
Citation: Buonaiuto, R.;

Napolitano, F.; Parola, S.;

De Placido, P.; Forestieri, V.;

Pecoraro, G.; Servetto, A.;

Formisano, L.; Formisano, P.;

Giuliano, M.; et al. Insight on the

Role of Leptin: A Bridge from

Obesity to Breast Cancer. Biomolecules

2022, 12, 1394. https://doi.org/

10.3390/biom12101394

Received: 18 August 2022

Accepted: 25 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Insight on the Role of Leptin: A Bridge from Obesity to
Breast Cancer
Roberto Buonaiuto 1 , Fabiana Napolitano 1 , Sara Parola 1, Pietro De Placido 1, Valeria Forestieri 1,
Giovanna Pecoraro 1, Alberto Servetto 1 , Luigi Formisano 1 , Pietro Formisano 2 , Mario Giuliano 1,
Grazia Arpino 1, Sabino De Placido 1 and Carmine De Angelis 1,*

1 Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
2 Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy
* Correspondence: carmine.deangelis1@unina.it

Abstract: Leptin is a peptide hormone, mainly known for its role as a mediator of adipose tissue
endocrine functions, such as appetite control and energy homeostasis. In addition, leptin signaling is
involved in several physiological processes as modulation of innate and adaptive immune responses
and regulation of sex hormone levels. When adipose tissue expands, an imbalance of adipokines
secretion may occur and increasing leptin levels contribute to promoting a chronic inflammatory
state, which is largely acknowledged as a hallmark of cancer. Indeed, upon binding its receptor
(LEPR), leptin activates several oncogenic pathways, such as JAK/STAT, MAPK, and PI3K/AKT,
and seems to affect cancer immune response by inducing a proinflammatory immune polarization
and eventually enhancing T-cell exhaustion. In particular, obesity-associated hyperleptinemia has
been related to breast cancer risk development, although the underlying mechanism is yet to be
completely clarified and needs to be deemed in light of multiple variables, such as menopausal state
and immune response. The aim of this review is to provide an overview of the potential role of leptin
as a bridge between obesity and breast cancer and to establish the physio-pathological basis of the
linkage between these major health concerns in order to identify appropriate and novel therapeutic
strategies to adopt in daily clinical practice.
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1. Introduction

Breast cancer (BC) represents the most frequently diagnosed tumor in women world-
wide, with an estimated incidence of 2.3 million new cases in 2021 [1]. During the past
decades, BC incidence has markedly increased, reflecting both the improved detection
strategy and the rising prevalence of modifiable environmental risk factors, especially in
developed western countries [2]. Indeed, lifestyle habits such as alcohol intake, physical ac-
tivity, body fatness, and weight gain have been largely reported to impact cancer risk devel-
opment [3]. In particular, obesity, nowadays considered a global epidemic, is a well-known
predisposition state for several pathologic conditions. According to the World Health
Organization (WHO), obesity prevalence has nearly tripled since 1975: 650 million peo-
ple, aged 18 or over, are affected by obesity, and it is estimated to hit 1 in 5 adults by
2025 [4]. Furthermore, the correlation between cancer development and obesity has been
widely accepted, although the underlying physio-pathological mechanisms have not been
completely established yet [5].

The adipose tissue represents the body’s largest endocrine organ and maintains home-
ostasis through the secretion of multiple cytokines, chemokines, and growth factors [6].
Lean adipose tissue activity is normally balanced between proinflammatory and anti-
inflammatory mediators. Eventually, this balance may be lost as a result of the adipose
tissue expansion associated with obesity [7]. Adipocytes’ hyperplasia and hypertrophy
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provoke activation of adipose tissue macrophages (ATMs), which leads to recruitment
of inflammatory cells, as mast cells, and CD8-positive T lymphocytes, through the secre-
tion of chemokines, such as monocyte chemoattractant protein-1 (MCP-1) [8]. Therefore,
the hypertrophic adipocytes are surrounded by ATMs, thus resulting in the formation
of typical crown-like structures (CLS) [9–11], considered a hallmark of adipose tissue mi-
croenvironment proinflammatory reprogramming. Indeed, these structures can regulate
immune cell infiltration by releasing free fatty acids and have been observed in many BC
adipose tissues, confirming the well-acknowledged correlation between cancer and chronic
inflammation [12]. Mammary adipose cells may also directly contribute to cancer progres-
sion by providing protumorigenic signals to cancer cells [13–15]. Furthermore, the immune
cell response, as well as the inflammatory state, is directed and sustained by a hormone
secreted by the adipocytes, known as leptins, whose role is hereafter further analyzed in
order to define the connection between BC development and obesity-related inflammation.

2. Leptin Structure and Function

Leptin (LEP) is a 16 kD peptide hormone encoded by the obese (OB) gene located
on chromosome 7q32.1, primarily synthesized and secreted by white adipocytes. LEP
is composed of 167 amino acids and structurally presents homology sequences with the
four helical cytokine subfamily that includes granulocyte colony-stimulating factor (G-
CSF), interleukin-4/-5/-10 (IL-4/-5/-10), and erythropoietin (EPO) [16]. Although LEP is
primarily synthesized and secreted by adipocytes, gastric, and colonic mucosa, the anterior
pituitary gland, placenta, skeletal muscle, bone marrow, and lymphoid tissue play a role
in its production [17,18]. LEP is known to regulate satiety by indicating the presence of
sufficient energy reserves in the lateral hypothalamic area [19]. Indeed, LEP levels reflect
the adipose reserve, increasing with caloric intake, and induce negative feedback on the
arcuate nucleus to suppress appetite. Serum leptin levels have been correlated with adipose
tissue mass, being higher in obese people than in normal-weight individuals [20].

Indeed, obese-related hyperleptinemia has been associated with leptin resistance
and desensitization of leptin’s hypothalamic receptors, which leads to loss of central
satiety inhibition [21].

LEP functions are not limited to the hypothalamus and do not concern the maintenance
of energy homeostasis [22] exclusively. Indeed, LEP is known to take part in several
physiological processes such as the regulation of bone metabolism, the onset of puberty,
modulation of T cells activity, stress response, maintenance of respiratory function, and
blood pressure [23]. LEP interacts with a specific leptin receptor (LEPR), highly homologous
to the sequences of the receptors for class I cytokines [24]. Several isoforms (OB-Ra, OB-Rb,
OB-Rc, OB-Rd, OB-Re, and OB-Rf) of LEPR have been identified, resulting from alternative
splicing of the OB-R gene. LEPR isoforms share the extracellular C-terminal leptin binding
domain, while they differ in the intracellular N-terminal domain (Figure 1) [25]. The OB-
Ra, OB-Rb, OB-Rc, OB-Rd, and OB-Rf isoforms present at the N-terminal domain of the
BOX-1 motif, which is critical for JAK2 binding, thus leading to the activation of both the
phosphatidylinositol 3-kinase/v-Akt (PI3K/AKT) pathway, via phosphorylation of the
adapter protein insulin receptor substrate (IRS) and the mitogen-activated protein kinase
(MAPK) pathway. OB-Rb is the main isoform responsible for the homeostatic metabolic
function of LEP. OB-Rb has an N-terminal domain of 302 amino acids with an additional
conservative matching motif (BOX-2), essential for the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) signaling pathway activation [26] (Figure 1).
Ultimately, OB-Re is a soluble leptin receptor (SLE), which binds circulating LEP and
regulates LEP plasma bioavailability and functionality [27] (Figure 1).
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Figure 1. The Structure of Leptin Receptors. All leptin receptor isoforms share a binding C-terminal
extracellular domain consisting of 2 CRH regions separated by an IG-like domain and followed by
2 FNIII domains. The intracellular N-terminal domain presents a BOX-1 motif, which is critical for
JAK-2 binding. OB-Rb receptor is the only isoform to present a BOX-2 motif, which facilitates the
activation of JAK2-STAT transduction pathway. Additionally, OB-Rb presents 3tyrosine residues
(Tyr986, Tyr1076, and Tyr1141) whose phosphorylation enables STAT3-5 activation. OB-Re receptor
is a soluble isoform, which binds circulating LEP and regulates LEP plasma bioavailability and
functionality, not being able to transduce any downstream signal. CHR, cytokine receptor homology;
IG-like, immunoglobulin-like; FNIII, fibronectin type III.

3. The Role of Leptin in Breast Cancer

Accumulating evidence suggests a role for LEP in cancer development and progression by
interacting with several oncogenic pathways and shaping the immune microenvironment [28].

The characterization of LEP role in BC carcinogenesis is controversial and strictly
linked to the adipose endocrine function. Several studies have revealed a correlation be-
tween serum leptin levels and BC risk, suggesting that LEP may have an independent role
in BC carcinogenesis [29]. A meta-analysis of 43 studies suggested a positive correlation be-
tween increased serum LEP levels and BC development. This analysis further showed that
higher LEP serum levels were more commonly detected among BC patients with BMI > 25
and lymph node invasion, suggesting a potential role in promoting BC metastasis [30].
Moreover, the association of LEP levels and BC risk, beyond BMI, is strongly dependent
on menopausal status. Indeed, a systematic review conducted on 35 studies identified
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LEP as a potential biomarker for cancer risk assessment in postmenopausal obese or over-
weight women, but no significant association was found in premenopausal women [31].
Interestingly, a multicenter study conducted on more than 750,000 premenopausal women
reported the paradoxical effect of BMI on BC risk related to menopausal status [32]. Indeed,
the analysis showed an increased risk of BC in premenopausal underweight women as
compared to those who presented a BMI > 25.0. Particularly, a 4.2-fold increased risk was
detected among women aged 18 to 24 years and with a BMI < 17.0 versus ≥35.0, with
the association being stronger for estrogen-receptor (ER) and/or progesterone-receptor
(PR) positive BC [32]. This risk imbalance, which is known to be influenced by early
life events occurred before first childbirth as the peak height growth velocity, the age at
menarche, adolescent physical activity, diet, and alcohol intake [33,34], has been related
to estrogen serum levels, normally higher in premenopausal women. Indeed, estrogen
synthesis in the premenopausal state is primarily limited to the ovaries, whereas in post-
menopausal women, adipose tissue represents the main source of estrogen production
through the androgens’ conversion promoted by the aromatase enzymatic complex [35].
Thus, in obese premenopausal women, the adipose tissue expansion induces negative
feedback on the hypothalamic-pituitary axis, suppressing ovarian function by decreas-
ing gonadotrophin-releasing hormone secretion (GnRH), and inhibiting ovarian estradiol
production [36]. Furthermore, the hormonal deregulation eventually leads to menstrual
disorders commonly associated with obesity, such as amenorrhea, impairing ovulatory
cycles, and decreasing breast cell mitotic rate, which is known to be higher during the luteal
phase of the menstrual cycle under estrogen and progesterone stimulation [37]. Preclinical
studies have tried to shed light on the physio-pathological linkage between BC and BMI in
premenopausal women. Indeed, in mouse models of 40 days of age, the administration of
17β-estradiol and progesterone has been associated with high mammary gland differentia-
tion, providing protection against carcinogenesis subsequent to N-nitroso-N-methylurea
exposure [38]. Moreover, estrogen signaling, starting early during childhood, may increase
the tumor suppressor gene’s expression as BRCA1, promoting breast cell differentiation
and DNA damage repair [39]. Notably, sex hormone levels may be affected by LEP activity
and its binding with the long isoform receptor. In particular, LEP has been demonstrated to
enhance aromatase expression in MCF-7 breast cancer cells [40], and to be strictly involved
in estrogen receptor (ER) activity modulation, through the existing crosstalk between LEP
and ERα [41]. In the xenografts model, indeed, it has been shown that the levels of serum
estradiol double after 13 days of LEP exposure [42], whereas in MCF-7 breast cancer cell
lines, estradiol administration has enhanced LEP and OB-Rb expression [43].

In addition, LEP appears to stimulate ligand-independent ER activation through the
up-regulation of the mediator subunit 1 (Med1), a key coactivator transcriptional factor,
via inhibition of miR-205, and increasing nuclear translocation of phosphorylated ER, thus
resulting in ER transactivation and the expression of ER regulated genes. Furthermore,
it has been demonstrated that Med1 may contribute to the onset of tamoxifen resistance
in breast cancer cells [44] and high Med1 expression correlates with poor prognosis in
tamoxifen-treated patients [45].

Interestingly, in addition to its involvement in ER+ BC, LEP seems to have a role in
the signaling pathway transduction of HER2-positive and triple-negative BCs. Indeed,
a crosstalk has been demonstrated between LEP and HER2 receptor, through HER2-OB-R
physical interaction. In particular, LEP has been shown to promote HER2 transactivation
and phosphorylation in either HER2 high (the expression on immunohistochemistry, IHC
3+) or low (IHC 1+/2+) expressing BC cell lines (BT-474, SK-BR-3, MCF-7, and ZR-75-1),
resulting in BC cells proliferation [46]. Moreover, in triple-negative BC cell lines (MDA-
MB-231, MDA-MB-468, and HCC-1806), a crosstalk between LEP and IGF-1 signaling
has been demonstrated to promote the transactivation of the epidermal growth factor
receptor (EGFR), which may enhance tumor cell invasion and migration [47]. Further-
more, LEP in mouse mammary cancer cells models (4T1, EMT6, and MMT) appeared
to promote angiogenesis through VEGF up-regulation via canonic (JAK/STAT, MAPK,
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PI3K) and non-canonical (PKC, JN) signaling cascade [48]. Indeed, activated transcription
factors such as HIFα and NFkβ, induced by these signaling pathways, enhance VEGF
transcription, which is known to be critical for blood vessel formation from pre-existing
vasculature [48]. In addition, LEP promotes VEGFR2 Tyr1175 phosphorylation resulting
in endothelial cells growth and motility via COX-2 expression induced by MAPK and
PI3K/AKT signaling activation [49].

Hereby, we discuss in detail the oncogenic pathways that LEP, upon binding to
its receptor LEPR is able to activate, thus promoting cell proliferation, migration, and
angiogenesis, largely acknowledged as hallmarks of cancer [50] (Figure 2).

Figure 2. Leptin-induced oncogenic signaling pathways in breast cancer. Schematic representation of
key intracellular signaling pathways associated with activation of leptin receptors upon binging with
leptin in breast cancer cells. AKT, protein kinases; ER, estrogen receptor; PI3K, phosphatidylinositol
3-kinase; Ras, Rat sarcoma subfamily of GTPases; mTOR, mammalian target of rapamycin; MEK,
mitogen-activated protein kinase; RAF, RAF kinase; JAK/STAT: Janus kinases/signal transducers
and activators of transcription; PTEN, phosphatase and tensin homolog; TFs, transcription factors.

3.1. JAK/STAT Pathway

LEP binds the cytokine receptor homology site (CRH2) in the extracellular domain of
LEPR. This interaction leads to receptor dimerization according to the cytokine receptor su-
perfamily binding model [51], and the conformational change induces the cascade signaling
transduction. BOX1 and BOX2 motifs in the N-terminal domain of the OB-Rb receptor lead
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to JAK2 activation, and the LEPR-JAK2 complex enables the phosphorylation of tyrosine
residues Tyr986, Tyr1076, and Tyr1141 in the intracellular receptor domain. The phospho-
rylation of residues Tyr1076 and Tyr1138 enables STAT5 binding and activation, whereas
phosphorylated Tyr1141 residues induce STAT3 dimerization and activation [52]. Thus,
STAT3 dimers translocate in the nucleus to enhance the signaling through transcription
factors such as c-jun, erg-1, and c-myc, which are involved in cancer cell proliferation [53].
Furthermore, it has been reported that LEP in breast cancer models, via JAK2/STAT3
pathway, promotes cell cycle progression by increasing the expression of cdk2 and cyclin
D1 levels, thus inducing hyperphosphorylation and subsequent inactivation of the cell
cycle inhibitor Rb [54]. Interestingly, in MCF-7 breast cancer cells, LEP has been demon-
strated to be able to sustain, in a dose-dependent manner, the cancer cell immortalization
by upregulating the expression of Human Telomerase Reverse Transcriptase (hTERT) via
STAT3 dimerization [55]. Moreover, STAT3 phosphorylation promoted by LEP enhances
carnitine palmitoyl transferase 1B (CPT1B) expression, which encodes the key enzyme
for fatty acid β-oxidation (FAO). Thus, in BC cells derived models, FAO induced by LEP
signaling seems to play a critical role in BC stem cell (BCSC) self-renewal that is associated
with chemoresistance [56].

3.2. MAPK Pathway

As a result of JAK2 activation, phospho-Tyr986 residual motifs bind the Src homol-
ogy 2 domain (SH2) of protein tyrosine phosphatase-2 (SHP2), which via the Growth
factor receptor-bound protein 2 (GRB2) adaptor protein, leads to the ERK1/2 and JNK
activation [57]. ERK nuclear translocation induces the expression of target genes, which are
known to stimulate growth and cell proliferation, such as c-fos and egr-1 [57]. Furthermore,
through the MAPK pathway activation, LEP promotes the growth of breast cancer in
nude mice and induces the proliferation and migration of the MCF-7 BC cell line [58]. In
addition, ERK1/2 activation, as well as p53 downregulation, has been demonstrated to
induce aromatase expression in breast adipose stromal cells [58] and to promote functional
activation of ER in the MCF-7 BC cell line [59].

3.3. PI3K/AKT Pathway

LEPR-JAK2 complex can induce IRS-1 phosphorylation, which by binding p85, the
PI3K regulatory subunit, relieves p110, the catalytic subunit, thus allowing AKT activa-
tion [60]; therefore, in MCF-7 breast cancer cell lines, PI3K/AKT pathway induced by leptin
has been demonstrated to promote epithelial–mesenchymal transition (EMT), which is
known to facilitate cancer cells invasion, and the development of a plasticity phenotype, via
IL-8 secretion [61] and pyruvate kinase M2 (PKM2) activation [62]. Furthermore, PI3K/AKT
LEP-dependent signaling enables the upregulation of Acyl-CoA: cholesterol acyltransferase
2 (ACAT2) mRNA and protein expression in ER-positive BC cell lines (MCF-7, T47D, and
BT474), facilitating cell migration and invasion by increasing cholesterol esterification [63].

4. Leptin and Immune System

Adipose tissue expansion is known to be strongly associated with a chronic inflam-
matory state, resulting in a phenotypic change in adipose resident immune cells and in an
imbalance of adipokines secretion (Figure 3). Indeed, as adipocyte surface area increases,
a reduced thymopoiesis and T-cell progenitor pool proliferation may occur because of
thymic involution, known as thymic aging, promoted by adipocyte infiltration [64]. More-
over, LEP signaling markedly increased in obese patients, resulting in several implications
on T-cell function and proliferation [65]. In particular, LEP improves CD4 T-cell activation
beyond the major histocompatibility complex (MHC) and induces a shift in CD4 T-cell from
a Th2 towards Th1 phenotype by stimulating IL-2, IL-12, and IFN-γ expression [66,67].
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Figure 3. Obesity-related immune landscape. (a). Expansion of fat adipose tissue, compared to
lean adipose tissue, is associated with a microenvironment proinflammatory state characterized by
an imbalance of adipokines secretion and a systemic immune response reprogramming. Adipocytes’
hyperplasia and hypertrophy provoke adipose tissue macrophages (ATMs) activation resulting
in the formation of typical crown-like structures (CLS). (b). Leptin increasing signal stimulates
macrophages M1-M2 response polarization, induces a shift in CD4 T-cell from a Th2 towards Th1
phenotype, promotes T-reg cells down-regulation and T-CD4+ Th17 up-regulation. Free fatty acid
(FFAs) release and antigenic chronic stimulation lead to T cell exhaustion and consequently PD-1 and
PD-L1 upregulation, resulting in cancer cell immune escape. Eventually, PD-1/PD-L1 hyperexpres-
sion represents a paradoxical potential target for immune-checkpoint inhibitors. Figure created in
BioRender (https://biorender.com/ (accessed on 15 September 2022)).

Moreover, LEP has been demonstrated to influence CD4+ Th17 and CD4+ Treg differ-
entiation. Indeed, in LEP-deficient mice (ob-ob), the exogenous hormone administration
showed to enhance CD4+ Th17 upregulation, while reducing Treg proliferation [68,69].
Furthermore, in a study conducted on 30 obese and 13 lean patients, plasma LEP levels,
as well as BMI, resulted in being inversely correlated with Treg cells circulating numbers
in the obese group, whereas no correlation was observed in the control group [70]. In
addition, LEP levels were observed to be positively associated with CD4+ Th17 circulating
percentage in patients diagnosed with autoimmune disease as Hashimoto’s thyroiditis [71]
and negatively with CD4+ CD25+ regulatory cells observed in relapsing-remitting multiple
sclerosis (RRMS) patients [72].

LEP activity also exerts an impact on the innate immune response. Indeed, LEP pro-
motes IL-1, IL-6, and TNFα secretion by monocytes and induces an M1 pro-inflammatory
macrophage response polarization through mast cells (MCs) signaling [73]. Indeed, in ob-ob
mice models, MCs resident in white adipose tissue showed to drive an anti-inflammatory

https://biorender.com/
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macrophage phenotype (M2), whereas MCs depletion has been proven to facilitate weight
gain and obesity [73].

Additionally, the knockdown of LEPR in ER-positive MCF-7 and in triple-negative
MDA-MB-231 BC cells (ObR sh) was demonstrated to hamper macrophage recruitment in
the tumor microenvironment (TME) and influence immune response. In particular, in mice
models injected with MCF-7 and MDA-MB-231 ObR sh clones, a reduced tumor-associated
macrophage (TAMs) infiltration within xenograft tumors was observed. Moreover, in
line with the decreased macrophage recruitment, a lower expression on TAMs surface of
programmed cell death protein 1 (PD-1), commonly associated with cancer immune escape,
was detected [74].

This obesity-related “meta-inflammatory” state [75,76] can eventually impair antitu-
mor immunity: in addition to increasing Treg differentiation and promoting M1 proinflam-
matory macrophages polarization, it can also act by exhausting immune response through
low inflammatory chronic stimulation of Toll-like receptors (TLRs) promoted by lipolysis
and secretion of FFAs [77].

The immune regulation promoted by LEP in the inflamed adipose tissue may influence
BC carcinogenesis and treatment response. Indeed, in a study conducted on 87 breast
cancer patients treated with neoadjuvant chemotherapy, LEP and LEPR overexpression,
were found in patients with higher levels of tumor-infiltrating lymphocytes (TILs). This
association was observed mainly in patients with HER2+ BC (21.5% vs. 9%; p = 0.015) and,
among those with high levels of LEPR, in patients who achieved a complete pathological
response compared to those with residual disease (26.6% vs. 12.5%; p = 0.005) whereas this
imbalance was not observed in patients with the LEPR not overexpressed [78].

Furthermore, a retrospective analysis conducted on 445 TNBC patients treated with
neoadjuvant chemotherapy evaluated the response rate and TILs percentage according to
BMI. High TILs were significantly associated with pathological complete response (pCR) in
lean patients (OR = 4.24, 95% CI = 2.10 to 8.56; p < 0.001) but not in overweight and obese
patients (OR = 1.48, 95% CI = 0.75 to 2.91; p = 0.26) [79].

Interestingly, despite facilitating cancer immune evasion, obesity-related T cell ex-
haustion, occurring as a result of thymic aging and chronic antigenic stimulation [65,76],
leads to the compensatory increase in PD-1/PD-L1 expression on immune cells, providing
a potential target for immune-checkpoint inhibitors [80].

Indeed, the tumorigenic immune dysfunction appeared to be reversed by anti-PD-
1/PD-L1 treatment in a retrospective analysis conducted on 976 advanced cancer patients
stratified according to BMI. The analysis included 635 patients diagnosed with NSCLC,
183 patients with melanoma, 135 patients with renal cell carcinoma, and 23 with other
tumors [81]. In particular, overall response rate (ORR) and time to treatment failure (TTF)
were found to be significantly higher in overweight/obese patients (BMI ≥ 25.0), compared
to non-overweight (p < 0.0001), as well as median progression-free survival (PFS) being
longer in the first group (11.7 months vs. 3.7 months; HR= 0.46 p < 0.0001). Furthermore,
these results are consistent with those observed in a retrospective analysis which included
patients (n = 2046) diagnosed with metastatic melanoma stratified according to BMI and
treated with targeted therapy, immunotherapy, or chemotherapy. Indeed, obesity compared
with normal BMI was associated with improved progression-free survival (PFS) and overall
survival (OS) in the cohort of patients treated with immunotherapy and target therapy [82].

Despite the absence of available data on obese BC patients, in obese female mice
fed with an obesogenic high-fat diet, injected with BC E0771 cells and treated with
anti-PD-1 therapy, it has been demonstrated a significant decrease in tumor volume,
a reduced cell proliferation and a concomitant elevation of CD8+ T cells, CD4+ Th1 cells
and dendritic cells [83].
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5. Leptin Signaling as a Potential Target for Therapeutic Intervention

As LEP signaling transduction is a well-known carcinogenesis promoting factor, di-
verse therapeutic agents have been designed to modulate the LEP cascade. Great research
efforts focused on the development of LEPR antagonists able to interfere with LEP binding
activity. The OB-R antagonist Allo-aca peptide, an analog of OB-R leptin binding site III,
has shown promising activity in delaying BC progression and extending survival in TNBC
mice models; however, its use was associated with an accelerated weight gain [84]. The
peptide LDFI (Leu-Asp-Phe-Ile), a selective LEPR antagonist, was developed based on lep-
tin binding site I and demonstrated to inhibit the growth and motility of both ER-positive
MCF-7 and ER-negative SKBR3 breast cancer cell lines. Notably, the PEGylated isoform
of LDFI (PEG-LDFI) showed comparable antitumor efficacy in xenograft models without
affecting energy balance, since no changes in body weight were observed [85]. In addition,
the peptide LDFI recently showed to reduce cell-to-cell communication by decreasing LEP-
dependent exosome biosynthesis in MCF-7 and triple-negative MDA-MB-23 breast cancer
models [86]. Honokiol (HNK) is a bioactive polyphenol from magnolia grandiflora, acting
as a leptin antagonist. HNK is demonstrated to reduce LEP-induced EMT by targeting the
STAT3/Zeb1/E-cadherin axis [87]. However, despite the attractive results from several
preclinical studies, no clinical trials evaluating LEP antagonists in patients with BC have
been conducted to date.

Alternative strategies to target LEP-associated signaling have been explored. The
1,25(OH)2D3 showed to downregulate the human telomerase reverse transcriptase (hTERT)
activation promoted by LEP in both breast and ovarian cancer models [88]. Since LEP
induces CPT1B expression and FAO activity in BC stem cells to ensure self-renewal and
chemoresistance, FAO inhibitors such as perhexiline were able to restore chemosensitivity
in BC cells [56]. LEP signaling also enhances aromatase expression [43], impairing tamox-
ifen treatment efficacy [47,48]. Therefore, aromatase inhibitors (AIs) based regimen exhibits
the major beneficial effects on the LEP target cascade. Finally, PD-L1/PD1 upregulation en-
hanced by the obese-related low chronic inflammatory state could be exploited to improve
the immune checkpoint inhibitors treatment activity, especially in patients diagnosed with
TNBC, which is known to be the most immunogenic breast cancer subtype.

6. Conclusions

Leptin is a peptide hormone known to play a critical role in the meta-inflammatory
state observed in obesity. Many mechanisms appear to be involved in the correlation
between obese-related LEP activity and breast cancer carcinogenesis. LEP signaling cascade
promotes breast cancer cell proliferation, migration, and invasion through the activation of
MAPK, PI3K/AKT, JAK2/STAT pathways, and EMT, irrespective of BC subtypes, primarily
in post-menopausal women. Moreover, LEP is involved in immune activity exhaustion as-
sociated with low chronic inflammation in obese cancer patients, which could be employed
to improve the response to immune checkpoint inhibitors. Novel therapeutic strategies,
such as LEP or LEPR antagonist, are not currently under development, although they
would represent a promising step toward a more personalized treatment approach for
breast cancer patients.
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