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Abstract: Heartbeat detection for ambulatory cardiac monitoring is more challenging as the level of
noise and artefacts induced by daily-life activities are considerably higher than monitoring in a hospital
setting. It is valuable to understand the relationship between the characteristics of electrocardiogram
(ECG) noises and the beat detection performance in the cardiac monitoring system. For this purpose,
three well-known algorithms for the beat detection process were re-implemented. The beat detection
algorithms were validated using two types of ambulatory datasets, which were the ECG signal from
the MIT-BIH Arrhythmia Database and the simulated noise-contaminated ECG signal with different
intensities of baseline wander (BW), muscle artefact (MA) and electrode motion (EM) artefact from the
MIT-BIH Noise Stress Test Database. The findings showed that signals contaminated with noise and
artefacts decreased the potential of beat detection in ambulatory signal with the poorest performance
noted for ECG signal affected by the EM artefacts. In conclusion, none of the algorithms was able
to detect all QRS complexes without any false detection at the highest level of noise. The EM noise
influenced the beat detection performance the most in comparison to the MA and BW noises that
resulted in the highest number of misdetections and false detections.

Keywords: heartbeat detection; noisy signal; ambulatory ECG signal; ECG analysis;
cardiac monitoring

1. Introduction

Advancement in the field of microelectronics and the computational systems has indirectly led to
the evolvement of health monitoring devices for daily applications [1]. This has also enhanced the
utilization of portable devices that can record ambulatory bio-signals or electrocardiogram (ECG) signals
during daily-life activities such as resting, housework, exercise and other physical works. Unlike the
standard ECG, the ambulatory ECG records the signal continuously over a long period out-of-hospital
environment using the conventional Holter monitor [2] or the trendy wearable devices [3]. This allows
the analysis of ambulatory cardiac signals that can assist in various medical applications [4–8] including
the diagnosis of cardiac arrhythmias that can lead to sudden death or heart failure among patients [9,10].

The most important process in the monitoring system for the detection of arrhythmia is the
identification of the QRS wave also recognized as the QRS complex or beat detection in ECG [11].
The beat detection is more challenging for ambulatory monitoring as the level of noise and artefacts
produced during daily-life activities is greater than the monitoring process in the hospital setting.
When a subject performs various high-intensity physical activities, a poor ECG signal-to-noise-ratio
(SNR) may result [12]. In the ambulatory ECG, various types of noise may occur simultaneously and
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unpredictably that originate from stationary and non-stationary sources. Among them, baseline wander
(BW), muscle artefact (MA) and electrode motion (EM) artefact which have frequency range within the
frequency limit of ECG signal can manifest similar morphology as the ECG signal and can distort the
clinical features of the signal which is important in recognition of various ECG arrhythmias [13–15].

The amplitude and frequency of ECG signals as affected by the artefacts in comparison to clean
ECG are presented in Figure 1. The BW and abrupt drift as shown in Figure 1a could be due to the
subject’s respiration movements besides being contributed by a loose or dry electrode-skin contact [16].
The BW amplitudes depend on several factors such as the subject movements, properties of electrode
and skin impedance [16]. In general, the frequency of the BW is below 1 Hz but through exercise
activity, the frequency of the BW in ECG recording may increase with the increasing rate of breathing.
The MA or electromyogram as shown in Figure 1b was produced during a sudden body movement by
the electrical activity of muscles [14]. Usually, the frequency of MA noise ranges from 20 to 1000 Hz
which can cause challenges in eliminating MA without interfering with the clinical features of the ECG
signal. The EM artefacts and the induced impedance change, as shown in Figure 1c, were caused by
the electrode motion and have similar frequency components as the ECG signal that ranges from 1 Hz
to 15 Hz [17]. Major EM artefacts can distort the signal and may lead to incorrect QRS complex and
hence can cause the wrong diagnosis of arrhythmias.
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Hz: (a) ECG with baseline wander (BW); (b) ECG with muscle artefact (MA); (c) ECG with electrode 
motion (EM) artefact. 

Noise in ECG recordings can affect the detection process in acquiring accurate and reliable 
measurement of heartbeat for ECG monitoring system. Numerous studies were conducted on ECG 
noise analysis and different QRS detection algorithms have been developed [18–22]. However, most 
of the studies used clean data for the evaluations and assumed to reflect the overall performance of 
detectors. For a reliable comparison, the QRS detector performance evaluation should be carried out 
using the same test signal database, which was not adopted in the previous research [23]. Other 
studies have taken into account the influence of clinical noise with simulated noise or with 
experimental noise [24–26] which is important in an ECG signal processing task such as ECG 
delineation [27,28]. Nevertheless, details on the specific noise types and intensity levels that affect the 
QRS morphology and the beat detection performance are unavailable. Therefore, research should be 
conducted to evaluate the effect of noise types and intensity levels on the heartbeat detection in the 

Figure 1. Eight-seconds of clean and noisy electrocardiogram (ECG) signals at a sampling rate of
360 Hz: (a) ECG with baseline wander (BW); (b) ECG with muscle artefact (MA); (c) ECG with electrode
motion (EM) artefact.

Noise in ECG recordings can affect the detection process in acquiring accurate and reliable
measurement of heartbeat for ECG monitoring system. Numerous studies were conducted on ECG
noise analysis and different QRS detection algorithms have been developed [18–22]. However, most of
the studies used clean data for the evaluations and assumed to reflect the overall performance of
detectors. For a reliable comparison, the QRS detector performance evaluation should be carried out
using the same test signal database, which was not adopted in the previous research [23]. Other studies
have taken into account the influence of clinical noise with simulated noise or with experimental
noise [24–26] which is important in an ECG signal processing task such as ECG delineation [27,28].
Nevertheless, details on the specific noise types and intensity levels that affect the QRS morphology
and the beat detection performance are unavailable. Therefore, research should be conducted to
evaluate the effect of noise types and intensity levels on the heartbeat detection in the ambulatory
cardiac monitoring besides establishing the relationship between the beat detection and characteristics
of noises especially the artefacts that can distort the ECG signal morphologically.
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In this study, a methodology to compare a set of QRS detectors under different noise conditions
and QRS morphologies was presented to investigate the relationship between beat detection and
characteristics of noises. Experiments were performed to determine the effects of beat detector
performance on clean ECG signal, heartbeat morphology, noisy signal and abnormal signal. Standard
cardiac database and the simulated data using the BW, MA and EM with different levels of SNR were
utilized and three algorithms were used to perform the beat detection process. The effects of noise
artefacts in the ECG signals that degraded the beat detection performance were investigated.

2. Materials and Methods

2.1. Ambulatory ECG Data for Beat Detection Evaluation

Two types of ambulatory ECG signals were used in the beat detection evaluation process which
were the clean ECG signal and the simulated noise-contaminated ECG signal. The clean ECG data
represented the high-quality ambulatory signal and was used as a standard reference to investigate the
performance of beat detection. The MIT-BIH Arrhythmia Database [29] was selected as the ECG signal
was recorded in a supervised clinical environment using a Holter monitor. The database consisted
of 48 recordings of ECG signals that included both normal and arrhythmic beats, each with 30-min
duration with a sampling rate of 360 Hz from 47 subjects. The details of each of the 48 records are
presented in Table 1. These recordings included the annotations files that contained marked locations
of each QRS complex, approximately 109,505 beat annotations by two or more cardiologists.

Table 1. The MIT-BIH Arrhythmia Database.

Record
Beats

Record
Beats

Total N 1 S 2 V 3 F 4 Q 5 Total N 1 S 2 V 3 F 4 Q 5

100 2273 2239 33 1 0 0 201 1963 1635 128 198 2 0
101 1865 1860 3 0 0 2 202 2136 2061 55 19 1 0
102 2187 99 0 4 56 2028 203 2980 2529 2 444 1 4
103 2084 2082 2 0 0 0 205 2656 2571 3 71 11 0
104 2229 163 0 2 666 1398 207 1860 1543 107 210 0 0
105 2572 2526 0 41 0 5 208 2955 1586 2 992 373 2
106 2027 1507 0 520 0 0 209 3005 2621 383 1 0 0
107 2137 0 0 59 0 2078 210 2650 2423 22 195 10 0
108 1774 1740 4 17 2 0 212 2748 923 1825 0 0 0
109 2532 2492 0 38 2 0 213 3251 2641 28 220 362 0
111 2124 2123 0 1 0 0 214 2262 2003 0 256 1 2
112 2539 2537 2 0 0 0 215 3363 3195 3 164 1 0
113 1795 1789 6 0 0 0 217 2208 244 0 162 260 1542
114 1879 1820 12 43 4 0 219 2154 2082 7 64 1 0
115 1953 1953 0 0 0 0 220 2048 1954 94 0 0 0
116 2412 2302 1 109 0 0 221 2427 2031 0 396 0 0
117 1535 1534 1 0 0 0 222 2483 2274 209 0 0 0
118 2278 2166 96 16 0 0 223 2605 2045 73 473 14 0
119 1987 1543 0 444 0 0 228 2053 1688 3 362 0 0
121 1863 1861 1 1 0 0 230 2256 2255 1 0 0 0
122 2476 2476 0 0 0 0 231 1571 1568 1 2 0 0
123 1518 1515 0 3 0 0 232 1780 398 1382 0 0 0
124 1619 1536 31 47 5 0 233 3079 2230 7 831 11 0
200 2601 1743 30 826 2 0 234 2753 2700 50 3 0 0

1 Normal (N), 2 Supraventricular Ectopic (S), 3 Ventricular Ectopic (V), 4 Fusion (F), 5 Unknown (Q).

The simulated noise-contaminated ECG signal was used to determine the relationship between
the intensity of noises and beat detection performance using a scheme (as shown in Figure 2) where
the simulated signal was produced by separately adding three sources of noise to a clean ECG signal.
All 48 records from the MIT-BIH Arrhythmia Database (Table 1) [29] were used to generate the
simulated noise-contaminated ECG signals. The records numbered 100 and 200 were selected for
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further analysis to determine the effects of beat detectors performance on noise signals and abnormal
beats in ECG. The record number 100 was selected as the clean signal as it is of good quality compared
to other signals and contained a few arrhythmia beats while the record number 200 was selected
as an arrhythmia signal due to its dynamic signal and consisted of a fusion of arrhythmias beats
(Table 1). Noise sources were added to the signal to assess the behavior of the heartbeat against the
noise. The three noise sources of BW, MA, and EM from MIT-BIH Noise Stress Test Database [30] were
used in this study. The noises were directly added to the aforementioned original ECGs. To simulate
different levels of noise, a level of SNR from −12 to 12 dB in steps of 3 dB was used. The SNR was
calculated using the following Equation (1),

SNR = 10 log10

Psignal

a2 × Pnoise
(1)

where P denotes the signal power and a refers to a scale factor. Examples of simulated ECG signals
with different levels of SNR are shown in Figure 3.
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2.2. Beat Detection Algorithms

Three algorithms were employed in this study to represent the beat detectors, which were the
Pan Tompkins [18], the WQRS [19] and the Hamilton [20] algorithms. The main criteria for the
algorithm selection were that the algorithm can be applied in a real-time system and show robust
performance with the noisy and ambulatory ECG signals. The Pan Tompkins and Hamilton algorithm
were implemented using the MATLAB software. The WQRS algorithm downloaded from PhysioNet
website [31] is called using MATLAB scripts as the MATLAB external function. The implementation of
the algorithms in this work will be made publicly available at https://github.com/Ziti481122/Effects-of-
Noisy-Electrocardiogram-Signal-on-Heartbeat-Detection-Performance. The correctness of algorithm
implementation was verified by analyzing the results with the same data, in this case, a record from
the MIT-BIH Arrhythmia Database. It was observed that the results obtained were almost similar as
reported in [18–20].

The Pan Tompkins algorithm [18] is one of the most well-known beat detection algorithms.
This algorithm used band-pass filtering, signal differentiation, squaring, moving window integration
and two sets of adaptive thresholds to filter and integrate signals for beat detection. The first step
was a band-pass filtering with a passband of 5−15 Hz, which removed the BW, a 50 Hz power line
interference and reduced the amplitude of T-waves. After the band-pass filtering step, the signal was
then differentiated to highlight the sharp slopes of the QRS complex. To further emphasize the QRS
complex, the signal was then squared to obtain positive values. The final processing step involved
a moving window integration with an average window of 150 ms. This window was chosen to
match the width of the widest possible QRS complex. The QRS peaks of at least 300 ms apart were
identified in the pre-processed signals and classified as a noise or a QRS complex depending on the
adaptive threshold.

The WQRS [19] algorithm is based on the slope and length transform of the ECG signal to identify
the QRS complex. The algorithm uses low pass filters, non-linearly scaled curve length transformation
and decision rules to determine the location of corresponding QRS. Instead of the band-pass filter,
the low pass filter was used to eliminate the BW artefacts. The low pass filter of 16 Hz was employed to
suppress the high-frequency components. Then, the ECG signal was transformed into a curve length
signal using a non-linear scaling factor to enhance the QRS complex and suppress the unwanted noise.
The QRS complex was determined using an adaptive threshold in the decision rules process.

The Hamilton [20] algorithm is based on the work by Pan and Tompkins [18] with alteration carried
out for the pre-processing stage. The Hamilton algorithm uses band-pass filtering, differentiation,
rectifying, moving window average and three rules threshold to identify the QRS complex. It differs
from Pan Tompkins and WQRS algorithms where the band-pass filter of 8–16 Hz was used to remove
the high- and low-frequency noises. After the band-pass filtering step, the differentiated signal was
rectified instead of squaring it to highlight the QRS complex. To match the possible QRS complex in
the signal, the 80 ms moving average window was used. The QRS peak of at least 300 ms away from
the last detected R-peak and the peak amplitude above the detection of the adaptive threshold was
classified as a QRS complex.

3. Results and Discussion

3.1. Evaluation Metrics

To validate the beat detection performance, each detected QRS peak was categorized as true
positive (TP), false positive (FP) or false negative (FN). TP denotes the total number of QRS peaks
detected as the QRS complex, FP denotes the total number of non-QRS peaks or noises detected
as the QRS complex and FN represents the total number of QRS complexes that was not detected.
Two evaluation metrics which were sensitivity (SE) and positive predictivity (PP) were calculated
using Equations (2) and (3), respectively [11]. The SE denotes the percentage of true beats that are

https://github.com/Ziti481122/Effects-of-Noisy-Electrocardiogram-Signal-on-Heartbeat-Detection-Performance
https://github.com/Ziti481122/Effects-of-Noisy-Electrocardiogram-Signal-on-Heartbeat-Detection-Performance
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correctly detected by the algorithm, whereas the PP denotes the percentage of detected true beats.
These two metrics were calculated using the total number of TP, FN and FP.

SE =
TP

TP + FN
× 100% (2)

PP =
TP

TP + FP
× 100% (3)

3.2. Effect of Beat Detector Performance on a Clean ECG

The heartbeat detector performance on a clean ambulatory ECG signal was evaluated using
48 records from the MIT-BIH Arrhythmia Database (Table 1) [29]. Figure 4 presents the average
performance of the three algorithms of beat detectors on all 48 ECG records. There was no significant
difference found in the performances of these algorithms when using a clean ECG. All the algorithms
produced SE and PP with an average above 98% which indicated good performance of the algorithms
for both clean and diverse clinical ECG signals from 47 subjects.
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It was observed that the Hamilton algorithm has a good PP, however, the SE decreased which
indicated the algorithm’s sensitiveness towards abnormalities of heart rhythm. Although the WQRS
algorithm was capable to detect the correct QRS peak with the highest total SE of 99.64%, the algorithm
was also sensitive to noise. The WQRS algorithm often detected false peak as the QRS complex thus
producing a low PP (Figure 4). It was also found that the Pan Tompkins algorithm has the stability
to perform beat detection compared to the other two methods with 99.59% of SE and 99.51% of
PP, respectively.

All beat detector algorithms performed well for most of the records in the MIT-BIH Arrhythmia
Database [29]. Nevertheless, in this database, there were a few records, such as record numbers 105,
108, 121, 200, 202, 207, and 217, that have dynamic signals due to abnormal beats and noise effects.
Previous research also used these records to assess the noise robustness [32,33]. According to the
PhysioNet web-based resource [34], the signal from record 207 is the extremely difficult record in the
MIT-BIH Arrhythmia Database due to the predominant rhythm of abnormal beats in the signal. In this
study, comparison of the algorithm performance for the few difficult records such as record numbers
105, 108, 121, 200, 202, 207, and 217 was also carried out as shown in Table 2.

The findings showed that the beat detector can handle both normal and abnormal beat signals
such as record numbers 200, 202, 207, and 217. The signal from the record 200 indicated a normal
and combination of ventricular beats, while the signal from the record 202 showed a normal, atrial
premature and premature ventricular contraction beat. The ECG signal of the record 217 composed of
normal beats with a fusion of paced and premature ventricular contraction beats. Results showed that
the beat detectors performance with this signal resulted in the percentage of SE and PP above 98.98%
and 98.2%, respectively. It was also observed that the signal from the record 121 was distorted by the
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BW, however, this did not affect the detection performance. However, the performance of the beat
detector degraded especially with the signal from the record 108 that was despoiled by MA and low
amplitude, and the signal from the record 105 that was contaminated with high-grade noise.

Table 2. Comparison of the beat detector performances for ECG records 105, 108, 121, 200, 202, 207
and 217.

Record
Pan Tompkins [18] WQRS [19] Hamilton [20]

SE (%) PP (%) SE (%) PP (%) SE (%) PP (%)

105 99.46 98.27 98.83 92.10 99.57 98.88
108 99.77 83.27 1 99.38 84.19 1 99.32 99.38
121 99.89 100 99.79 99.73 99.95 100
200 99.85 99.85 99.85 99.31 99.85 99.73
202 99.53 100 99.81 99.95 99.67 100
207 98.98 99.68 99.41 98.40 99.25 99.84
217 99.82 99.91 99.55 98.30 99.18 99.64

1 Low positive predictivity.

3.3. Effect of Noisy Signal on Heart Beat Morphology

Effects of noise towards heartbeat morphology in a noisy signal were also studied. Simulated
signals using the record number 100 from MIT-BIH Arrhythmia Database that were contaminated with
BW, MA, and EM with SNR 0 dB were evaluated separately to investigate the heartbeat morphologies
as affected by noisy signals. The Pan Tompkins [18] algorithm was chosen due to the comprehensive
approach to reduce the interferences and to avoid false detection of QRS complexes in ECG signals.
The algorithm also has higher accuracy for various beat morphologies than the other traditional
real-time methods [35]. The QRS characteristics of heartbeat morphologies were evaluated after the
band-pass filtering process with 5 to 15 Hz and adaptive thresholds of Pan Tompkins algorithm to
reduce the destruction caused by the noises and identify the true beats in ECG signals. Figure 5 shows
the ECG morphologies as affected by noisy and de-noised signals.
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As can be seen in Figure 5, the blue, and orange signal represents the signal before and after
the filtering process, respectively. The TP denotes true positive while FP denotes the false detection.
The blue areas represent the QRS morphology in Figure 5b. The findings showed that the ECG
morphologies were distorted by the different noises. The BW noise due to the subject’s respiration
movements presented an abrupt drift in the signal that introduced some interference to the signal.
The MA noise with the high-frequency range interfered the morphological features in the signal.
Besides, the ECG information changed when motion artefacts were introduced to the signal which
caused irregularities in the ECG morphology. The difference in frequency ranges of BW, MA and EM
artefact led to distorted ECG signal morphologies.

In this study, the filtering process smoothened the ECG morphology and enhanced the QRS
complex. Although the signal contaminated with BW and MA degraded the morphology, the algorithm
managed to discover the QRS complex after the filtering process. However, the irregularities caused by
the EM artefact cannot be solved using the band-pass filter, thus resulting in a false detection as shown
in Figure 5. It can be observed that the ECG signals contaminated with EM noise have the poorest
signal compared to the other noises. The presence of undesired interferences from high-frequency
noises caused a serious problem in the ECG diagnosis [5].

3.4. Effect of Beat Detector Performance on the Noisy Signal of Record 100

Effect of a heartbeat detector on the different intensity of noise was identified. The simulated
signals contaminated with BW, MA and EM were used to investigate the relationship between the beat
detection performance and the intensity of noise as exhibited in Figures 6–8. To evaluate the effects of
noisy signal, the record number 100 from MIT-BIH Arrhythmia Database was used.

The relationship between the different intensity of BW noise and the performance of beat detection
on the signal is shown in Figure 6. In response to the sensitivity of the three algorithms, at SNR
levels above −6 dB, all the algorithms scored very well. At levels below a SNR of −6 dB, the beat
detector performance decreased, especially for the WQRS algorithm where the SE was lower, 97.23%
at a SNR of −12 dB which indicated the algorithm was sensitive to BW noise. In contrast, the Pan
Tompkins and Hamilton algorithms possessed SE lower than a SNR of −9 dB, where the SE of both the
Pan Tompkins and Hamilton algorithms decreased to 99.92% and 99.91%, respectively. In terms of
PP, the Hamilton and Pan Tompkins algorithms have a significantly better performance with 99.52%
and 99.21%, respectively in −12 dB SNR of BW noise compared to the WQRS algorithm that has low
performance with 76.9%.

Figure 7 shows the relationship between the different intensity of MA noise and the performance
of beat detection on the signal. It was found that below SNR of 3 dB, the performance of beat detector
continued to decrease with the drop in SNR value with SE of 90.94% and 86.89% as produced by
the Pan Tompkins and Hamilton algorithms, respectively at a SNR of −12 dB. The WQRS algorithm
showed that the detector was very sensitive and unstable with MA and resulted in lower SE and PP
performance. As for the PP, MA affected the performance of the Pan Tomkins and Hamilton algorithms
with a SNR value below 3 dB. However, the Hamilton algorithm has a better PP (65.16%) at a SNR of
−12 dB compared to the other two algorithms.

The relationship between the intensity level of EM noise and the performance of beat detection is
shown in Figure 8. The signal that was contaminated with the EM artefact below a SNR of 0 dB degraded
the detection performance of the Pan Tompkins and Hamilton algorithms. At a SNR of −12 dB, the Pan
Tompkins and Hamilton algorithms decreased the SE to 70.96% and 67.88%, respectively, lower than
the SE of WQRS algorithm which was 88.17%. This could be attributed to high false-positive detection
in the signal with high-frequency noises from EM artefact (Figure 8b) which decreased the PP of the
detector performance. All three algorithms, the Hamilton, the Pan Tompkins and the WQRS produced
low PP with 44.05%, 42.54% and 33.09%, respectively at a SNR of −12 dB.
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3.5. Effect of Beat Detector Performance on Noisy Abnormal Signal of Record 200

The effect of a heartbeat detector on different levels of noise in the ECG signal that consisted of
both abnormal or arrhythmia beats was determined. The simulated signals that contaminated with
BW, MA and EM were used to evaluate the effects of detection on the intensity of the noise signal.
Figures 9–11 demonstrate the relationship between the performance of beat detection and the level



Bioengineering 2020, 7, 53 10 of 15

of noise. To evaluate the effects of noise contamination on arrhythmia signal, the record number 200
from MIT-BIH Arrhythmia Database was used. As listed in [32], this record has a dynamic signal and
consists of a fusion of arrhythmias and normal beats.
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It can be observed that the noise in the abnormal signal destructed the heartbeat rhythm of
arrhythmias morphology thus degrading the ECG signal quality and affected the beat detection
performance (Figure 9). The BW noise affected the beat detection process of the Pan Tompkins and
the Hamilton algorithms less compared to the WQRS algorithm. The SE as influenced by the Pan
Tompkins, the Hamilton and the WQRS algorithms were 99.85%, 99.81% and 96.12%, respectively,
with PP of 99.39%, 98.90% and 70.11%, respectively, at a SNR of −12 dB.

Below a SNR of 3 dB, the detection of signal contaminated with MA noises in abnormal signal
reduced the SE (Figure 10a). At a SNR of −12 dB the Pan Tompkins, the WQRS and the Hamilton
algorithms resulted in a SE of 92.62%, 87.66% and 86.85%, respectively, while at a SNR of −12 dB, the PP
decreased to 69.66%, 42.07% and 72.45%, respectively (Figure 10b). However, the signal contaminated
with EM noises affected heartbeat detection. As shown in Figure 11, the EM artefact produced a lower
performance of heartbeat detection with a lower SE of 69.36% at a SNR of 12 dB using the Hamilton
algorithm. In contrast, the lower PP at a SNR of −12dB for a signal contaminated with EM artefact was
35.9% using the WQRS algorithm that indicated the inability of this algorithm to manage the false
positive in the detection process and performance maintenance.

3.6. Effect of Beat Detector Performance on Noisy Signal of all Records from the MIT-BIH Database

The effect of the different intensity of noise on the heartbeat detector method in 48 records from
the MIT-BIH Arrhythmia Database was identified. The simulated signals that were contaminated with
BW, MA and EM were investigated. The relationships between the beat detection performance and the
intensity of noise are exhibited in Figures 12–14. The SE and PP in Figures 12, 13 and 14a,b represent
the average performance of beat detection on all 48 records of noisy ECG signals.

Figure 12 shows the relationship between the different intensity of BW noise and the average
performance of beat detection. In response to the average sensitivity of the three algorithms, at the
highest level of noise, all the algorithms were not able to detect all QRS complexes. The WQRS
algorithm resulted in low SE (94.58%) at SNR of −12 dB while the Pan Tompkins and Hamilton
algorithms yielded a better performance with 99.42% and 98.13%, respectively. In terms of average PP,
the Pan Tompkins and Hamilton algorithms had a significantly better performance with 97.21% and
95.74%, respectively, at −12 dB SNR of BW noise compared to the WQRS algorithm (62.45%).

The relationship between the intensity level of MA noise and the average performance of beat
detection is shown in Figure 13. The MA noise affected the SE and PP of the beat detection process
of all algorithms. At a SNR of −12 dB, the average SE of the Pan Tompkins, Hamilton and WQRS
algorithms were 85.94%, 81.74% and 84.71%, respectively and that of the PP was 59.68%, 61.74% and
36.95%, respectively. The WQRS algorithm showed that the detectors produced high false-negative
detections and resulted in lower average PP performance at all levels of SNR compared to the Pan
Tompkins and Hamilton algorithms (Figure 13b).

Figure 14 shows the signals contaminated with EM artefacts have degraded the detection
performance of all algorithms. At a SNR of −12 dB, the Pan Tompkins and Hamilton algorithms
decreased the SE to 68.85% and 65.44%, respectively, which were lower than the corresponding value
of the WQRS algorithm (84.10%). As for the PP, the EM affected the average performance of algorithms
at all SNR values. All algorithms, Hamilton, Pan Tompkins and WQRS, produced low PP with 44.05%,
42.54% and 33.09%, respectively, at SNR of −12 dB.

As shown by Figures 12–14, signals contaminated with BW, MA and EM artefacts degraded the
detection performance of the Pan Tompkins, Hamilton and WQRS algorithms. The analysis on the
48 records from the MIT-BIH Arrhythmia Databases showed that the noisy signal decreased the beat
detection performance, with low average SE and PP at the lowest SNR, compared to the average
detection in clean ECG signals (Figure 4). The average detection performance showed the highest
influence by MA and EM artefacts, with the sensitive WQRS algorithm being most affected by the
noisy signal.
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4. Conclusions

With ambulatory cardiac monitoring systems becoming more widespread, the detection
performance of heartbeat as a dominant feature in classifying cardiac disease especially arrhythmia,
cannot be ensured and is still questionable in a noisy signal. To overcome the issues, robust heartbeat
algorithms are required for the signal generated in the ambulatory environment. The confirmation
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about which type of noise that could distort the ECG signal, and the algorithm performance must
be clarified.

In this study, the relationship between the ECG noise and heartbeat detection for ambulatory cardiac
monitoring was investigated using heartbeat detection algorithms for both clean and noise-simulated
ECG signals that were contaminated with BW, MA and EM artefacts. There was no significant difference
found in the performance of beat detection algorithms when the clean signal was used. The beat
detector was able to handle the high-quality signals from the MIT-BIH Arrhythmia database that has
dynamic signal due to abnormal beats, noise and artefacts effects.

The experimental results on noisy signal showed valid beat detection performance. The findings
implied that signal contaminated with noise and artefacts degraded the ECG morphology and decreased
the potential of beat detection in the ambulatory signal. This is represented by the relationship between
the noise types and the level of SNR intensity, and confirmed by the performance of the average SE and
PP of the algorithms used in the experiments. Based on the results, none of the algorithms were able
to detect all the QRS complexes without any false positive and false negative at the highest level of
noise indicating the weakness of the Pan Tompkins, the WQRS and the Hamilton algorithms. The Pan
Tompkins algorithm showed the best performance of detection when dealing with noisy signals,
followed by the Hamilton algorithm, while the WQRS algorithm showed the poorest performance.

The relationship study between the characteristics of ECG noises and the beat detection indicated
that the BW has a lesser influence on the beat detection performance except with the more sensitive
WQRS algorithm. Meanwhile, the EM artefacts have the highest influence on the detection algorithm,
followed by MA and BW. Higher interferences that degraded the detection performance were mainly
due to MA and EM artefacts. The higher intensity of MA and EM artefacts contributed to the false
positive and false negative values that affected the percentage of QRS complexes detected. However,
the EM artefacts contributed to the poorest detection performance which was proved by the lower
performance of SE and PP in the high noise signal and the distorted ECG morphology. This has led
to the highest number of misdetections and false detections. Further improvements should consider
effect of MA and EM artefacts in ECG signals to deal with the false detection of the QRS complex in
order to improve the detection performance.

Future work will focus on applying motion artefact reduction algorithms to overcome the effect of
MA and EM artefacts in the detection of heartbeats. This will lead to developing a robust heartbeat
algorithm in the cardiac ambulatory monitoring system.
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