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Abstract: Current methods to detect eating behavior events (i.e., bites, chews, and swallows) lack
objective measurements, standard procedures, and automation. The video recordings of eating
episodes provide a non-invasive and scalable source for automation. Here, we reviewed the current
methods to automatically detect eating behavior events from video recordings. According to PRISMA
guidelines, publications from 2010–2021 in PubMed, Scopus, ScienceDirect, and Google Scholar were
screened through title and abstract, leading to the identification of 277 publications. We screened the
full text of 52 publications and included 13 for analysis. We classified the methods in five distinct
categories based on their similarities and analyzed their accuracy. Facial landmarks can count bites,
chews, and food liking automatically (accuracy: 90%, 60%, 25%). Deep neural networks can detect
bites and gesture intake (accuracy: 91%, 86%). The active appearance model can detect chewing
(accuracy: 93%), and optical flow can count chews (accuracy: 88%). Video fluoroscopy can track
swallows but is currently not suitable beyond clinical settings. The optimal method for automated
counts of bites and chews is facial landmarks, although further improvements are required. Future
methods should accurately predict bites, chews, and swallows using inexpensive hardware and
limited computational capacity. Automatic eating behavior analysis will allow the study of eating
behavior and real-time interventions to promote healthy eating behaviors.

Keywords: eating behavior; computer vision; AI; automatic analysis; healthy eating

1. Introduction

Eating behavior determines the nutritional intake and the health status of adults
and children. Eating behavior is defined as the ensemble of food choices, eating habits,
and eating events (bites, chews, and swallows) [1]. Eating rate, which is the amount of
food consumed per unit of time (g/min), can affect food intake [2], energy intake [3], and
weight gain [4,5], as well as the risk of obesity [6,7], and metabolic diseases [8,9]. Eating
behavior can be influenced by the food consumed, although it develops through parent–
child interactions, individual child growth, neural mechanisms, and social influences [10].
For example, eating rate is an individual trait but it strongly depends on food properties,
such as food texture and matrix [11,12]. Solid foods with hard textures (difficult to bite
and chew) decrease eating rate, food intake, and energy intake, whereas semi-solid or
liquid foods increase eating rate, food intake, and energy intake [13]. To prevent food
overconsumption and obesity, interventions in food texture and eating rate can manipulate
individual eating behavior and lower food and energy intake [14,15].

Tracking each eating episode (i.e., a meal) is crucial for a valid comprehension of
individual eating behavior. The golden standard for this process consists of two or three
independent researchers that watch the videos of each eating episode and record the
eating behavior events [16]. For the annotation, the number of eating events, bite-size,
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chewing frequency, eating rates, meal duration, and rate of ingestion [17] must be recorded.
Measuring eating behavior events requires the training of human annotators and often
the purchase of expensive software licenses. The most used software packages for eating
behavior annotation are Noldus Observer XT (Noldus, Wageningen, the Netherlands) [18],
ELAN 4.9.1 Max Planck Institute for Psycholinguistics [19], and ChronoViz [20]. Although
human annotation can be accurate, often this task is prone to subjectivity and attentional
lapses, due to its repetitive and time-consuming nature. Furthermore, large prospective
studies are unfeasible due to the large number of videos to annotate. Because of this,
the evidence in the eating behavior field is confined to cross-sectional and short-term
experimental studies [3,21]. Therefore, according to the experts in the field, the human
annotation process should be automated [22,23].

Despite the recent advancements in smart devices for tracking eating behavior, includ-
ing the wristband [24], ear sensors [25], smart fork [26], smart utensils [27], smart plate [28],
smart tray [29], and wearable cameras [30], the video recordings of eating episodes remain
the least intrusive and most scalable approach. Video recordings are able not only to
reproduce wearables functionalities (e.g., eating rate, number of bites) but also to expand
them towards more complex eating behavior events (e.g., emotion detection for eating
behavior, social interactions at the table, or parent–child interaction [31]).

Such fortes make video recordings of eating episodes a strong candidate for tracking
eating behavior. The automatic analysis of video recordings can replace the expensive
and time-consuming manual annotation and lead to better interventions to manipulate
eating behavior. However, it remains unclear what methods are applicable to analyze
meal videos automatically.

Therefore, the aim is to determine accuracy, advantages and disadvantages of the current
video-based automated measures of eating behavior. This review focuses on video-based
methods that aim to predict bites, chews, swallows of consuming foods and food liking.

2. Materials and Methods
2.1. Search Strategy

This systematic review was performed to assess the available methods to automati-
cally detect eating behavior events. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines were followed for the literature search [32]. The
databases PubMed, Scopus (Elsevier), ScienceDirect, and Google Scholar were screened.
The terms included in the search strategy were eating, behavior (or behaviour), video,
methodology and further analysis terms (see Appendix A for the comprehensive list of
search queries). Additional author search was performed for the most common authors
found, using the snowballing search strategy. All the citations were exported to the refer-
ence manager software Zotero (version 5.0.96.3), where the first author (MT) screened all the
titles and abstracts to select the scientific publications that met the criteria as outlined below.

2.2. Inclusion and Exclusion Criteria

Original research articles were considered as valid exclusively if published in the
English language and containing findings on video analysis for human eating behavior from
January 2010 to December 2021. This temporal cut-off was chosen to ensure that outdated
(computer vision and machine learning) technologies would be excluded. Conference
papers were included. These studies might contain preliminary results therefore validity
and precision in Table 1 were considered while writing this review. Articles concerning
non-human studies were excluded. We excluded research articles on eating behavior with
video electroencephalogram monitoring, verbal interaction analysis, or sensors, as well
as research studies not focusing on automated measures as they are beyond the scope of
video analysis.
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Table 1. The results table presents the publications included in this review study. The following information is summarized from left to right: first author, year of
publication, journal, methods, outcomes of the study, validation method, and precision (as reported in the paper).

First Author Year Journal Methods Study Setting Device Outcomes Validity Precision

Cadavid
[33] 2012 Pers. Ubiquit.

Comput.

Active Appearance Model
(AAM) for face tracking, and

spectral analysis on the
temporal window of the model

parameter values; binary
support vector machine

classifier for chewing events

Laboratory

Not reported;
37 videos at 24 fps;
frame resolution:

640 × 480

Chewing detection Manual annotation
for chewing events

93% after
cross-validation

Okamoto
[34] 2014

IEEE International
Conference on

Multimedia and
Expo Workshops

Mouth detector limited to the
lower part of detected face;
Chopstick detection using
OpenCV Hough transform

for straight lines

Laboratory

Smartphone Google
Nexus 5 (2.3 GHz

Quad Core, Android
4.4), inner camera;

frontal view

Food intake
estimation N.A. N.A.

Hantke
[35] 2018

Proceedings of the
20th ACM

International
Conference on

Multimodal
Interaction

OpenFace facial landmarks
extraction for tracking

the mouth
Office room

Logitech HD Pro
Webcam C920; 30 fps;
resolution: 1280 × 720;

frontal view

Food liking
Leave-One-Out

Cross-Validation and
SVM

Likability 0.583

Haider
[36] 2018

Proceedings of the
20th ACM

International
Conference on

Multimodal
Interaction

OpenSMILE for facial
landmarks extraction, coupled

with OpenSMILE
audio-feature extraction

Office room

Logitech HD Pro
Webcam C920; 30 fps;
resolution: 1280 × 720;

frontal view

Food liking

Leave-One-Out
Cross-Validation and

active feature
transformation

0.61

Konstantinidis
[37] 2019 Computer Vision

Systems

OpenPose for mouth and
hands tracking; Deep Network
(3 Conv + shortcut, 3 Conv +

shortcut, 3 LSTM)

Laboratory

85 videos; Samsung
digital camcorder;

1.5 m away from the
subject; side view

Automatic bite
detection F-Score: 0.9173 0.9175

Qiu
[38] 2019

IEEE 16th
International

Conference on
Wearable and

Implantable Body
Sensor Networks

Mask R-CNN for 360-degree
camera meal videos;

Thresholds for assessing pixel
intersection between hand-face

and hand-food to infer
eating events

Free-living (Indoor
food sharing

scenarios)

Samsung’s gear
360 camera;

1024 × 1024 pixels

Food intake
estimation N.A. N.A.
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Table 1. Cont.

First Author Year Journal Methods Study Setting Device Outcomes Validity Precision

Hossain
[39] 2020 IEEE Access

Face detection with manual
selection of the region of

interest; CNN for bite/non bite
classification; Optical flow for

spatial chewing motion at
every pixel

Laboratory

84 videos; SJCAM
SJ4000 Action Camera;
1080p video at 30 fps;

side view

Automatic count of
bites and chews

Manual annotation
with 3-button system

and LabView
software

(custom-made)

Bites: 88.9% ± 7.4%;
Chews:

88.64% ± 5.29%

Rouast and
Adam

[40]
2020 IEEE J. Biomed.

Health Inform

CNN for hand-to-mouth
movement in 360-degree

meal videos

Free-living (Indoor
group meal)

102 videos; 360 fly-4 K
camera; 24 fps

Intake gesture
detection N.A. F1-score: 0.858

Konstantinidis
[41] 2020 Nutrients

OpenPose skeletal and mouth
features extracted for training

the RABiD algorithm. Two
stream data: 2D coordinates
and distances from mouth

corners, and from upper body

Laboratory

Samsung digital
camcorder; 1.5 m away
from the subject; side
view; resolution: 576p

(720 × 576 pixels)
at 25 fps

Meal duration and
bite counts

Manual annotation
(Noldus

Observer XT)
F1-score: 0.948

Nour
[42] 2021

Advances in
Social Sciences

Research Journal

Facial landmarks (dlib) for
tracking jawline movement;

OpenPose for 2D
pose estimation

N.A. N.A. Real-time eating
activity tracking Manual annotation N.A.

Park
[43] 2020 Robotics and

Autonomous System

Facial landmarks (dlib) for
mouth-pose estimator;
Algorithmic model for

improving 3D estimation,
location, and orientation

of the mouth

Laboratory Intel SR300
RGB-D camera

Robot active
feeding assistance

Wrist-mounted
camera N.A.

Alshboul
[44] 2021 Sensors

Time series data consisting of
Euclidean distance between
jaw/mouth landmarks and a

reference facial landmark

Free-living
(outdoors, indoors,
and public spaces)

300 videos; Huawei Y7
Prime 2018

smartphone; 13 MP
camera; resolution:

1080p at 30 fps;
frontal view

Number of chews

Manual annotation
(Intra-class
correlation

coefficient = slow:
0.96, normal: 0.94,

fast: 0.91)

Avg Error ± SD:
5.42% ± 4.61

(slow chewing)
7.47% ± 6.85

(normal chewing)
9.84% ± 9.55

(fast chewing)

Kato
[45] 2021 Gerodontology

Video fluoroscopy of
swallowing for determining

which foods are more
appropriate for elderly people

Laboratory N.A.

Association between
masticatory

movements and food
texture in

older adults

N.A. N.A.
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2.3. Article Selection

A complete overview of the selection process is depicted in the PRISMA flow dia-
gram [32] (See Appendix A). 239 records were found through database searching and
38 through author search, for a total of 277 records identified from all sources. After re-
moving 20 internal or external duplicates, 257 unique research articles were assessed. To
determine their eligibility, the research articles were screened based on their titles and
abstracts. The main exclusion criterium was the absence of video analysis from the title and
abstract (n = 92). We discarded the publications not concerning eating behavior research
(n = 57). These publications reported about types of behavior not related to eating behavior
and were therefore unrelated. Non-human studies (n = 23), non-original research studies
(n = 26), and publications written in a language other than English (n = 7) were considered
non-eligible. The full text of each of the remaining scientific publications (n = 52) was
screened rigorously. The articles were excluded due to the following criteria: videos on EEG
monitoring (n = 2), eating behavior not including automated measures(n = 15), using verbal
interactions between patients and caregivers for eating behavior (n = 6), published before
2010 (n = 6), and using sensors or wearables for tracking eating behavior (n = 10). Finally,
the remaining 13 publications were included in this study for review and data extraction.

2.4. Summary Characteristics and Data Extraction

For all the eligible studies, study characteristics such as the methodology used, the
research outcomes, and the validation procedure were retrieved. Additionally, the precision
of the outcomes was reported using the metrics from the scientific publications: F1-score,
accuracy score, precision score, or average error with standard deviation. We tabulated the
results from the original publications and summarized the data narratively. The methods
were classified by the authors based on their similarities and dissimilarities. This resulted
in 5 categories: facial landmarks, deep learning, optical flow, active appearance model, and
video fluoroscopy. The extraction was performed by one author (MT). Since this review is
centered on the methodology rather than on the outcomes of the studies, the risk of bias
was not assessed.

3. Results

The literature was reviewed systematically according to the PRISMA guidelines to
assess the methods to automatically detect eating behavior from video recordings. Overall,
the main methods found were facial landmarks, deep learning, optical flow, and active ap-
pearance model which can be combined to detect bites, chews, food intake, and food liking.
Video fluoroscopy was the only method applied to detect swallows. Facial landmarks are
the most used method for detecting bites and chews automatically from video recordings
of eating episodes. A summary of the main methods is provided in the next section with
their application for eating behavior events (Table 1).

3.1. Facial Landmarks

Face detection is a computer technology able to recognize human faces in an image or
video. Facial landmarks (or key points) detection is a computer vision task to localize and
track key points on a human face.

Several open-source computer vision packages have been developed for facial recog-
nition and landmarks. OpenSMILE is a toolkit for facial detection, which can also extract
and analyze audio features for sound and speech interpretation [46]. OpenFace is an
open-source package for facial landmark detection, eye-gaze and head pose estimation
with real-time performance (using a common webcam) [47]. OpenPose is an open-source
package for multi-person, real-time, 2D pose detection with facial, body, hand, and foot
landmarks [48]. The Viola-Jones face detector is a machine learning framework for face
detection. It combines Haar-like Features, the AdaBoost Algorithm, and the Cascade
Classifier, and it can also be adapted to object detection [49]. The Kazemi and Sullivan
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landmark detector is a machine learning framework for face alignment. It uses an ensemble
of regression trees to estimate the facial landmarks from the pixels of an image or video [50].

Facial landmarks (or detection) were used in 7 out of 13 (54%) of the studies included.
To predict food liking, Hantke et al. (2018) applied OpenFace for facial landmark extrac-
tionduring the 2018 EAT challenge. The participants scored their food preferences using a
continuous slider with values between 0 (extremely dislike) and 1 (extremely like), which
were later mapped into two variables (‘Neutral’ or ‘Like’) using a threshold. Facial land-
marks were used to predict food liking. The mouth-related subset of landmarks yielded
a better performance than landmarks from the entire face, which showed overfitting. A
support vector machine (SVM) was optimized using Leave-One-Out cross validation to
recognize food liking automatically (accuracy: 0.583) [35].

To classify food liking, Haider et al. (2018) used the OpenSMILE [46] package for facial
landmarks coupled with audio feature extraction. In a Leave-One-Out cross validation
setting, they employed the active feature transformation method to find a subset of 104
features that provided better results (Unweighted Average Recall = 0.61) for food liking
(out of the 988 features from the whole dataset) [36].

To detect eating activity, Nour et al. (2021) [42] used 68 facial landmarks to locate the
mouth and OpenPose to detect hands during eating episodes [48,51]. Eating activity was
detected when the hands were in proximity of the mouth (accuracy: not reported) [42].

To detect chewing, Alshboul et al. (2021) used the Viola-Jones face detector [44] to detect
faces and the Kazemi and Sullivan landmark detector [50] to apply facial landmarks. The
videos were recorded outdoors, indoors, and in public spaces, with different light intensities.
The video frame rate was 30 fps. The Euclidean distances were calculated between the jaw
and mouth landmarks and a reference point (upper left corner of the face rectangle) [44].

To automatically detect bites, Kostantinidis et al. (2019) extracted x- and y- mouth
features coordinates applying OpenPose in videos of eating episodes. Subsequently, the
coordinates were used to model bites, by calculating the mouth corner between mid-upper
and mid-lower lips (the classification task was performed with deep neural networks,
see Section 3.2) [37].

To estimate food intake, Okamoto et al. (2014) restricted the detection area of the
Viola-Jones face detector to the lower half of the face to minimize wrong predictions [34].
Interestingly, Okamoto et al. (2014) developed a chopstick detector by separating the front
portion of the image from the background and applying the OpenCV Hough transform [52]
for straight-line detection to enhance linear object detection (i.e., chopsticks) [34].

To feed people with impaired mobility, Park et al. (2020) developed a robotic system
with facial landmarks. The system localizes the user’s face and detects 68 facial landmarks
using dlib [51] with the histogram of oriented gradient feature, a sliding window detector,
and a linear classifier. They improved the model for light variations, 3D facial estimation,
and facial orientation to detect when the mouth is opened. The facial recognition system
is combined with a mobile manipulator to automatically deliver the food to the user’s
mouth [43]. In conclusion, facial landmarks can predict bites and chews, although the camera
angle can impact their performance and only 2D facial landmarks have been tested so far.

3.2. Deep Neural Networks

Deep learning approaches are a subset of machine learning methods, in particular
artificial neural networks, designed to automatically extract representations (also known as
features) directly from raw input [53]. In deep neural networks, as the network gets deeper,
several levels of features (from raw input to more and more abstract representations) are
extracted by composing simple non-linear modules (artificial neurons distributed over
hidden layers). Unlike conventional machine learning methods, these features are not
usually designed by humans, and learned directly from raw data using a general-purpose
learning procedure.

A multitude of deep neural networks have been proposed in literature which are
distinct in design and architecture [53–55].
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Numerous deep neural networks are commonly used for image and video classi-
fication tasks. Convolutional Neural Networks (CNNs) are an example of deep neural
networks. CNN is an architecture inspired by biological neuron connections. It consists
of an input layer, hidden layer(s) and an output layer which are connected by activation
functions. Some CNNs can be differentiated based on the input file. 2D-CNNs are com-
monly used to process RGB images (or video frame by frame). In contrast, 3D-CNNs use
a tridimensional input file, such as a video file or a sequence of 2D frames. Other CNNs
can combine different input files. For example, Two-Stream CNNs combine data from the
RGB-images with optical flow for action recognition.

CNNs can analyze input with a temporal component. CNN-LSTM (Long Short-Term
Memory) with feedback connections are well suited for time-series data. SlowFast combines
a slow and fast pathway for analyzing the dynamic and static content of a video.

Some CNNs are specialized in object detection (e.g., Faster R-CNN [56]) and instance
segmentation (e.g., Mask R-CNN [57]). To detect an object, Faster R-CNN replaced the
selective region search with a region proposal network, which boosts the detection task.
Mask R-CNN are an extension of Faster R-CNN. After the region proposal network, Mask
R-CNN classifies the region and then it classifies the pixels within the region to generate
an object mask. CNNs were used in 4 out of the 13 (30%) of the included studies, which
assessed CNNs performance for a given classification task (e.g., bite or no-bite).

To assess food intake in shared eating settings, Qui et al. (2019) rescaled the videos
from a 360-degree camera to use it as the input for Mask R-CNN [38]. In this free-living
setup, a 360 camera recorded a video from the center of a table where three subjects shared
a meal. For each subject, a box was applied on the food, person, face, and hands. When
the distance among the pixels in the face-hand-food boxes was relatively short, the system
predicted a dietary intake event (accuracy not reported) [38]. To detect a bite, Rouast et al.
(2020) investigated 2D-CNN (F1-score: 0.795), 3D-CNN (F1-score: 0.840), CNN-LSTM (F1-
score: 0.856), Two-Stream CNN (F1-score: 0.836), SlowFast (F1-score: 0.858). The SlowFast
with ResNet-50 architecture is the best model to predict a bite through intake gesture
detection. The video sessions were recorded using a 360 camera on the table where four
subjects shared a meal [40].

Kostantinidis et al. (2020) combined facial landmarks (OpenFace) with CNNs [41] to
develop RABiD, a deep learning-based algorithm, for bite classification. RABiD combines
temporal and spatial interactions (convolutional layers, max-pooling steps, LSTM, and
fully connected layers) in a two-data stream deep learning-based algorithm [41]. In RABiD,
the first data stream uses 2D features from mouth corners, while the second data stream
uses 2D features from the upper body. The mouth, head, and hands predicted bites with
F1-score of 0.948 [41].

To count bites automatically, Hossain et al. (2020) used a Faster R-CNN. Initially,
human raters manually marked the participants’ faces as the region of interest to train the
Faster R-CNN for face detection. The bite images consisted of image frames including
the face together with straw/glass/bottle/hand/spoon/fork and food in the field of view.
A binary image classifier (with AlexNet architecture) was trained to distinguish between
‘bite’ images and ‘non-bite’ images. This method achieved an accuracy of 85.4% ± 6.2% in
counting bites automatically in 84 videos of eating episodes [39]. In summary, deep neural
networks can detect human body and predict bites. However, deep learning is not efficient
in predicting chewing and it requires expensive hardware and software requirements.

3.3. Optical Flow

Optical flow is a computer vision approach that tracks motion of surfaces, objects, and
edges between consecutive image frames. Each image frame is converted to a 3D vector
field to describe space and time. The spatial motion is calculated on the 3D vector fields at
every pixel [58]. The resulting values (or parameters) can be used to assess the movement
of any object using videos as input.
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Optical flow was used in 2 of the 13 (15%) included studies. To estimate chewing
activity, Hossain et al. (2020) used optical flow to extract spatial motion parameters from
the jaw (accuracy: 88.64% ± 5.29% in 84 meal videos) [39]. To detect a bite, Rouast et al.
(2020) used a motion stream with the horizontal and vertical components of the optical
flow. The motion stream was integrated into a 2D-CNN. The models using optical flows
(Small 2D-CNN, F1-score: 0.487; ResNet50 2D-CNN, F1-score: 0.461) performed worse
than models using image frames (Small 2D-CNN, F1-score: 0.674; ResNet50 2D-CNN,
F1-score: 0.795) [40]. Optical flow presents the advantage of not being restricted to a certain
camera angle. It can predict chews but not detect bites.

3.4. Active Appearance Model

AAM is a computer vision algorithm that uses the statistical model of an object’s
shape and appearance. The model is optimized to detect differences between objects in
consecutive video frames. The model parameter values are used for least square techniques
(or spectral regression) to match the object’s appearance to a new image. The resulting data
can be used for training a classifier.

Cadavid et al. (2012) was the only publication (one out of 13, 8%) that used AAM
to distinguish between chewing and non-chewing facial actions, for which they achieved
a precision of 93%, after cross-validation [33]. AAM can detect chews but not bites and
generally it is not widely used.

3.5. Video Fluoroscopy

Video fluoroscopy is a moving X-ray examination of swallowing, which displays the
bolus movement through the oropharyngeal anatomical structures. Physicians use video
fluoroscopy to gain insights into the eating mechanisms and the problems concerning
mastication (e.g., dysphagia, or choking) [59].

The only study (1 out of 13, 8%) to use video fluoroscopy was Kato et al. (2021)
detected swallows in older adults in order to determine which foods are more appropriate
for elderly people (accuracy not reported) [45]. Overall, video fluoroscopy can track
swallow. However, the disadvantages of video fluoroscopy are its elevated costs and
dimensions, which limit the use of this technology to the clinical setting. A summary of the
advantages and disadvantages of all the methods reviewed is presented (Table 2).

Table 2. Advantages and disadvantages of each method reviewed in this study.

Method Advantages Disadvantages Open-Source

Facial Landmarks Bite detection
Chew detection

Camera angle and distance
can impact performance

Only tested in 2D
No swallow detection

Yes

Deep neural networks Bite prediction
Human body detection

Not efficient for chewing prediction
Hardware and software requirements

No swallow detection
Yes

Optical flow Chewing prediction
No camera angle restrictions

No bite detection
Motion analysis outperformed by

appearance analysis
No swallow detection

Yes

Active appearance model Chewing detection
No bite detection
Not widely used

No swallow detection
Yes

Video fluoroscopy Swallow tracking Cost and dimensions No
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4. Discussion

In this systematic review we determined the accuracy, advantages and disadvantages
of the current video-based automated methods for eating behavior. The main methods
found were facial landmarks, deep learning, optical flow, and active appearance model.
These methods can detect bites, chews, food intake, and food liking. Facial landmarks can
be used to count bites, chews, and food liking automatically (accuracy: 90%, 60%, and 25%,
respectively). CNNs can detect bites and gesture intake detection (accuracy: 91%, 86%,
respectively). AAM can be used to detect chewing (accuracy: 93%), and optical flow can be
used to count chews (accuracy: 88%). To detect swallows, video fluoroscopy was the only
method found; however, video fluoroscopy is not suited beyond a clinical setting. Facial
landmarks are the most used method for detecting bites and chews automatically from
video recordings of eating episodes.

To our knowledge, this is the first study that describes and gives an overview of
video-based automated measures of eating behavior. Our study provides a comprehensive
overview of the available methods for detecting eating behavior events automatically from
video recordings. Currently, the manual annotation of eating episodes is a time-consuming
and expensive task, which is prone to subjectivity and attentional lapses. Large prospective
eating behavior studies are unfeasible using the manual annotation. Thus, there is a
demand for the annotation process to be automated. To aid in realizing this, we provided a
systematic overview of the methods to automate the annotation process. Facial landmarks
can be used to count bites and chews by tracking facial and body motion during videos of
eating episodes [35–37,42]. However, the camera’s distance, angle, occlusion, darkness and
camera-lens focal length can limit their efficiency [60]. The reviewed publications used 2D
facial landmarks methods only; however, such methods appear too stringent for the 3D real-
world application due to their low performance in tracking facial motion from a side view.
Facial landmarks predicted food liking [35,36]. However, these studies did not include
emotion detection methods that can predict food liking [61,62]. A synergistic interaction
between facial landmarks and emotion detection can enhance food liking predictions and
consumer’s acceptance of new food products [63].

CNNs can be used to count bites [50–53]. CNNs can be used to model eating behavior
gestures that include human hands and body (e.g., intake gestures consisting of fine
cutting, loading the food, and leading the food to the mouth). CNNs are effective at
recognizing differences between consecutive video frames (e.g., presence/absence of hand
in proximity of the mouth). However, CNNs are not effective for tracking movement
between consecutive video frames (e.g., jaw movement during chewing).

Optical flow can detect chewing [39]. When coupled with a facial detector, optical
flow can track jaw movement during chewing. Optical flow is not restricted to the camera
angle: it tracks motion regardless of the user’s position. To detect intake gestures, optical
flow is not indicated. Rouast et al. (2020) showed that using frames as input (appearance
analysis) outperformed motion streams as input (optical flow analysis) [40].

AAM can be used to distinguish between chewing and talking [33]. However, more
recent methods for facial and object recognition are commonly preferred to automatically
detect eating behavior events.

Video fluoroscopy is an accurate and non-invasive technology that can track swal-
lows [45], however it is inappropriate and inaccessible for automating eating behavior
analysis due to its costs and dimensions.

Several limitations may be recognized. First, there is a discrepancy in comparing
accuracy and performance metrics, due to different study designs and data magnitude.
Second, three conference papers were included, although their future full version may
include more details or updates. Third, this study includes only methods that analyze
video recordings, without considering the accuracy of other methods for automated eating
behavior analysis (e.g., bone conduction microphone, algorithmic modeling from scales
data, magnetic jaw displacement).
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Future work should focus on addressing current issues to provide updated methods for
the eating behavior field. The 3D facial landmarks should be applied to improve accuracy
from a lateral camera angle. Furthermore, standard procedures should be established for
camera angle, data extraction from video, reference facial landmarks, and algorithms to
detect eating behavior events. Importantly, privacy concerns regarding face recognition
should be addressed. To achieve automatic swallow detection, optical flow should be tested
for tracking throat movement.

Only three publications [38,40,44] found in this study used free-living conditions:
two with a 360 camera in the middle of the table, and one using a combination of video
recordings from indoor, outdoor, and public spaces. For sensor-based detection, free-
living is a valid setup to detect food intake [64]. In the future, video-based detection of
eating events should extend to free-living conditions, possibly placing 360 cameras in
different positions.

Video-based methods should consider how the awareness of being monitored affects
social modeling of eating and eating intake (particularly for energy-dense foods) [65,66].

Future personalized nutrition recommender systems could be implemented by com-
bining automatic eating behavior analysis with food and calories intake estimation [67].
Advancements should be implemented through open-source software, which can boost
collaboration in the field. It is hoped that the developments of future methods will provide
objective measures to conduct prospective studies and allow intervention strategies to
decrease eating rate and, subsequently, overeating.

5. Conclusions

Based on this systematic review, the use of facial landmarks is the most promising
method to detect eating behavior events automatically from video recordings because
it is the only method that can detect both bites and chews. Improvements of this tech-
nology are needed to standardize procedures. CNNs can detect bites automatically and
optical flow can detect chews automatically, but feasible method to detect swallows are
currently lacking.

Ideally, future methods should detect bites, chews, and swallows from video record-
ings using inexpensive hardware with low computational requirements. Future methods
should be implemented with open-source software to boost collaboration and develop-
ment. The automated video analysis of eating episodes would improve eating behavior
research and provide real-time feedback to the consumers to improve their weight status
and health.
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Appendix A

Search Queries
Scopus
(Only articles in English)
TITLE-ABS-KEY ((video AND eating AND behaviour OR behavior AND methodology

OR chews OR bites OR meal OR machine AND learning OR computer AND vision OR
automated OR analysis)) AND PUBYEAR > 2009

ScienceDirect
(With date range 2010–2022, all publication types)
video AND eating AND behaviour AND chew AND chewing AND bites AND meal

AND machine learning AND computer vision AND human
PubMed
(With date range 2010–2022, all publication types, only human, only articles in English)
(((((video[Title/Abstract]) AND ((eating)[Title/Abstract])) AND ((behaviour[Title/Abst-

ract] OR behavior)[Title/Abstract])) AND ((methodology)[Title/Abstract])) AND ((meal)[Title/
Abstract] OR (chews[Title/Abstract]) AND (bites[Title/Abstract]) OR (meal[Title/Abstract])
OR (machine[Title/Abstract]) AND (learning[Title/Abstract]) OR (computer[Title/Abstract])
AND (vision[Title/Abstract]) OR (automated[Title/Abstract]) OR (analysis[Title/Abstract]))
AND (computer[Title/Abstract] AND vision[Title/Abstract] OR automated[Title/Abstract]
OR analysis)[Title/Abstract]))

Google Scholar
(With date range 2010–2022, all publication types, only articles in English)
human video eating behavior behaviour chew bites chewing meal machine learning

computer vision automated analysis automatic methods methodology
PRISMA Flow Diagram

Figure A1. PRISMA flow diagram that depicts the identification, screening, and eligibility workflow
for including the scientific records in this study.
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