PGRN	plays	a	role	in	the	degradation	of	ERα	rather	than	its	
synthesis	cannot	be	ruled	out,	since	we	have	previously	suggested	
that	PGRN	is	involved	in	the	autophagy-lysosome	system	[17,	18].
Estrogen	is	reported	to	suppress	TBI-induced	neuroinflammatory	

responses	by	reducing	astrogliosis	[20].	In	contrast,	we	have	previously	
shown	that	activation	of	microglia	and	subsequent	neuroinflammatory	
responses	induced	by	TBI	are	enhanced	by	PGRN	deficiency,	implying	

that	PGRN	has	anti-inflammatory	and	neuroprotective	effects	[17,	
18].	Since	activated	astrocytes	are	reported	to	activate	microglia	
[35],	 the	deficiency	of	ERα	in	astrocytes	could	be	a	major	factor	
causing	hyperactivation	of	microglia	and	neuroinflammation	in	KO	
mice.	These	studies	suggest	that	PGRN	regulates	the	expression	of	
ERα	in	astrocytes,	which	in	turn	mediates	 the	anti-inflammatory	
function	of	estrogen	in	the	brain.	In	addition,	estrogen	promotes	
the release of neuroprotective factors from astrocytes, such as glial 
cell-line	derived	neurotrophic	factor	[37,	38],	nerve	growth	factor	
[38],	vascular	endothelial	growth	factor	 [39],	and	brain-derived	
neurotrophic	 factor	 [38].	Furthermore,	estrogen	was	shown	 to	
decrease	 the	expression	of	chemokines	via	ERα	in	astrocytes	 in	
an	experimental	autoimmune	encephalomyelitis	model	[40],	and	
astrocytes	mediated	the	neurotrophic	function	of	estrogen	to	prevent	
neural	death	induced	by	β-amyloid	protein	[41].	Thus,	PGRN	might	
be	associated	with	these	neuroprotective	functions	of	estrogen	in	

Fig. 1.	 Double	immunostaining	of	ERα	and	NeuN	(A),	Iba1	(B),	or	GFAP	(C)	in	the	dentate	gyrus	of	the	hippocampus	and	the	hypothalamus	of	intact	
adult	female	mice.	ERα	co-stained	with	NeuN,	but	not	with	Iba1	in	both	genotypes.	ERα	immunoreactivity	was	observed	in	GFAP-IR	cells	in	WT	
mice,	whereas	no	co-localization	was	discernible	in	KO	mice.	Scale	bar	=	100	μm.	Right	panels	represent	higher	magnification	images	of	merged	
images.	Scale	bar	=	25	μm.
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astrocytes,	and	PGRN-deficient	mice,	used	in	 the	present	study,	
might	be	a	good	experimental	model	to	investigate	the	function	of	
estrogen/ERα	in	astrocytes.
As	another	subtype	of	the	estrogen	receptor,	estrogen	receptor	β	

(ERβ),	was	discovered	in	1996	[42],	the	functions	of	estrogen	via	
ERα	and	ERβ	have	been	considered.	These	receptors	are	broadly	
expressed	in	the	brain,	but	their	distributions	are	different	[25,	43,	
44].	The	expression	of	ERβ	was	reported	in	neurons,	astrocytes,	and	
even	microglia	[45].	The	structure	of	these	receptors	is	similar	in	
their	DNA-binding	domains	and	ligand-binding	domains	[23,	42],	
and	they	share	some	common	roles	[46].	Recent	studies	show	that	
ERβ	also	mediates	 the	neuroprotective	function	of	estrogen.	For	
example,	the	function	of	estrogen	to	promote	neurogenesis	is	mediated	
by	both	ERs,	but	its	function	in	increasing	neural	progenitor	cells	is	
mediated	by	ERβ,	but	not	by	ERα	[47].	To	precisely	clarify	the	role	
of	PGRN	in	mediating	the	actions	of	estrogen,	further	studies	on	
the	localization	of	ERβ	in	PGRN-deficient	mice	might	be	required.
In	conclusion,	the	present	study	suggests	that	PGRN	produced	in	

neurons	and/or	microglia	acts	on	astrocytes	to	induce	the	expression	
of	ERα,	which	probably	mediates	the	actions	of	estrogen	to	suppress	
neuroinflammation	after	brain	damage.	To	understand	whether	PGRN	
affects	ERα	expression	in	astrocytes	at	 the	level	of	transcription,	
translation,	or	degradation	needs	further	investigation.
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