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Abstract

Purpose: This study investigated the effect of the FIFA 11+ warm-up program on whole body muscle activity using positron
emission tomography.

Methods: Ten healthy male volunteers were divided into a control group and a group that performed injury prevention
exercises (The 11+). The subjects of the control group were placed in a sitting position for 20 min and 37 MBq of 18F-
fluorodeoxyglucose (FDG) was injected intravenously. The subjects then remained seated for 45 min. The subjects of the
exercise group performed part 2 of the 11+for 20 min, after which FDG was injected. They then performed part 2 of the
11+for 20 min, and rested for 25 min in a sitting position. Positron emission tomography-computed tomography images
were obtained 50 min after FDG injection in each group. Regions of interest were defined within 30 muscles. The
standardized uptake value was calculated to examine the FDG uptake of muscle tissue per unit volume.

Results: FDG accumulation within the abdominal rectus, gluteus medius and minimus were significantly higher in the
exercise group than in the control group (P,0.05).

Conclusion: The hip abductor muscles and abdominal rectus were active during part 2 of the FIFA 11+ program.
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Introduction

Prevention of sports injuries has become a key issue in sports

medicine in recent years. Most sports injury prevention training

programs are composed of plyometric training, balance training,

and agility training. Studies have been conducted on the effects of

such training programs on various athletes. Although the subjects

and details of the training programs differed, the results showed a

decreased incidence of sports injuries regardless of sport activity

level, sex, and age [1–4].

The ‘‘11’’ is an injury prevention program that was developed

with the support of the Fēdēration Internationale de Football

Association (FIFA) and aims to reduce the effect of intrinsic injury

risk factors in soccer. This program has been validated in that

sport [5,6]. A successive modified version of the ‘‘11’’ (the ‘‘11+’’)

has also proven effective in preventing injuries in young female

soccer players [7] and elite male basketball players [8]. The FIFA

11+provided a .40% reduction in the risk of injury. Furthermore,

research using motion analytic techniques has been conducted on

the effect of the sports injury prevention training [9,10]. The

training program aimed to improve core stability and neuromus-

cular control [11,12]. However, the muscle activation patterns

have not yet been well elucidated for the ‘‘11+.’’

Muscle activity levels of various sport types have been

investigated using electromyographic (EMG) examinations

[13,14]. Since equipment must be attached to the body for

EMG measurements, sports activity level is disturbed, which limits

the types of sports investigated. In addition, only a limited number

of muscles and superficial muscles can be investigated by EMG

examinations.

Muscle activity during exercise has been examined by positron

emission tomography (PET) with 18F-fluorodeoxyglucose (FDG)

[15–17]. 18F-FDG taken up by muscle cells is not metabolized and

remains in the cells as FDG-6-phosphate after phosphorylation.

Thus, 18F-FDG accumulation in the muscle can be used as a

parameter of glucose intake by the muscle as well as the muscle

activity level. PET provides a promising alternative or supplement

to existing methods to assess muscle activation in complex human

movements.

The purpose of the present study was to examine muscle activity

during the 11+using PET.

Methods

Ten healthy men volunteered for this study. Five of them were

asked to perform the 11+. The 11+consisted of 3 parts: a running
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exercise (part 1); 6 exercises with 3 levels each of increasing

difficulty that developed strength, balance, muscle control, and

core stability (part 2); and advanced running exercises (part 3). We

intended for the part 2 exercise to consist of level 1 activities except

the running exercises (Table 1). Subject characteristics are

presented in Table 2. None of the subjects was taking any

medications and all were healthy as judged by their medical

history and physical examination. The purpose and potential risks

of this study were explained to the subjects and written informed

consent to participate was obtained from them. The study design

was approved by the ethics committee of Kanazawa University

Hospital.

All subjects refrained from eating and drinking for at least 6 h

before the investigation as well as strenuous physical activity for at

least 1 day before the experiment.

The subjects in the control group were placed in a sitting

position for 20 min and 37 MBq of FDG was then injected

intravenously. The subjects then remained seated for 45 min. The

subjects in the exercise group performed part 2 of the 11+for

20 min, followed by injection with FDG. Immediately after the

Table 1. The FIFA 11+ Part 2, Level 1.

Exercise: Strength, plyometric and balance

The bench: Static (30s, 3 sets )

Sideways bench: Static (30s, 3 sets on each side )

Hamstrings: Beginner (3 repetition )

Single-leg stance: Hold the ball (30s, 2 sets )

Squats: With toe raise (30s, 2 sets )

Jumping: Vertical jump (30s, 2 sets )

Exercises of the structured warm-up program.
doi:10.1371/journal.pone.0073898.t001

Table 2. Physical characteristics of the subjects in the control
and exercise groups (values are mean 6 SD).

control group exercise group P value

No. of subjects 5 5

Age, yr 2964 3164 0.30

Height, cm 170.464.6 169.465.1 0.75

Weight, kg 69.669.9 66.462.7 0.50

Body mass index,
kg/m2

23.963.0 23.261.1 0.64

doi:10.1371/journal.pone.0073898.t002

Figure 1. Representative whole-body positron emission tomography images of patients in the control group.
doi:10.1371/journal.pone.0073898.g001
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injection, each subject performed 20 min of part 2 of the 11+.

After resting and exercising, each subject was placed in a supine

anatomical position on a scanner bed that facilitated longitudinal

displacement into the gantry of a PET-computed tomography

(PET-CT) system (Discovery PET/CT 690; GE Healthcare,

Milwaukee, WI, USA). The plasma glucose level of each subject

was confirmed to be normal before the FDG injection.

Scanning was performed with a 60-cm axial field of view and a

transaxial resolution of 6.4 mm (full-width half-maximum in the

center field of view without scattering medium). Before emission

scanning, an unenhanced CT scan was performed for attenuation

correction and muscle orientation. Emission scanning was

performed in 3-demensional mode 50 min after 18F-FDG

administration at 3 min/bed station. The total emission time

was 39–42 min. Images were reconstructed with 3-dimensional

ordered subset expectation maximization with 2 iterations and 16

subsets. After reconstruction, a 6.4-mm FWMH Gaussian post-

filter was applied.

PET Analysis
Regions of interest (ROI) were drawn manually in 5 areas of the

body and 30 skeletal muscles as follows: 1) Trunk: at the inferior

border of the fourth lumbar vertebrae for the abdominal rectus as

well as for the abdominal external oblique, abdominal internal

oblique, transverse abdominal, greater psoas, lumbar quadrate,

and erector spinae muscles; 2) Pelvis: at the superior border level of

the acetabular roof for the gluteus maximus as well as at the

gluteus medius, gluteus minimus, and piriformis muscles; 3) Thigh:

at the center of the inferior border of the femoral lesser trochanter,

the femoral condyle for the quadriceps femoris muscle, the

sartorius, gracilis, semimembranosus, semitendinosus, and biceps

femoris muscles, and the adductor muscle complex; 4) Lower leg:

at the center of the tibia for the anterior tibial muscle as well as the

long flexor muscles of the toes and the great toe and the posterior

tibial, triceps surae, and peroneus muscles; 5) Foot: at the center of

the navicular for the abductor hallucis muscle, the center of the

metatarsal bone for the interosseous muscles, and the plantar

quadrate, flexor digitorum brevis, abductor digiti minimi, and

flexor hallucis brevis muscles.

One experienced nuclear medicine specialist (A.I.) defined all of

the ROI using plain CT images. The standardized uptake value

(SUV) was calculated by overlapping of the defined ROI and

fusion images. Large vessels were avoided when the muscle areas

were outlined. The SUV was calculated to quantitatively examine

the FDG uptake of the muscle tissue per unit volume according to

the equation: SUV = mean ROI count (cps/pixel)/body weight

(g)/injected dose (mCi) 6 calibration factor (cps/mCi). ROI were

defined for the right and left sides of the aforementioned skeletal

Figure 2. Representative whole-body positron emission tomography images after performance of the 11+ by patients in the
exercise group.
doi:10.1371/journal.pone.0073898.g002
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muscles. The mean SUV was calculated using the following

equation: mean SUV = (left mean SUV 6 left muscle area+right

mean SUV 6 right muscle area)/(left muscle area+right muscle

area).

Statistical Analysis
All data are presented as means and standard deviations. The

Mann-Whitney’s U test was used to evaluate differences in muscle

volumes and SUV for all ROI between groups. SPSS for Windows

ver. 19.0 (SPSS Inc, Chicago, IL, USA) was used for the analysis.

The minimum significance level was set at P,0.05.

Results

No significant differences in individual physical characteristics

were observed between groups (Table 2). Figures 1 and 2 illustrate

typical whole-body PET images from the control and exercise

groups, respectively. Tables 3 and 4 show the ROI volumes and

Table 3. ROI volumes and mean SUVs in the control and exercise groups, trunk-thigh (values are means 6 SD).

ROI volumes Mean SUVs

Body areas Muscle control group exercise group P value control group exercise group P value

Trunk Abdominal rectus 11.1761.32 12.3363.29 0.50 0.4560.10 0.8260.16 ,0.05

Abdominal external oblique 17.1562.75 18.4564.23 0.58 0.4860.06 0.6260.14 0.08

Abdominal internal oblique 16.4365.38 19.0364.89 0.45 0.6160.06 0.6660.17 0.54

Transverse abdominal 7.3461.65 7.9961.52 0.54 0.6060.10 0.5960.14 0.88

Greater psoas 24.7764.70 26.7165.34 0.56 0.8160.09 0.8060.12 0.88

Lumbar quadrate 14.6762.96 15.4463.04 0.70 0.6260.10 0.5560.18 0.21

Erector spinae 41.1367.40 39.4567.36 0.73 0.7760.08 0.6660.03 0.03

Pelvis Gluteus maximus 66.1468.54 67.4166.37 0.80 0.6260.05 0.8160.27 0.21

Gluteus medius 51.9769.41 53.7469.27 0.77 0.7660.03 1.8860.27 ,0.05

Gluteus minimus 28.6964.69 22.8264.80 0.09 0.9360.14 3.4760.68 ,0.05

Piriformis 16.5562.13 13.7264.92 0.29 1.0760.12 1.4460.50 0.18

Thigh Quadriceps femoris 137.74612.54 129.97618.66 0.47 0.6260.09 0.9760.30 0.06

Sartorius 5.6361.95 6.8262.63 0.44 0.5360.03 0.5160.10 0.7

Gracilis 6.6461.62 7.3762.89 0.64 0.4760.06 0.7060.26 0.11

Semimembranosus 16.5162.23 19.4867.38 0.43 0.5460.04 0.5760.02 0.16

Semitendinosus 15.2963.58 16.4364.85 0.68 0.4660.07 0.6860.26 0.13

Biceps femoris 24.5864.32 26.9665.95 0.49 0.5160.04 0.5360.05 0.63

Adductor complex 47.3267.10 45.84611.03 0.81 0.6360.06 0.6760.07 0.34

ROI, region of interest; SUVs, standardized uptake values.
doi:10.1371/journal.pone.0073898.t003

Table 4. ROI volumes and mean SUVs in the control and exercise groups, lower leg-foot (values are mean 6 SD).

ROI volumes Mean SUVs

Body areas Muscle control group exercise group P value control group exercise group P value

Lower leg Anterior tibial 10.1860.72 11.7562.19 0.19 0.7860.06 0.7960.21 0.92

Long flexor muscle of toes 4.2461.12 4.2361.48 0.99 0.8560.41 0.8860.35 0.91

Posterior tibial 12.2861.64 11.4161.56 0.42 0.9260.14 1.1960.52 0.31

Long flexor muscle of great toe 5.4661.18 7.1361.29 0.07 1.0660.29 1.4960.49 0.14

Peroneus 5.4961.85 4.6961.11 0.43 0.6860.09 1.1460.40 0.06

Triceps surae 42.5167.21 39.78610.05 0.64 0.9960.40 1.0960.47 0.71

Foot Abductor hallucis 7.7962.86 6.1861.20 0.29 0.8660.25 1.5560.64 0.08

Plantar quadrate 4.7960.85 4.8360.95 0.94 0.9260.10 1.0760.30 0.34

Flexor digitorum brevis 5.556098 6.3661.03 0.24 0.8460.05 1.1960.49 0.18

Abductor digiti minimi 5.8260.86 7.0261.15 0.10 0.7860.09 1.2260.76 0.26

Flexor hallucis brevis 6.4360.92 4.4060.78 ,0.01 0.8460.09 1.7761.02 0.11

Interosseous 10.8861.41 9.0861.06 0.06 0.8860.12 1.6060.95 0.17

ROI, region of interest; SUVs, standardized uptake values.
doi:10.1371/journal.pone.0073898.t004
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SUVs of the muscles of patients in the control and exercise groups,

respectively. No significant differences in ROI volumes were

observed between groups for any of the muscles except the flexor

hallucis brevis. FDG accumulation within the abdominal rectus,

gluteus medius and minimus muscles in the exercise group was

significantly higher than that in the control group (P,0.05).

Discussion

The most important findings of the present study were that the

hip abductor and abdominal rectus were active while the patients

performed the FIFA 11+injury prevention exercises. To our

knowledge, this is the first study to apply PET to the 11+program.

These data will be useful in future sports injury prevention

programs.

Studies have reported that sports injury prevention programs

including the 11+, help reduce the incidence of sports injuries

[7,8]. However, it remains unknown how skeletal muscles

throughout the body become active during such programs, since

studies to date have primarily used surface EMG to evaluate

skeletal muscle activities. Thus, skeletal muscles throughout the

body could not be evaluated simultaneously. In our study, PET

was used to simultaneously evaluate a variety of skeletal muscles.

Our study was the first to demonstrate the activation of the hip

abductor, abdominal rectus muscles after the FIFA 11+program.

Fujimoto [15] and Tashiro [18] used PET to evaluate muscle

activity during running. These were the first reports of the study of

muscle activity during exercise using PET. Other studies have

investigated tissue glucose uptake with PET in simple tasks such as

isometric muscle contractions [19] and dynamic strength exercises

[20] as well as in more complex endurance work tasks such as

walking [21], running [22], and double poling [17]. Bojsen et al.

reported that PET imaging might be a promising supplement or

an alternative to more traditional methods for investigating muscle

use during complex human movements [17]. These studies

reported that glucose uptake of skeletal muscle up to 55%

VO2max intensity closely reflected muscle activity assessed by

PET. The present study confirmed that the main effector muscles

in the 11+included the hip abductor, abdominal rectus muscles.

Myer et al. [11] reported that hip abduction strength and

control might be the critical modulator between altered trunk

control and the ultimate lower limb knee loads responsible for

sports injuries, especially anterior cruciate ligament (ACL) tears.

Russell et al. suggested that the higher valgus angles might

predispose women to a higher incidence of ACL injuries [23].

Recent investigations indicate an association of hip abduction

strength with dynamic valgus alignments that increase ACL injury

risks. Schmitz et al. reported increased gluteus medius activation

in response to trunk displacement [24]. Hip abduction strength

and recruitment may improve the ability of female athletes to

increase lower limb alignment control and decrease motion and

loads that result from increased trunk displacement during sports

activities [25,26]. The findings in these reports support the

importance of hip abductor and trunk muscle control in

preventing sports injuries.

One limitation of the present study is that the PET with FDG

method accounts only for muscle glucose uptake and other

substrates such as free fatty acids, muscle glycogen, and lactate are

metabolized in the active muscle cells. Nonetheless, studies have

confirmed that glucose oxidation increases with exercise intensity,

and glucose uptake increases, to some extent, in proportion to

glycogen utilization when exercise intensity rises [27].

Another limitation of this study was the method used to define

ROI. Since FDG uptake was measured at an arbitrary site on the

target muscle, it did not reflect that of the entire muscle. In

addition, there could have been differences in the glucose uptake

ability among skeletal muscle types. In studies to date, FDG uptake

has been shown to be higher in the soleus and vastus medialis

muscles, which are composed mostly of type 1 fibers, compared to

muscles that are composed of type II fibers [28]. It will be

necessary to further investigate this issue in future studies. In our

study, the daily activities were not restricted in patients of the

exercise or control groups on the day of the PET examination.

Thus, walking during daily activity could have resulted in a lack of

differences in FDG accumulation in the skeletal muscles of the

lower legs and feet. Although there are the aforementioned

limitations, this study was the first to reveal the effects of the FIFA

11+on muscles throughout the body. The results of this study

could provide valuable information to further advance sports

injury prevention programs.

Conclusion

The present study confirmed that the hip abductor and

abdominal rectus were active during part 2 of the FIFA 11+.

The results shown here could provide valuable information to

further advance sports injury prevention programs.
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