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ABSTRACT  The demand for phenomics, a high-dimensional and high-throughput phenotyp-
ing method, has been increasing in many fields of biology. The budding yeast Saccharomyces 
cerevisiae, a unicellular model organism, provides an invaluable system for dissecting com-
plex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial 
and temporal attributes to subcellular structures based on microscopic images has rendered 
this cell phenotyping system more reliable and amenable to analysis. A well-designed ex-
periment followed by appropriate multivariate analysis can yield a wealth of biological knowl-
edge. Here we review recent advances in cell imaging and illustrate their broad applicability 
to eukaryotic cells by showing how these techniques have advanced our understanding of 
budding yeast.

INTRODUCTION
The morphological features (i.e., shapes and sizes) of organisms and 
cells have long been of interest to biologists. Driven by advances in 
microscopic technologies and the increasing availability of fluores-
cence microscopy, cell biology and genetics have benefited sub-
stantially from the observation of cell and organelle morphology. 
Indeed, automated image acquisition systems in microscopy and 
image-analysis technologies have recently been developed for the 
high-dimensional phenotyping of many model organisms (Collinet 
et al., 2010; Neumann et al., 2010; Sozzani and Benfey, 2011; Pardo-
Martin et al., 2013). Since the development of high-throughput mi-
croscopy (Rimon and Schuldiner, 2011; Tkach et al., 2012), methods 
to reinforce the automated image acquisition of subcellular struc-
tures have been sought in cell biology to better understand the 
complex cellular processes in eukaryotic cells. The budding yeast 
Saccharomyces cerevisiae is especially interesting because it is the 
leading model organism for studies of global regulation in cells 
(Costanzo et al., 2010). Several methods have been developed to 
analyze single-cell phenomics in S. cerevisiae (Ohya et  al., 2005; 
Vizeacoumar et al., 2010; Handfield et al., 2013; Okada et al., 2015). 
Of importance, these methods are superior to previous ready-made 

image-analysis packages in terms of accuracy and reproducibility 
because they are designed for budding yeast. Here we focus not on 
high-throughput microscopy or quantitative analysis, but on current 
advances in the field of yeast single-cell high-dimensional pheno-
typing by considering the spatial and temporal attributes of subcel-
lular structures. We also discuss how this technique can be applied 
to further our understanding of budding yeast, as well as of animal 
and plant species.

EXTRACTION OF SUBCELLULAR STRUCTURES FROM 
DIGITAL IMAGES
As a model system for eukaryotic cells, budding yeast contain or-
ganelles that are both shared among higher organisms and are ide-
ally suited to the study of subcellular morphology, using either fluo-
rescence staining or the expression of green fluorescent protein 
(GFP)–labeled proteins. Huh et  al. (2003) were able to localize 
>4000 proteins by systematically constructing strains expressing 
GFP-tagged proteins, and they visually categorized 21 subcellular 
localizations or organelles. Recently, high-content screening using a 
machine learning approach was performed using GFP-tagged pro-
teins to measure protein abundance and localization changes in a 
systematic and quantitative manner (Chong et al., 2015). The results 
of that study revealed that subcellular localization can be classified 
into 16 subcellular compartments, achieving a high level of preci-
sion and recall based on a single experiment using automated anal-
ysis. The next step after identifying subcellular compartments is to 
extract the morphological features of subcellular structures. The 
number of such defined structures, including protein supercom-
plexes and subcellular components, is increasing rapidly. To date, 
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scope, tubular cytoskeletal structures appear as filaments. There-
fore, the subcellular structures and organelles of budding yeast 
(Figure 1A) are recognized as “regions,” “patches,” or “filaments,” 
and more complex structures are recognized as combinations of 
these elements and network structures (Figure 1B).

In those situations in which morphological features cannot be 
extracted (i.e., “regions,” “patches,” and “filaments”), use of free 
open-source image analysis software tools for morphological filter-
ing based on top-hat transformation (Kimori, 2011) is effective. A 
structuring element that is the equivalent of a filter kernel is opti-
mized for the shapes and sizes of the features using an automated 
or semiautomated approach. The extraction of subcellular struc-
tures provides rich material for single-cell phenotyping but does 
not lead to a direct understanding of their dynamic aspects. For 

12 subcellular structures have been successfully extracted for mor-
phological analysis from digital images, including cell shape (cell 
wall and plasma membrane), nuclear DNA, mitochondria, mito-
chondrial DNA, actin structures, spindle microtubules, spindle pole 
bodies, septin rings, the vacuole, the cis- and trans-Golgi, and lipid 
droplets (Ohya et al., 2005; Negishi et al., 2009; Vizeacoumar et al., 
2010; Wolinski et al., 2011; Rafelski et al., 2012; Osman et al., 2015).

To extract subcellular structures from digital images, it is essen-
tial to first define the typical geometry of the organelles in a given 
image. Membrane-bound organelles naturally occupy certain re-
gions within the cell, and considering that the resolution of a con-
ventional optical microscope is 0.2 μm, small organelles and granu-
lar structures almost always appear as patches in microscopic 
images. Similarly, when viewed under a conventional optical micro-

FIGURE 1:  Extraction of the morphological features of subcellular structures. (A) Fluorescence images of subcellular 
structures in budding yeast. Images of the cell wall (fluorescein isothiocyanate–labeled concanavalin A), Golgi apparatus 
(Vrg4-GFP), microtubules (anti-tubulin), nucleus (Htb2-GFP), cytosol (Ssb1-GFP), vacuolar membrane (Vma4-GFP), ER 
(Sec61-GFP), and mitochondria (Atp5-GFP) are shown with the category number indicated. (B) Categorization of 
subcellular structures. The geometry of yeast subcellular structures can be classified into eight categories: 1) The cell 
periphery is classified as the outline of the cell. 2) Actin, spindle pole body, bud neck, cis-Golgi, trans-Golgi, endosome, 
and peroxisome are classified as patched structures. 3) The spindle is classified as a filamentous structure. 4) The 
nucleus, vacuole, and nucleolus are classified as regional structures. 5) The nuclear cytoplasm, cytoplasm, nucleus, and 
bud are classified as parts of the cell. 6) The nuclear periphery and vacuolar membrane are classified as the outline of 
intracellular structures. 7) The ER is classified as a network. 8) Mitochondria and mitochondrial DNA are classified as a 
mixture. (C) Schematic view of a budded cell with two nuclei (top) and a tree structure diagram of the subcellular 
structures (bottom). The whole structure (or the whole cell) is labeled as C, the mother cell as M, and the bud as B. The 
organelles in M and B are labeled as m and b with numbering, respectively. The addition of spatial attributes to 
subcellular structures is achieved manually (Rafelski et al., 2012) or automatically (Ohya et al., 2005; Handfield et al., 
2013) in the indicated pipelines. Multiple subcellular structures of interest are shown for their inclusion relation using a 
tree structure diagram. Different kinds of features and inclusions can also be expressed in a similar manner. Each node 
has morphometric information, including name of node, size of area, and length of perimeter.
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Cell morphology is a complex phenotype that is controlled via a 
number of pathways and complex interplay between growth and 
division. The temporal classification of cell morphology in accor-
dance with cell cycle progression is therefore valuable for under-
standing the molecular mechanisms of cell morphogenesis. Two 
major points of cell cycle control occur during G1 (cell size control) 
and G2 (entry into mitosis). Owing to this temporal segregation, 
these two processes have been investigated separately (McNulty 
and Lew, 2005; Di Talia et al., 2007; Charvin et al., 2009). A recent 
study identified cell size–regulatory mutants by considering birth 
size and growth rate (Soifer and Barkai, 2014).

STATISTICAL ANALYSIS FOR CELL PHENOTYPING
A well-designed experiment followed by appropriate statistical 
analysis can provide a wealth of biologically meaningful information. 
In this context, the analysis of phenotypes of numerous sets of mu-
tants is a powerful tool to extract genetically and biologically impor-
tant information. To illustrate this point, we address here some of 
the findings to which high-dimensional morphometric analysis has 
contributed significantly.

High-dimensional phenotyping of yeast strains
Because each cellular image contains numerous morphological fea-
tures, a single experiment usually provides a high-dimensional mor-
phological data set. Quantification of morphological features, in-
cluding cell shape, actin, nuclear DNA, and microtubules, was 
completed for a catalogued mutant collection, including nonessen-
tial deletion mutants (Ohya et al., 2005; Vizeacoumar et al., 2010), 
temperature-sensitive mutants of essential genes (Li et al., 2011), 
and decreased abundance by mRNA perturbation mutants of es-
sential genes (Bauer et al., 2015). The results revealed a close rela-
tionship between morphological phenotype and the functional an-
notation of a gene; thus, a functional analysis of genetics became 
possible by evaluating similarities in mutant morphology.

Cell-to-cell morphological variation has been analyzed using 
CalMorph to understand system robustness. The genes responsible 
for morphological robustness were identified from both nonessen-
tial (Levy and Siegal, 2008) and essential (Bauer et al., 2015) genes 
and shown to function as phenotypic stabilizers for nongenetic 
sources of variation, such as environmental perturbation. Because a 
large amount of cell-to-cell morphological variation is observed in 
natural isolates (Yvert et al., 2013), the evolutionary costs and ben-
efits of robustness can be argued in nature. Strain-to-strain morpho-
logical variation has been investigated, revealing essential genes in 
a natural environment (Yang et  al., 2014). Quantitative trait loci 
(Nogami et  al., 2007) and the structure of phenotypic diversity 
(Skelly et al., 2013) in natural isolates have also been assessed.

A high-dimensional data set alone does not intuitively provide 
compelling biological information; it is ambiguous as to which traits 
should be of focus. When the data set is sparsely structured (i.e., the 
morphological phenotype is not statistically significant in most of 
the tested elements), dimensionality reduction procedures such as 
principal component analysis, and partitioning around medoids 
should be applied to define the biologically informative phenotype 
for effective analysis (Levy and Siegal, 2008; Yvert et al., 2013; Yang 
et al., 2014; Bauer et al., 2015).

Phenotypic similarity used for the prediction of drug targets
High-dimensional morphological information makes it possible to 
search for a set of mutants with a similar morphology (Ohnuki et al., 
2010). This approach was applied successfully to predict drug tar-
gets in a cell, using the morphology of a drug-treated cell as the 

more refined purposes, imaging using other microscopic methods 
such as optical sectioning by confocal microscopy and time-lapse 
imaging can be used. Optical sectioning by confocal microscopy 
makes it possible to construct three-dimensional (3D) images of 
mitochondria (Rafelski et al., 2012). Time-lapse imaging has been 
used to produce sets of images to clarify the dynamics and move-
ment of lipid droplets (Wolinski et al., 2011) and to monitor the 
kinetics of Far1, a cyclin-dependent kinase inhibitor (Doncic et al., 
2015).

SPATIAL ATTRIBUTES OF SUBCELLULAR STRUCTURES
Budding yeast are typically divided into mother cells and buds, 
which adds a new attribute to subcellular components. Of note, 
many proteins are synthesized, accumulated, and degraded asym-
metrically (Nyström and Liu, 2014; Zhou et al., 2014), which further 
differentiates daughter cells from mother cells. To identify precisely 
intracellular compartments and monitor the differentiation of bud 
from mother, it is important not only to classify each structure but 
also to know its intracellular location (i.e., the part of the cell to 
which each structure belongs). For instance, mitochondria in the 
mother cell should be considered distinct from mitochondria in the 
bud. Rafelski et al. (2012) analyzed images of live budding cells us-
ing the MitoGraph pipeline and found dramatic asymmetry in mito-
chondrial accumulation between the mother and the bud. By con-
sidering the spatial attributes of a subcellular structure and 
quantifying them as different morphological features, it is possible 
to precisely describe and analyze subcellular components. The in-
clusion relationship of the morphological features of subcellular 
structures can be represented in the form of a tree (Figure 1C). This 
is useful for understanding and communicating the morphological 
features of subcellular structures.

TEMPORAL ATTRIBUTES OF CELLULAR FEATURES
Variables in nature do not always have unimodal distributions; in 
addition, due to cell-to-cell variation (Liberali et al., 2015), many fea-
tures of yeast cell morphology have a multimodal distribution (e.g., 
whole cell size; Figure 2A). Thoughtful consideration should be 
given to the possible multimodal distribution of any given variable 
of interest, especially in phenotyping asynchronous yeast cell popu-
lations. In contrast to from unimodal distributions, it is difficult to 
analyze multimodal distributions (for which parametric statistical 
analyses are quite limited), suggesting a need for alternative 
methods. One efficient strategy for handling complex data sets with 
multimodal distribution involves classification. After applying tem-
poral classification according to cell cycle stage, size distribution 
becomes nearly unimodal (Figure 2B). It is now possible to identify 
a probability distribution model (Figure 2C) and perform a paramet-
ric statistical analysis with high power.

Automatic temporal classification, used in the CalMorph pipeline 
(Ohya et al., 2005; Okada et al., 2015), is performed by superimpos-
ing cell images on nucleus images from an identical field of view 
(Figure 2D). This approach provides attribute information pertaining 
to time points before and after cell division. The addition of tempo-
ral attributes to morphological features does not increase the num-
ber of independent features, but it does contribute to a fully analyti-
cal imaging system. An alternative and more reliable way is to use 
synchronized yeast cells; however, this requires extra time and is 
unsuitable for large-scale phenotyping. In addition to the nuclear 
cycle, other cell cycle landmarks, such as bud size, can be used for 
temporal segregation (Handfield et al., 2013). This method is supe-
rior in terms of monitoring cell cycle–dependent changes in the lo-
calization of cellular proteins.
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possible without relying on any mutant information in advance 
(Gebre et al., 2015).

Automated classification of mutants by morphological 
phenotype
When dealing with genetic mutants, it is common to classify the 
mutants according to their morphology. Traditionally, such classifica-
tion has relied on subjective judgment, but cluster analysis has 

query and matching it to the morphology of the mutant collection. 
Of note, this method was used to predict and identify the target of 
a new antifungal agent, poacic acid, which binds to β-1,3-glucan 
(Piotrowski et al., 2015), an antifungal agent with a new mode of 
action, echinocandin B (Okada et al., 2014), and a fermentation in-
hibitor, vanillin, which affects the large subunit of cytoplasmic ribo-
somes (Iwaki et al., 2013). Although this system uses mutant infor-
mation, another chemical-genetic phenotype profiling approach is 

FIGURE 2:  Unimodal distribution of morphological data extracted by classification. (A) Distribution of whole cell size. 
Cell sizes of 30,583 wild-type yeast cells (BY4743) were quantified under fluorescence microscopy after staining with 
fluorescein isothiocyanate–labeled concanavalin A (FITC-Con A). The distribution is multimodal because of a mixture of 
cells at different stages of the cell cycle. (B) Distribution of cell size at each stage of the cell cycle. Magenta, cyan, and 
yellow boxes indicate the distribution of cell sizes at G1, S/G2, and M, respectively. The mean cell sizes at each stage 
were distributed differently but overlapped. (C) Distribution of the mean cell size at each stage of the cell cycle. The 
distributions of 114 wild-type replicates in terms of cell size were distinguishable at different stages of the cell cycle. 
Red, blue, and green curves indicate the gamma distribution approximated by a maximum likelihood estimation for the 
mean values at G1, G2/S, and M, respectively. Because the distribution of mean values in each stage is unimodal, 
approximation by a unimodal probability distribution (e.g., gamma distribution) is applicable (Yang et al., 2014). 
(D) Automatic classification of cells by simultaneously processing multiple images of the same cell. 1) Microscopic images 
of (i) cell shape and (ii) nuclear DNA were acquired in the same field of view after staining with FITC-Con A and 
4′,6-diamidino-2-phenylindole, respectively. 2) The two images were combined to identify the nuclear cycle stages. 
3) Cells were automatically classified by cell cycle stage using the CalMorph image-processing system (Ohya et al., 2005).
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turned out to be a powerful tool for automating classification proce-
dures when working with high-dimensional morphological datasets. 
Genes responsible for Ca2+ tolerance have been classified into 
seven functional groups based on Ca2+-dependent morphological 
changes (Ohnuki et al., 2007). In addition, the catalytic subunit of 
β-1,3-glucan synthase was functionally dissected on the basis of 
high-dimensional phenotyping and the clustering analysis of tem-
perature-sensitive mutants (Okada et al., 2010).

Quantitative analysis of genetic interactions
Quantitative readout is useful for the analysis not only of single mu-
tants but also of double mutants. The use of an endoplasmic reticu-
lum (ER) stress–sensing reporter in yeast double mutants can reveal 
functional interdependencies of ER folding processes (Jonikas et al., 
2009). With morphometric data, systematic analyses of genetic in-
teractions were achieved during Drosophila development (Fischer 
et al., 2015). Similar phenotypic analyses of double mutants and the 
gene–gene, or genetic, interactions of the mutations will also be 
examined in yeast.

Simulation and modeling
The quantification of morphology has the potential to facilitate the 
simulation or modeling of how the biophysical and chemical charac-
teristics of gene products affect morphogenetic events and organ-
elle dynamics, although this has not yet been attempted. Such mod-
els enable us to predict unknown interactions or links as new testable 
hypotheses, which can later be confirmed using experimental vali-
dation. In one relevant study, mathematical modeling was used to 
predict that the yeast polarity establishment circuit involves nega-
tive feedback (Howell et al., 2012).

CONCLUSIONS
Automatic image extraction, classification based on temporal and 
spatial information, and the quantification of subcellular structures 
ensure the accuracy, objectivity, and reproducibility of high-dimen-
sional cell phenotyping. With rapid advances in microscopic tech-
nology, unconventional cell phenotyping procedures will inevitably 
continue to improve. Optical sectioning using confocal microscopy 
and microscopy with high-content time-lapse imaging, superresolu-
tion confocal live imaging (Nakano, 2013), light sheet microscopy 
(Mohan et al., 2014), and use of microfluidics systems (Taylor et al., 
2009) will expand our view of 3D structures and the dynamic move-
ments and fusion of organelles. To accommodate an ever-increasing 
number of images from such methodologies, systematic and univer-
sal procedures will need to be developed. The engagement of a 
broad group of scientists in stimulating discussions regarding shar-
ing image data sets, standardizing protocols for image analysis, and 
enabling standard statistical analysis will greatly contribute to sin-
gle-cell phenomics in the future.
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