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Abstract 

Background:  At the end of 2019, the world witnessed the emergence and ravages of a viral infection induced by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also known as the coronavirus disease 2019 (COVID-
19), it has been identified as a public health emergency of international concern (PHEIC) by the World Health Organi‑
zation (WHO) because of its severity.

Methods:  The gene data of 51 samples were extracted from the GSE150316 and GSE147507 data set and then 
processed by means of the programming language R, through which the differentially expressed genes (DEGs) that 
meet the standards were screened. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were performed on the selected DEGs to understand the functions and approaches of DEGs. The online tool 
STRING was employed to construct a protein–protein interaction (PPI) network of DEGs and, in turn, to identify hub 
genes.

Results:  A total of 52 intersection genes were obtained through DEG identification. Through the GO analysis, we real‑
ized that the biological processes (BPs) that have the deepest impact on the human body after SARS-CoV-2 infection 
are various immune responses. By using STRING to construct a PPI network, 10 hub genes were identified, including 
IFIH1, DDX58, ISG15, EGR1, OASL, SAMD9, SAMD9L, XAF1, IFITM1, and TNFSF10.

Conclusion:  The results of this study will hopefully provide guidance for future studies on the pathophysiological 
mechanism of SARS-CoV-2 infection.
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Introduction
Currently, a new type of coronavirus, first named as 
Coronavirus 2019 (COVID-19), has spread rapidly in 
212 countries. As of May 25, 2020, more than 5.5 mil-
lion cases have been diagnosed and over 340,000 people 
have died of it. The results of genome sequencing have 
unveiled that this pneumonia is induced by a new type of 
coronavirus, namely severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [1].
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At the beginning of the outbreak, scientists believed 
that the disease was first spread from animals to 
humans, and then from symptomatic people to other 
humans until the first human-to-human transmis-
sion from asymptomatic carriers recorded in Germany 
[2–4]. It has been proved that the new CoV can spread 
from person to person through breathing droplets. It 
is worth noting that the respiratory tract may not be 
the only route of transmission. Specifically, the direct 
or even indirect contact with the mucous membranes 
of eyes, mouth, or nose can also spread SARS-CoV-2 
[5, 6]. Besides, as documented by a research lately, it 
is possible that SARS-CoV-2 infection can be spread 
through the digestive tract [7].

As people in all age groups are vulnerable to SARS-
CoV-2, those over the middle age prove to be the most 
susceptible. A majority of patients admitted to hospi-
tal for the diagnosis of COVID-19 average from 48 to 
58 years [8]. After SARS-CoV-2 infects human body, it 
enters the alveolar epithelial cells to rapidly replicate and 
trigger a powerful immunological reaction, causing dam-
age to lung tissues and the cytokine storm syndrome, 
which is an important cause of acute respiratory distress 
syndrome (ARDS) and multiple organ failure [9, 10]. At 
present, in clinical practice, the infection prevention and 
control methods are implemented, as well as the support-
ive nursing is provided for patients. However, no vaccine 
or specific treatment has been successfully developed for 
SARS-CoV-2 [11].

Since the emergence of COVID-19, it has been exten-
sively documented by scholars and researchers from all 
over the world. Recent studies have shown that spike pro-
tein is of vital importance in inducing neutralizing anti-
bodies. Vaccines can be developed to specifically identify 
the spike proteins of SARS and angiotensin-converting 
enzyme 2 (ACE2) receptors [12]. Although the SARS-
CoV-2 and SARS spike protein sequences show some 
overlaps, viral genetic mutations and increased antibody 
dependence may affect the efficacy of the vaccine [13]. In 
order to reduce the occurrence of above situation, it is a 
good approach to screen out hub genes that are closely 
related to the pathological process of SARS-CoV-2 inva-
sion into lung cells, and to understand the changes in 
host cell molecular level during this interaction.

With the technology of microarray and high-through-
put sequencing evolving increasingly, genes related to 
the occurrence, development, diagnosis and treatment 
of diseases can be identified. In order to better under-
stand the important genes of alveolar epithelial cells that 
SARS-CoV-2 acts on and to provide more information 
for vaccine development, this study employed integrated 
bioinformatics methods to conduct cross-platform 
research and large-sample survey [14].

Methods and materials
Study process
In this study, we mainly carried out DEGs screening, GO 
analysis, KEGG analysis, PPI network establishment and 
statistical verification for gene set data. The specific pro-
cess is shown in Additional file 1: Figure S1.

Data sources
The Gene Expression Omnibus (GEO) is an open data-
base that stores expression chip data, from which the 
GSE150316 and the GSE147507 gene expression profiles 
were obtained. The GSE150316 gene expression pro-
file was obtained from the platform GPL18573 Illumina 
NextSeq 500 (Homo sapiens), and the GSE147507 gene 
expression profile was obtained from the analysis of plat-
form GPL18573 Illumina NextSeq 500 (Homo sapiens) 
and platform GPL28369 Illumina NextSeq 500 (Mustela 
putorius furo). From the GSE150316 and GSE147507 
gene expression profiles, the gene data of 47 samples and 
that of four samples were selected, respectively, both of 
which were included for research and analysis. Out of the 
gene data of 47 samples, 42 were obtained from the lung 
tissues of 11 COVID-19-positive patients, and five from 
normal human lung tissues. Out of the gene data of four 
samples, two were from lung tissue samples of the same 
COVID-19 positive patient (technical replication), and 
two were from lung tissues of two normal individuals (a 
male and a female).

Data processing
The system matrix files and other related files of 
GSE150316 and GSE147507 were downloaded from the 
GEO database. R was deployed to convert the counts 
of these genes into TPM files, and the limma package 
was used in R language to standardize the data of each 
group and select the DEGs that meet the standards 
[15]. The GSE150316 data set is based on |log2 FC|≥ 1, 
p-value < 0.05 as the standard, and the standard of the 
GSE147507 data set is |log2 FC|≥ 2, p-value < 0.01—both 
meet the statistical standard. Therefore, this standard was 
adopted to distinguish genes with significant changes 
in expression fold change from other genes. All eligible 
DEGs were included in this study [16].

Identification of DEGs
The GO analysis and the KEGG enrichment analysis, 
which can perform functional enrichment analysis and 
pathway enrichment analysis on DEGs, respectively, were 
employed to delve into the biological functions of DEGs. 
GO is a biological information resource that stores com-
putable knowledge of the functions of genes and gene 
products and describes the biological functions of genes 
and gene products in living bodies through annotations 
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that have been confirmed by relevant studies, and it has 
become the main annotation method for high-through-
put sequences [17, 18]. In the GO analysis, it is widely 
accepted that p < 0.05 is statistically significant. This step 
enables the identification of genes that have significant 
effects in the biological process (BP), cellular component 
(CC), and molecular function (MF) [19]. KEGG, which 
is composed of the PATHWAY database, LIGAND data-
base, and GENES database, is a resource library with 
genomic sequences and related molecular data obtained 
from other high-throughput experimental analyses. 
KEGG boasts of powerful image tools that clearly dis-
play various biological metabolic pathways and the con-
nections between them. In the KEGG analysis, p < 0.05 is 
considered to be of statistical significance [20].

Construction of the protein–protein interaction (PPI) 
network and identification of hub genes
The PPI network consists of individual proteins that 
interact with each other to be involved in a variety of life 
activities, such as the transmission of biological signals, 
regulation of gene expression, metabolism of energy and 
substance, as well as the regulation of cell cycle. Ana-
lyzing protein interaction networks allows us to better 
understand how proteins work and function in biologi-
cal systems. Therefore, the online tool STRING (version 
11.0) (http://​string-​db.​org/) (medium confidence > 0.4), 
to which the DEGs were uploaded, was employed to con-
struct the PPI network. Following this, the PPI network 
was visualized with the help of the software Cytoscape 
(version 7.3.2) (the default parameters). Hub genes were 
defined as those with a degree in the top 10.

Performing non‑paired t‑test for verification
To ensure that the 10 hub genes obtained in this study 
are worthy of further study, the data of GSE150728 were 
used to verify them. The data of the control group and the 
infection group of these 10 hub genes in GSE150728 were 
extracted and a non-paired t-test analysis was performed 
using GraphPad Prism (version 8.0.2). p-value < 0.05 was 
considered to be statistically significant.

Result
The DEGs among GSE150316 and GSE147507
The gene data of 51 samples were obtained from 
GSE150316 and GSE147507 gene expression pro-
files. Detailed information about the data sources of 
this research is described in Table  1. First, accord-
ing to abs  |log  FC|> 2 and p-value < 0.01,  1107, DEGs 
were selected from the gene data of four samples of 
GSE147507. Among them, 384 genes were up-regu-
lated and 723 genes were down-regulated. According to 
abs  |log  FC|> 1, p-value < 0.05,  643, DEGs were selected 

from the gene data of 47 samples of GSE150316. Among 
them, 449 genes were up-regulated and 194 genes were 
down-regulated. Additionally, there are 52 intersec-
tion genes between GSE147507 and GSE150316 (refer 
to Additional file 2: Table S1 and Fig. 1). Details of their 
function and fold change are presented in Additional 
file 3: Table S2 (The above information of gene functions 
comes from GeneCards) (http://​www.​genec​ards.​org). 
Then, the volcano map and the heat map of the DEGs 
were plotted for GSE147507 and GSE150316 (refer to 
Fig. 2A-D).

Enrichment analysis of the pathway and process 
in SARS‑CoV‑2 infection
The GO analysis demonstrated that in GSE147507, the 
parts that exert significant influence on the annotation 

Table 1  Details of the data sources for this study

Gene 
expression 
profile

Sample collection Sample genetic 
data included

Platform

GSE147507 Lung tissue GSM4462413-16 GPL18573 Illu‑
mina NextSeq 
500 (Homo 
sapiens)

GSE150316 Lung tissue GSM4546576-79
GSM4546581-82
GSM4546584
GSM4546586
GSM4546588-89
GSM4546592
GSM4546596-99
GSM4546601
GSM4546608-12
GSM4698531-40
GSM4698544-53
GSM4698521-23
GSM4698526-28

GPL18573 Illu‑
mina NextSeq 
500 (Homo 
sapiens)

Fig. 1  The intersection DEGs of GSE147507 and GSE150316

http://string-db.org/
http://www.genecards.org
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of biological processes (BP) are the neutrophil activation 
involved in immune response and neutrophil activation. 
Moreover, in GSE150316, humoral immune response 
and complement activation have significant effects on 
the annotation of biological processes (BP). Those parts 
that are statistically significant in the three processes of 
GO analysis, BP, CC, and MF, are shown in Fig.  3A, B, 
respectively. Additional file 3: Table S2 shows a collection 
of the 20 most important GO enrichment items in the BP 
of GSE147507 and GSE150316.

Analysis of the KEGG pathway
In order to better identify the biological function of 
DEGs, an in-depth analysis of DEG was conducted 
by means of KEGG, where p-value < 0.05 was consid-
ered to be statistically significant. In system matrix files 
GSE147507, the results demonstrated that 20 meaning-
ful approaches were analyzed in total. The cell signaling 
pathways significantly associated with the SARS-CoV-2 
infection include, but are not limited to osteoclast dif-
ferentiation, chemokine signaling pathway, Yersinia 

Fig. 2  Volcano map and heat map of DEGs. A, B The volcano map and heat map of DEGs that were plotted for GSE147507. C D The volcano 
map and heat map of DEGs that were plotted for GSE150316. The X axis represents the logarithm of the fold change. The Y axis represents the 
negative value of the logarithm of the p value. Red dots represent up-regulated genes that meet the screening criteria, and blue dots represent 
down-regulated genes that meet the screening criteria (A, C). Gene expression data are converted into a data matrix. Each column represents 
the genetic data of a sample, and each row represents a gene. The color of each cell represents the expression level, and there are references to 
expression levels in different colors in the upper right corner of the figure (B, D)
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Fig. 3  The top 10 enriched terms of GO analysis (BP, CC, MF) in the system matrix file GSE147507 (A) and GSE150316 (B)
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infection, NOD-like receptor signaling pathway, and 
C-type lectin receptor signaling pathway. The most 
abundant KEGG path information of the system matrix 
files GSE147507 and GSE150316 is shown in Additional 
file 4: Table S3. However, the KEGG path information of 

GSE150316 is not obvious, and it is not shown in Addi-
tional file  4: Table  S3. All the specific enrichment path-
ways obtained from the analysis of the DEGs of the 
system matrix file GSE147507 are shown in Fig.  4A. In 
the system matrix file GSE150316, we did not obtain 

Fig. 4  Functional and pathway enrichment analyses of DEGs in the system matrix file GSE147507 and GSE150316
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highly significant signal pathway results after analysis, 
but, as can be seen in Fig.  4B, it may be related to the 
circadian rhythm, hematopoietic cell lineage, p53 signal-
ing pathway, viral protein interaction with cytokine and 
cytokine receptor, and vitamin digestion and absorption.

Hub genes identification with DEGs protein–protein 
interaction network (PPI)
From a physiological point of view, proteins rarely func-
tion on their own and usually interact with each other 

within a network. Therefore, this research constructed 
the PPI network on STRING (version 11.0). Finally, it 
was observed that the PPI network of GSE147507 has 
371 nodes and 442 edges (refer to Fig. 5), the PPI net-
work of GSE150316 has 75 nodes and 122 edges (refer 
to Fig.  6), and the PPI network of intersection has 26 
nodes and 59 edges (Fig.  7). In addition, the PPI net-
work was visualized using Cytoscape (version 7.3.2), 
and the 10 hub genes were identified as IFIH1, DDX58, 
ISG15, EGR1, OASL, SAMD9, SAMD9L, XAF1, 
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Fig. 5  The PPI network of GSE147507
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IFITM1, and TNFSF10 (Fig.  8). Their functions are 
shown in Table 2.

Verification of the hub gene through non‑paired t‑test
The results of the t-test are demonstrated in Fig. 9. There 
are six hub genes that have statistical significance: IFIH1, 
SAMD9L, ISG15, XAF1, OASL, and TNFSF10. The 
p-values of SAMD9, DDX58, EGR1, and IFITM1 were 
0.5561, 0.3529, 0.5915, and 0.8628, respectively, which 
are all greater than 0.05. Thus, they were not statistically 

significant. This study will not conduct further research 
on these four hub genes.

Discussion
At the beginning of 2020, SARS-CoV-2 triggered a 
worldwide outbreak of COVID-19 pneumonia, render-
ing it imperative to acquire better knowledge about 
SARS-CoV-2 and create a vaccine to prevent its spread 
among the populace [21]. Therefore, uncovering the 
potential molecular mechanism of COVID-19 is of 
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paramount importance. The gene expression profile of 
the GSE150316 and GSE147507 data sets were used to 
screen DEGs. As a result, 1107 DEGs were identified in 
the GSE147507, including 384 up-regulated DEGs and 
723 down-regulated DEGs, and 643 DEGs were identi-
fied in the GSE150316, including 449 up-regulated DEGs 
and 194 down-regulated DEGs. The GO analysis was 
utilized to perform a functional enrichment analysis on 
the DEGs obtained, the results of which demonstrated 
the significantly enriched disease-related BP, CC, and 
MF. Meaningful enrichment was also reported through 
the KEGG analysis. Next, the PPI network construction, 
module analysis, and central gene identification were 
performed to screen a total of 10 important hub genes 
that may play a key regulatory role in the pathophysiol-
ogy of COVID-19.

As shown in the graph describing the results of the 
GO analysis, it is generally believed that the smaller 
the p-value of the GO item, the more significant the 
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enrichment of DEG in the GO item. For GSE147507, the 
functions of neutrophil activation involved in immune 
response, neutrophil activation and neutrophil-mediated 
immunity are the most significant parts of biological pro-
cesses. The manner in which SARS-CoV-2 invades host 
cells is related to the angiotensin-converting enzyme 2 
(ACE2), and SARS-CoV-2 invades human cells by bind-
ing to ACE2 [22]. The human body’s pattern recognition 

receptor recognizes the SARS-CoV-2 virus antigen and 
presents it to natural killer cells and CD8-positive cyto-
toxic T cells, which activate the body’s innate immunity 
and adaptive immunity and triggers a large number of 
pro-inflammatory cytokines and chemotaxis in the body 
factor generation. Some pro-inflammatory cytokines can 
activate neutrophils. With the development of COVID-
19, the level of neutrophils in the blood continues to rise. 

Table 2  The function of 10 hub genes

ID Function

IFIH1 Encoding MDA5 which is an intracellular sensor of viral RNA that triggers the innate immune response, involves in a proinflammatory 
response that includes interferons and plays an important role in enhancing natural killer cell function in malaria infection

DDX58 Involving in viral double-stranded (ds) RNA recognition and the regulation of the antiviral innate immune response

ISG15 Including chemotactic activity towards neutrophils, direction of ligated target proteins to intermediate filaments, cell-to-cell signaling, and 
antiviral activity during viral infections

EGR1 Encoding a nuclear protein which functions as a transcriptional regulator

OASL Diseases associated with OASL include West Nile Fever and West Nile Virus Infection

SAMD9 Encoding a sterile alpha motif domain-containing protein that may play a role in regulating cell proliferation and apoptosis

SAMD9L Encoding a cytoplasmic protein that acts as a tumor suppressor but also plays a key role in cell proliferation and the innate immune 
response to viral infection

XAF1 Encoding a protein which binds to and counteracts the inhibitory effect of a member of the IAP (inhibitor of apoptosis) protein family. (IAP 
proteins bind to and inhibit caspases which are activated during apoptosis)

IFITM1 Involving Interferon gamma signaling and Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

TNFSF10 Encoding a cytokine that preferentially induces apoptosis in transformed and tumor cells, but does not appear to kill normal cells
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Fig. 9  The verification of hub genes



Page 11 of 13Xie et al. European Journal of Medical Research          (2021) 26:146 	

Neutrophils participate in the immune response and 
fight against cells through the engulfment of microbes, 
the formation of reactive oxygen species, degranula-
tion, the secretion of antimicrobials, and the forma-
tion of increased neutrophil extracellular traps [23, 24]. 
In terms of biological processes, the functions of the 
humoral immune response, complement activation, 
and protein activation cascade are the most significant 
for GSE150316. After the human body is infected with 
SARS-CoV-2, the humoral immune response and cellular 
immune response are activated. In the humoral immune 
response, plasma cells produce immunoglobulins that 
bind to antigens on the surface of SARS-CoV-2 to form 
an immunoglobulin complex. The immunoglobulin com-
plex and the mannose-binding lectin that is involved in 
complement activation form the classical pathway and 
the lectin pathway, respectively. These two ways of acti-
vating complement are essentially involve cascade pro-
tein activation [25]. At the same time, immunoglobulin 
can also bind to the immunoglobulin receptor of the cells 
invaded by SARS-CoV-2 to perform phagocytosis and 
adhesion [22, 23, 26].

Based on the enrichment analysis of the KEGG path-
way, it was found that certain cell signal transduction 
pathways are closely related to SARS-CoV-2 infection. 
When the human body is infected with the SARS-CoV-2 
virus, the entry of SARS-CoV-2 into the alveolar epi-
thelial cells causes the damage of lung tissue and leads 
to the uncontrolled production of pro-inflammatory 
cytokines [10, 11, 27]. SARS-CoV-2 mainly infects epi-
thelial cells in the lung and results in the accumulation 
of white blood cells in injured or infected tissues. More 
importantly, the virus can enter macrophages and den-
dritic cells [28, 29]. The infection of these cells plays an 
important role in inducing pro-inflammatory cytokines 
that may cause disease [30]. In fact, many cytokines and 
chemokines are produced by macrophages and dendritic 
cells and their levels are elevated in the serum of patients 
infected by SARS-CoV-2 [31]. In response to injury or 
infection, the expression of the chemokine signaling 
pathways and the NOD-like receptor signaling path-
ways in the tissues is enhanced. In the signal transduc-
tion pathway of chemokines, the chemokines bind and 
activate chemokine receptors to embed the chemokine 
receptors in G protein-coupled receptors (GPCRs) in the 
cell membranes of leukocytes, thereby inducing leuko-
cytes to change their adhesion and shape, adhere to the 
blood vessel wall, and penetrate the inflamed tissue along 
its chemotactic factor gradient [32]. The accumulated 
white blood cells remove pathogens and necrotic tissues 
through phagocytosis and proteolysis. In addition to 
their participation in leukocyte trafficking, chemokines 
can also produce a variety of other cells and participate 

in tissue responses, including proliferation, activation, 
differentiation, extracellular matrix remodeling, and 
angiogenesis, which may be related to tissue repair and 
reconstruction [33–36]. Moreover, some chemokines 
and receptors are constitutively expressed in specific tis-
sues and cell types that can promote homeostasis, such 
as T cell development, stem cell migration, and lymphoid 
organogenesis [37]. When the SARS-CoV-2 virus invades 
human cells, it can also exert the body’s immune function 
through the processes of inflammasome assembly, signal 
transduction, transcription activation, and autophagy 
through the activated NOD-like receptor signal trans-
duction pathway [38]. The NOD-like receptor signal 
transduction pathway and the Yersinia infection pathway 
can activate caspase-1 by the inflammasome of the mul-
timeric protein complex. The activated caspase-1 leads to 
the processing and maturation of the pro-inflammatory 
cytokines, interleukin (IL)-1β and IL-18, which par-
ticipate in the body’s immune response and lead to the 
death of specific inflammatory cells [39, 40]. Addition-
ally, NOD1 and NOD2 can activate the serine/threonine 
kinase of NF-kB [41] and activate the mitogen-activated 
protein kinase (MAPK) signaling pathway, leading to the 
secretion of pro-inflammatory cytokines [42, 43]. It plays 
an important role in resisting SARS-CoV-2 infection and 
regulating host immune response. NOD2 can also sense 
the ssRNA of the virus and then activate it to produce 
interferon and antiviral defense.

The 10 pivotal genes screened through the PPI network 
were verified by the non-paired t-test, and four meaning-
less genes were found. The remaining six were all up-reg-
ulated genes that are closely related to the pathological 
process of SARS-CoV-2 infection in lung cells and may 
become new therapeutic targets or research directions. 
Over the past 15 years, ubiquitin-like protein ISG15 has 
been widely regarded as a major participant in the host 
antiviral response, and recent work has shown that it can 
directly inhibit viral replication and modulate host immu-
nity [44]. OASL and SAMD9L have been shown to be 
important in viral infection and innate immunity, but the 
mechanism of their action is different from that of ISG15 
[45, 46]. Studies have found that OASL makes the RNA 
detection system based on RIG-I more sensitive to viral 
RNA, which can be activated under viral infections that 
are relatively below the threshold level, and the SARS-
Cov-2 virus in the body can be found faster [47]. The 
mechanism by which the expression of SAMD9L affects 
virus replication in varying degrees is not yet fully under-
stood, but it has been reported that SAMD9L can inhibit 
West Nile virus replication [48, 49]. Similarly, the signifi-
cant expression of IFIH1 and TSFSF10 is beneficial to the 
human body. Experiments have shown that the deficiency 
of IFIH1 can lead to primary immunodeficiency, which 
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manifests as extreme susceptibility to common respira-
tory RNA viruses, such as human respiratory syncytial 
virus and rhinoviruses [50]. Moreover, the death receptor 
of TNFSF10 contributes to immune surveillance against 
viral infection by promoting apoptosis. It should be noted 
that we must pay close attention to determine whether 
SARS-CoV-2 escapes by regulating TNFSF10 receptor 
signal transduction [51]. Unlike the other five hub genes, 
the significant expression of XAF1 has a negative impact 
on the human body and may become a therapeutic target 
for COVID-19. From a previous study, we found that the 
expression of XAF1 was high in DENV2-infected VECs. 
After this expression of XAF1 was enhanced, as much 
as 28% of cells entered irreversible apoptosis 72  h after 
infection. Thus, it is very important to inhibit the expres-
sion of XAF1 during the treatment of COVID-1952.

There are certain limitations to this study. First, the 
conclusion is based on data collected from public data-
bases, rather than from actual experiments. Enough clini-
cal samples should be employed to ensure more accurate 
results. Second, the mechanism of several key genes in 
the pathological process of COVID-19 has not been fully 
understood. Therefore, further research and larger sam-
ples are needed.

Conclusion
Our results indicate that the ten hub genes IFIH1, 
DDX58, ISG15, EGR1, OASL, SAMD9, SAMD9L, XAF1, 
IFITM1 and TNFSF10 may play an important regulatory 
role in SARS-CoV-2 infection. It may has guiding signifi-
cance for researchers to study the infection mechanism 
of SARS-CoV-2 in the future.
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