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LETTER TO EDITOR

The immune checkpoints storm in COVID-19: Role as
severity markers at emergency department admission

Dear Editor,
Despite the improvement in prophylaxis by vaccination,

severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection and its associated pathology, COVID-
19, still constitute a challenge. Clinicians lack effective
treatments and robust predictors to identify patients who
will develop severe disease during their stay. The role of
cytokines (e.g., IL-6) as biomarkers and therapeutic targets
was evaluated at the beginning of the pandemic. However,
their relevance are still being discussed.1 Patients with
severe COVID-19 show an impairment of the immune sys-
tem allowing secondary infections,2–5 and numerous stud-
ies have found how T cell polyfunctionality decreases.5,6
In this regard, immune checkpoints (ICs), a family of
molecules known for their ability to modulate immune
response and induce T cell exhaustion and apoptosis,
become interesting not only as potential early biomarkers
of patients’ evolution but also as possible pharmaceutical
targets.7
Thus, we recruited 69 patients and 15 healthy volunteers

(HVs) from the emergency department (ED) of La PazUni-
versity Hospital. We analysed nine ICs on admission, pre-
vious to any treatment, in plasma from patients classified
according to their outcome: mild (outpatients + hospital-
ized with no O2 requirement, n = 29), severe (hospitalized
with O2 requirement, n= 26) and deceased (exitus, n= 14;
28-daymortality accordingWHOU07.1 code) (Figure 1A,B
and Supplemental Figure S1 and Table S1). We found
sCD25, sTim-3, Galectin-9, sPD-L1 and sCD86 exhibited
differences between groups (Figure 1C–L). sCD25, sTim-3
and Galectin-9 showed to be increased in patients versus
HV despite the fact that they developed mild disease (Fig-
ure 1C–E). In addition, sCD25, sTim-3, Galectin-9, sPD-
L1 and sPD-1 showed increased levels in severe patients
and/or exitus compared with mild ones (Figure 1C–G).
In contrast, the co-stimulatory molecule CD86 (sCD86)
exhibited lower levels in mild and exitus patients com-
pared with severe ones (Figure 1H). Levels of other ICs
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(sLAG-3, sCTLA-4 and sCD137) are shown in Figure 1I–L.
Note that similar results were obtainedwhen patients were
classified according to amulti-organ failure score (qSOFA)
(Supplemental Figure S2). In line with this, IC expression
on T lymphocytes was also evaluated (Supplemental Fig-
ures S3 and S4).
Next, we focused on the five ICs with significant dif-

ferences between groups. sCD25, sTim-3, Galectin-9, and
sPD-L1 showed a positive correlation with severity (Sup-
plemental Figure S5). sCD86 did not show a patent trend
(Supplemental Figure S5G). Severity in COVID-19 patients
has been associated with differences in sex, age and
comorbidities.8–10 Nonetheless, we did not find signifi-
cant differences in IC levels between genders (Supplemen-
tal Figure S6) and only slight differences within comor-
bidities (Supplemental Figure S7). However, levels of both
sCD25 and sTim-3 on admission not only correlated with
a poor prognosis but also with age (Supplemental Figure
S8). Other correlations are shown in Supplemental Figure
S9.
We moved to study the changes in ICs throughout the

hospital stay until discharge or exitus. Despite initial simi-
larities between severe and exitus groups, their evolutions
were disparate (Figure 2). Levels of sCD25, sTim-3 and
Galectin-9 for mild and severe patients showed a trend
toward the levels reported for HVs, while exitus exhibited
a progressive elevation (Figure 2, right panels). Levels of
sCD86 increased or levelled off in patients in the mild and
severe groups, in contrast to the decrease observed in exi-
tus (Figure 2E). Similar results were obtained when the
analysiswas performedusing days fromonset of symptoms
(Supplemental Figure S10).
To explore the possible role of ICs in both the T cell

exhaustion and lymphocytopenia reported in patients with
COVID-19,4,5 we calculated the correlation between abso-
lute lymphocyte count (ALC) and levels of circulating ICs
on admission. Levels of sCD25, sTim-3, Galectin-9 and
sPD-L1, but not sCD86, showed a negative correlation with
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ALC (Supplemental Figures S11A and S12). Moreover, neg-
ative correlation between T cell proliferation and circu-
lating levels of sCD25, sTim-3 and Galectin-9 was also
observed (Supplemental Figure S11B-C). Along these lines,
a significant increase in the response and a reduction
of apoptosis of CD4+ and CD8+ T cells from COVID-
19 patients was experienced when anti-Tim-3 and anti-
Galectin-9 blocking antibodies were used ex vivo (Figure
S11D-G).
We moved to analyse whether ICs are stronger sever-

ity biomarkers than cytokines in COVID-19. We analysed
the levels of 12 cytokines/chemokines in our cohort. Only
CCL-2, CXCL10, IL-6 and IL-8 showed significant differ-
ences between groups (Supplemental Figure S13). Next,
using an area under the ROC curve (Area Under the
Curve/Receiver Operating Characteristic [AUC/ROC])
analysis, we compared ability as predictor of the ICs,
chemokines and cytokines. We found sCD25 and sTim-3
exhibited the highest AUCs for both mortality and ICU
requirement prediction (Supplemental Figures S14 and
S15) of all the molecules studied.
Beyond ICs and cytokines, we studied the predictive

potential of 53 variables including epidemiological, phys-
iological and other relevant parameters by AUC/ROC and
univariate regression (Table 1). We performed a binary
logistic regression model, including the 14 variables with
an AUC/ROC > 0.7 and statistical significance in univari-
ate analysis. After 12 steps (Supplemental Table S2), the
final model included age, SpO2/FiO2, D-Dimer, sCD25 and
sCD86 as predictors of mortality (Figure 3A). The score
obtained from this model showed an AUC/ROC of 0.9753
for mortality prediction (Figure 3B). The optimal cut-off
calculated by the Youden index showed a sensitivity of
0.93 and a specificity of 1 (Figure 3C). Note this predic-
tive capacity is remarkably higher compared to the per-
formance of all 53 variables alone (none of them had an
AUC/ROC > 0.84; Table 1).
To corroborate the relevance of this score, we esti-

mated it in a prospective validation independent cohort of
COVID-19 patients (n = 166, Supplemental Table S3). We
classified those patients into two groups according to the
cut-off estimated in the discovery cohort (Figure 3D). The
chi-squared test showed statistically significant differences
in mortality frequency between the groups (χ2 = 102.8; z =

10.14; Figure 3D), and the score performed the discrimina-
tion of survivors and exitus with a specificity of 0.93 and a
sensitivity of 0.96 (Figure 3E).
In summary, our data demonstrated IC levels on admis-

sion are better mortality predictors than other biomarkers
such as cytokines in COVID-19. Combination of ICs and
other easilymeasurable parameters identifies at ED admis-
sion those patients with the worst outcome. In addition,
our ex vivo assays suggested the potential of ICs as phar-
maceutical targets.
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F IGURE 1 Distribution of patients and plasma immune checkpoint levels according to outcome of patients with COVID-19 on
admission, compared with HVs. (A) and (B) Distribution of patients with COVID-19 in the severity groups according to evolution and their
oxygen requirement during their stay: mild (n = 29); severe (n = 26); and exitus (n = 14). Quantification of plasma soluble immune
checkpoints according to disease severity of patients with COVID-19 on admission compared with HVs: sCD25 (C), sTim-3 (D), Galectin-9 (E),
sPD-L1 (F), sPD-1 (G), sCD86 (H), sLAG-3 (I), sCTLA-4 (J) and sCD137 (K). (L) Heatmap of plasma immune checkpoints levels Z-score of HVs
and patients with COVID-19 on admission according to the severity group: mild (1); severe (2); and exitus (3) is shown. (C–D) Data are shown
as pg/mL and were analysed by Kruskal–Wallis and Mann–Whitney U tests. Data are presented in box-and-whisker plots (min to max). *p <
.05; **p < .01; ***p < .001; ****p < .0001; KW, Kruskal–Wallis statistic
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F IGURE 2 Longitudinal analysis of plasma immune checkpoint levels of patients with COVID-19 according to their evolution and
hospital needs from admission. Longitudinal concentrations of plasma sCD25 (A), sTim-3 (B), Galectin-9 (C), sPD-L1 (D) and sCD86 (E) in
patients with COVID-19 according to the severity group from admission are shown (left panels). Total area under the curves (AUCs) from 0 to
14 days after admission of longitudinal concentrations of plasma sCD25 (A), sTim-3 (B), Galectin-9 (C), sPD-L1 (D), and sCD86 (E) of patients
with COVID-19 according to the severity group on admission are shown (central panels). Linear regression and curve slopes are shown in
right panels. Dashed lines show the HV ranges of plasma immune checkpoint levels. Data are pg/mL concentrations, and subgroup
differences were analysed by the one-way analysis of variance. Data represent mean ± SEM. ***p < 0.001; ****p < 0.0001; F, F-statistic
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F IGURE 3 Score from the logistic mathematical model predicted the mortality of patients with COVID-19 in a validation cohort. (A)
Wald backward stepwise regression, including, as variables, age, previous diagnosis of hypertension, respiratory rate, pulse oximetric
saturation/fraction of inspired O2 ratio (SpO2/FIO2), lactate, ALC, ratio neutrophil/lymphocyte, platelets, D-Dimer, qSOFA, sCD25, sCD86
and sTim-3. The final model after 12 steps is shown. Units: age in years; SpO2/FiO2 in arbitrary units, D-Dimer in ng/mL, sCD25 and sCD86 in
pg/mL. (B) ROC curve analysis for mortality prediction in discovery cohort (n = 69) of the score obtained from the logistic regression model
including age, D-Dimer, sCD86, sCD25 and SpO2/FiO2 as variables. The optimal Youden point is shown. (C) Estimated score of discovery
COVID-19 patients’ cohort according to their outcome. The dashed line indicates the optimal Youden cut-off for mortality prediction.
Sensitivity and specificity of this cut-off is shown. (D) Patients from validation cohort (n = 166) were classified according to their outcome and
the regression model score (low and high subgroups by using the optimal Youden cut-off). Patient number distribution and chi-square test
statistics are shown. (E) Estimated score of validation COVID-19 patients’ cohort according to their outcome. The dashed line indicates the
optimal Youden cut-off for mortality prediction. Data represented in box-and-whisker plots (min to max). Odds ratio (OR), sensitivity and
specificity of this cut-off are shown. B, B weight coefficient; OR, odds ratio; OR CI 95, 95% confidence interval of odds ratio; SD, standard
deviation of B; Wald, Wald statistic X2, chi-square; z, z-statistic.
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TABLE 1 Variables analysed as potential biomarkers for mortality

Variable ROC Univariate logistic regression
AUC p-value OR OR IC 95 p-value

Age* 0.8019 .0005 1.0793 1.029183–1.131854 .0017
Sex (male) 0.6130 .1942 2.526 0.764313–8.35033 .1287
AHT* 0.7026 .0199 5.5800 1.533836–20.359662 .0091
DM 0.5786 .3667 2.2222 0.619494–7.971464 .2205
CVD 0.5604 .4878 1.7949 0.51024–6.313824 .3621
CKD 0.5974 .2631 4.0000 0.910787–17.567221 .0663
OBESITY 0.5552 .5260 0.3462 0.040472–2.960613 .3327
COPD 0.5883 .3103 3.2667 0.776781–13.73761 .1062
Onco 0.5006 .9940 0.9808 0.100886–9.534592 .9866
ImmunoD 0.5013 .9881 0.9792 0.183563–5.22311 .9803
Temperature 0.5812 .3510 1.1719 0.627006–2.190483 .6191
Heart rate 0.5396 .6490 1.0084 0.976758–1.041001 .6081
Resp rate* 0.7695 .0020 1.1780 1.048269–1.323747 .0059
SpO2

* 0.7318 .0077 0.8853 0.797259–0.982972 .0225
FiO2 0.6506 .0835 1.2276 1.036604–1.453895 .0175
SpO2/FiO2

* 0.8214 .0002 0.9802 0.968543–0.99202 .0011
Lactate* 0.8364 .0001 9.2471 2.633093–32.474967 .0005
Absolute leukocytes 0.5513 .5556 1.0000 0.999919–1.000092 .8960
ANC 0.5987 .2568 1.0002 0.999983–1.000375 .0733
ALC* 0.8234 .0002 0.9969 0.994924–0.99884 .0018
AMC 0.6110 .2020 0.9983 0.99464–1.001913 .3514
N/L ratio* 0.7974 .0006 1.0658 1.005046–1.13017 .0333
Platelets* 0.7383 .0062 0.9999 0.999985–0.999998 .0095
Ferritin 0.7403 .0058 1.0005 0.999808–1.001173 .1588
D-Dimer* 0.7435 .0051 1.0004 1.000033–1.000805 .0332
Creatinine 0.7221 .0107 1.1703 0.793126–1.726702 .4283
AST 0.5117 .8932 1.0037 0.997514–1.009897 .2423
ALT 0.5416 .6330 0.9924 0.974032–1.011074 .4218
LDH 0.6558 .0734 1.0037 0.999925–1.007448 .0548
CRP 0.6981 .0229 1.0044 0.998406–1.010426 .1506
PCT 0.7110 .0153 1.0199 0.984334–1.05684 .2761
qSOFA* 0.8253 .0002 9.3700 2.7216–32.259104 .0004
sCD25* 0.7708 .0019 1.0005 1.000001–1.001091 .0497
sCD86* 0.7250 .0096 0.9893 0.980009–0.998608 .0244
sCD137 0.5266 .7597 1.0011 0.988669–1.013693 .8628
sCTLA-4 0.5818 .3472 0.1124 0.822844–0.646805 1.0468
Galectin-9 0.6883 .0305 1.0000 0.999998–1.000012 .1552
sLAG-3 0.6052 .2268 1.0001 0.999987–1.000254 .0759
sPD-1 0.6110 .2020 1.0211 0.99–1.052975 .1824
sPD-L1 0.6920 .0267 1.0129 0.999984–1.025989 .0503
sTim-3* 0.7620 .0025 1.0001 1.000011–1.000101 .0138
CCL-2 0.6792 .0395 1.0033 1.000145–1.006449 .0403
CXCL10 0.6883 .0305 1.0006 0.999967–1.001227 .0633
IFNg 0.5571 .5115 1.0010 0.998441–1.003467 .4582
IL-1β 0.5227 .7940 1.0389 0.872492–1.236977 .6685

(Continues)
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TABLE 1 (Continued)

Variable ROC Univariate logistic regression
AUC p-value OR OR IC 95 p-value

IL-2 0.5922 .2894 1.1051 0.962296–1.269112 .1569
IL-4 0.5961 .2695 0.9703 0.921224–1.022008 .2551
IL-6 0.7169 .0127 1.0022 0.999664–1.004802 .0885
IL-8 0.6409 .1055 1.0307 1.004042–1.05814 .0237
IL-10 0.5338 .6981 1.0058 0.9953–1.016485 .2787
IL-12p70 0.5597 .4925 0.9428 0.860632–1.032824 .2056
IL-17A 0.5701 .4204 0.9293 0.801122–1.07795 .3327
TNFα 0.567 .442 1.00005 0.913573–1.094726 .9903

The asterisk * labels those variables included in the Wald backward stepwise regression model. In bold are the areas under the ROC curve (AUC) > 0.5 and the
p-values < .05.
Abbreviations: AHT, arterial hypertension; DM, history of diabetes mellitus; CVD, history of cardiovascular disease; CKD, history of chronic kidney disease;
COPD, history of chronic obstructive pulmonary disease; OncoD, history of oncologic disease; ImmunoD, history of immunologic disease; Resp rate, respiratory
rate; SpO2, oxygen saturation; FiO2, fraction of inspired oxygen; SpO2/FiO2, peripheral blood oxygen saturation to fraction of inspired oxygen ratio; ANC, absolute
neutrophil counts; ALC, absolute lymphocyte counts; AMC, absolute monocyte counts; N/L Ratio, neutrophil to lymphocyte ratio; AST, aspartate transaminase;
ALT, alanine transaminase; LDH, lactate dehydrogenase; CRP, c-reactive protein, PCT, procalcitonin; qSOFA, quick sequential organ failure assessment score.
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