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Lactobacillus rhamnosus GG Reduces β-conglycinin-Allergy-
Induced Apoptotic Cells by Regulating Bacteroides and Bile
Secretion Pathway in Intestinal Contents of BALB/c Mice
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Abstract: Allergy can cause intestinal damage, including through cell apoptosis. In this study,
intestinal cell apoptosis was first observed in the β-conglycinin (β-CG) allergy model, and the effect
of Lactobacillus rhamnosus GG (LGG) on reducing apoptosis of cells in the intestine and its underlying
mechanisms were further investigated. Allergic mice received oral LGG daily, and intestinal tissue
apoptotic cells, gut microbiota, and metabolites were evaluated six and nine days after intervention.
Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed
that LGG intervention could reduce the incidence of cell apoptosis more effectively than natural
recovery (NR). The results of 16S rRNA analysis indicated that LGG intervention led to an increase
in the relative abundance of Bacteroides. Metabolite analysis of intestinal contents indicated that
histamine, N-acetylhistamine, N(α)-γ-glutamylhistamine, phenylalanine, tryptophan, arachidonic
acid malate, and xanthine were significantly decreased, and deoxycholic acid, lithocholic acid were
significantly increased after the LGG intervention on β-CG allergy; the decreases in histamine and
N(α)-γ-glutamylhistamine were significant compared with those of NR. In conclusion, LGG reduces
apoptosis of cells induced by β-CG allergy, which may be related to regulation of Bacteroides and the
bile secretion pathway.
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1. Introduction

β-Conglycinin (β-CG) is the main allergen of soybean. β-CG is a trimeric structure
composed of α (67 kDa), α’ (71 kDa), and β (50 kDa) subunits. Each subunit is composed
of an acidic peptide chain and a basic peptide chain, and the structure is very stable and
therefore persistent, resulting in relatively constant sensitization toward β-CG [1,2]. Aller-
gies can cause disorders of the immune system and cell apoptosis. Similarly, allergies are
accompanied by the appearance of a large number of inflammatory cells whose survival is
regulated by apoptosis. Hence, an increase in apoptotic cells helps to accelerate the inflam-
matory process [3,4]. Apoptotic cells may also damage intestinal mucosal immunity [5]. At
present, the main challenge in managing allergies is related to the lack of effective measures
and potential mechanisms for reducing apoptotic cells.

Probiotics can prevent human intestinal diseases. When appropriately consumed,
they produce a beneficial effect on the host through immune regulation. Some studies have
confirmed that probiotics have immunomodulatory effects on allergies [6,7]. Probiotics can
change the composition of gut microbiota and regulate immune response of the host as
well as the intestinal mucosa through effects on antigens [8–10]. The potential of probiotics
to alleviate allergic response lies in their ability to affect processes involved in the repair of
the intestinal barrier function, which regulates balance in the imbalanced microbiome and,
thereby, the immune system [11].
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Gut microbiota are essential for healthy immune regulation and gut barrier function.
The gut microbiota can interact with intestinal metabolites, such as bile acids (BAs), and
regulate the host metabolism mainly by activating immune genes in the small intestine to
regulate microbial composition in the body [12,13]. BAs regulate immune and inflammatory
processes through signaling transduction, such as through the farnesoid X receptor (FXR)-
regulated pathway and cell surface G protein-induced signaling [14]. BAs can control
the release of intestinal microbial immunoglobulin A (IgA) antibodies [15] and play an
essential role in immune homeostasis of the intestine. BAs have anti-inflammatory effects
on intestinal epithelial cells [16].

Lactobacillus rhamnosus GG (LGG) is one of the well-known commercialized probiotics.
According to reports, LGG produces a preventive effect on the process of birch pollen aller-
gic asthma [17]. LGG inhibits allergic inflammation in asthmatic mice [18] and alleviates
allergic airway inflammation through gut microbiota [19]. LGG consumption results in
a significant improvement in patients with milk protein allergy [20], and may alleviate
allergy by improving intestinal homeostasis [21]. We previously verified that LGG can
alleviate β-CG allergy by modulating immune gene expression in the T cell receptor (TCR)
signaling pathway [22].

However, there is no published research on whether LGG can reduce cell apoptosis
and whether the alleviating effect is related to the metabolism of the gut microbiota. In
this work, the main purpose was to investigate the effect of LGG on β-CG-allergy-induced
cell apoptosis as well as its related mechanism on the gut microbiota and related metabolic
pathways.

2. Materials and Methods
2.1. Allergen

The separation and purification process of β-CG was performed based on a previously
reported method [23].

2.2. LGG

The activation, culture and gavage concentration of LGG referred to our previously
reported method [22].

2.3. Animals

BALB/c mice (4–6 weeks) were used in this experiment. The experimental conditions
were based on our previously reported method [22]. Animals experiments procedures
were approved by the Institutional Animal Ethics Committee (IRM-DWLL-2020094).

2.4. Experimental Design

The saline group and the control group were supplemented with saline (300 µL/mouse
per week) and cholera toxin (CT; 300 µL/mouse per week), respectively. The β-CG group
was supplemented with β-CG and CT for 5 weeks to induce allergy. Next, the allergic
mice received oral LGG (1 × 109 CFU/600 µL/mouse/day), had a normal diet, and were
divided into four equal groups. The LGG-1 group mice and the LGG-2 group mice were
supplemented with LGG and were sacrificed on day 6 and 9, respectively. The NR-1 and the
NR-2 group mice received a normal diet and were sacrificed on day 6 and 9, respectively.

After all the experimental mice were sacrificed, different parts of intestinal tissue
were separately fixed in 4% paraformaldehyde for terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL) analysis. The intestinal contents were obtained
using a sterile cotton swab and immediately placed in a sterile cryotube until 16S rRNA
sequencing analysis. The remaining intestinal contents were collected and stored for
metabolomics analysis.
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2.5. Allergy Symptom Score

After the fifth gavage, mice were observed for clinical symptoms, which were scored
according to a previously reported method [22].

2.6. Analysis of Immunoglobulin E (IgE) and Histamine (HIS) in Mice Serum

The contents of IgE and HIS were determined by enzyme linked immunosorbent assay
(ELISA), referring to the manufacturer’s instructions (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China).

2.7. Detection of Apoptotic Cells by TUNEL Assay

The intestinal tissue (4 µm) sections were deparaffined, rehydrated, and permeabilized
with proteinase K. An In Situ Cell Death Detection Kit (Roche Diagnostics Ltd., Kanton
Bern, Switzerland) was used for TUNEL detection based on detection of fluorescein isoth-
iocyanate according to the manufacturer’s instructions, and apoptotic cells were observed.
The total number of cells was counted after counterstaining of sections. The apoptotic cells
were regarded as TUNEL-positive cells if they demonstrated obvious apoptotic morphol-
ogy. Five fields of view were randomly selected to analyze the samples under a microscope
with a 40× objective.

2.8. 16S rRNA Gene Sequencing Analysis

First, the DNA in the contents of the mouse intestine was extracted and sequenced
using IonS5TMXL, and we conducted sequences analysis using Uparse software (Uparse
v 7.0.1001, http://drive5.Com/uparse/). Taxonomic information of the representative
sequence was annotated based on the Silva Database (https://www.arb-silva.de/) through
the Mothur algorithm. Multiple sequence alignments were finalized by utilizing the MUS-
CLE software (Version 3.8.31, http://www.drive5.com/muscle/) to study phylogenetic
relationship of different Operational Taxonomic Units (OTUs), as well as the difference
of the dominant species in different groups. The data from OTUs clustering and species
classification were analyzed. The related downstream analysis and data visualization were
accomplished by QIIME (Version1.7.0) and displayed with R software (Version 2.15.3).

2.9. Metabolomics Analysis

Approximately 100 mg of mouse intestinal contents were ground separately with
liquid nitrogen and resuspended in methanol and formic acid. The samples were incubated
on ice and centrifuged, and we adjusted the final concentration to a solution containing
60% methanol. The raw data files generated after UHPLC-MS/MS were processed by
using the Compound Discoverer 3.0 (CD 3.0, Thermo Fisher) to realize peak alignment,
peak picking, and quantitation of each metabolite. Finally, the predicted the molecular
formula was compared using the mzCloud (https://www.mzcloud.org/) and Chemspider
(http://www.chemspider.com/) databases. KEGG pathway analysis was packaged based
on Python software (Python-3.5.0).

2.10. Statistical Analysis

All data analyses were performed using SPSS 17.0 software (SPSS Inc, Chicago, IL,
USA) and were expressed as mean± standard deviation. One-way ANOVA nonparametric
testing was performed to determine statistical significance. p < 0.05 was considered
statistically significant.

3. Results
3.1. β-CG Induced Intestinal Cell Apoptosis in Allergic Mice

We first established the β-CG allergy model to observe the influence on intestinal
apoptotic cells. The clinical symptoms of the mice administered oral saline and CT were
normal. However, the allergic mice demonstrated significant clinical symptoms of allergy,
such as diarrhea and erect hair (Figure 1A). IgE and HIS were significantly increased in

http://drive5.Com/uparse/
https://www.arb-silva.de/
http://www.drive5.com/muscle/
https://www.mzcloud.org/
http://www.chemspider.com/
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the allergic mice (Figure 1B,C). Using the allergy symptom score and the typical allergy
indicators IgE and HIS, we found that the β-CG allergy model was successfully estab-
lished. The percentage of apoptotic cells in allergic mice was significantly higher than in
the other groups (Figure 1D), indicating that β-CG allergy induced cell apoptosis. The
pathological status of the duodenum, jejunum, ileum, and colon was determined using
TUNEL assay (Figure 1E–H). The intestinal villi were completely and neatly arranged, and
no inflammatory cell infiltration was observed in the propria nor edema in the saline group.
We observed that the thickness of the mucosa increased slightly, the membrane propria
was loosened, there were a few inflammatory cells, and only a small part of the intestinal
villi was damaged in the control group. Typical pathological features of intestinal allergy
were observed in the intestinal tissues of allergic mice, such as a large number of ruptured
intestinal villi, inflammatory cell infiltration, and intestinal mucosal edema. Therefore, the
β-CG allergy was determined to have caused cell apoptosis of the intestinal tissue based
on the number of apoptotic cells and the pathological status of the intestinal tissue.
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Figure 1. β-conglycinin (β-CG) induced intestinal cell apoptosis in allergy mouse. (A) The score of anaphylaxis symptoms;
(B) Levels of IgE; (C) Levels of histamine (HIS). (D) Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) assay on the number of apoptotic cells in duodenal, jejunum, ileum, colon. TUNEL assay on the pathological
status in (E) duodenal; (F) jejunum; (G) ileum; (H) colon. (* p < 0.05; ** p < 0.01; *** p < 0.001).

3.2. LGG Reduces Intestinal Apoptotic Cells Induced by β-CG Allergy

TUNEL assay was used to detect the number of apoptotic cells in the duodenum,
jejunum, ileum, and colon (Figure 2A). The number of apoptotic cells were significantly
reduced in the LGG-1 and LGG-2 groups. Compared with the NR group, the decrease
in the percentage of apoptotic cells was more significant in the LGG group. The results
indicated that LGG could effectively alleviate cell apoptosis induced by β-CG allergy, and
the effect was better than that of NR.

The TUNEL assay was also used to determine the pathological status of the differ-
ent parts of the intestinal tissue, including the duodenum, jejunum, ileum, and colon
(Figure 2B–E). In the LGG group, there was no massive shedding of intestinal villi. The
arrangement of intestinal villi and the thickness of the mucosal muscle layer returned to
normal levels. The same pattern of apoptosis was observed in other parts of the intestine.
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The results showed that LGG intervention reduced the number of apoptotic cells and
restored intestinal damage.
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3.3. LGG Regulates the Imbalance of Gut Microbiota Induced by β-CG Allergy

The 16S rRNA sequencing analysis revealed the composition of gut microbiota in the
intestine at the genus level (Figure 3A). We found that in allergic mice, the abundance
of Bacteroides decreased while Cerasibacillus and unidentified _Lachnospiraceae increased.
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By contrast, the abundance of Bacteroides increased, and Cerasibacillus and unidentified
_Lachnospiraceae decreased in the LGG group. The heat map was clustered through levels
of species and samples (Figure 3B) and showed that the abundance of Acidothermus, Cerasi-
bacillus, Roseburia, and unidentified _Lachnospiraceae increased after stimulation with β-CG.
After LGG intervention, the abundance of Roseburia and unidentified _Lachnospiraceae
decreased. In summary, these results indicated that β-CG allergy induced imbalance in gut
microbiota and that LGG intervention could regulate this imbalance.
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3.4. LGG Alleviates Intestinal Metabolites Disorder Induced by β-CG Allergy

The metabolic profiles of the intestinal contents were analyzed by LC-MS/MS in
positive and negative modes (Figure 4A–D). The clear separation between the LGG-1 and
NR-1, and the LGG-2 and β-CG groups was obtained by Partial Least Squares Discriminant
Analysis (PLS-DA), indicating that LGG intervention significantly affected metabolites. The
LGG-1 and NR-1 groups were compared in positive (R2 = 0.99 and Q2 = 0.91) and negative
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(R2 = 0.99 and Q2 = 0.91) ion modes. The LGG-2 and β-CG groups were compared, with
R2 = 0.99 and Q2 = 0.64 in positive ion mode, and R2 = 0.99 and Q2 = 0.54 in negative ion
mode. The results showed that the model had good interpretation and prediction ratios.
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Figure 4. Partial Least Squares Discriminant Analysis (PLS-DA) analysis of intestinal contents.
(A) PLS-DA scores plots depicting obvious difference between the Lactobacillus rhamnosus GG (LGG)-
1 group and the natural recovery (NR)-1 group in positive ion mode. (B) PLS-DA scores plots
depicting obvious difference between the LGG-1 group and the NR-1 group in negative ion mode.
(C) PLS-DA scores plots depicting obvious difference between the LGG-2 group and the β-CG group
in positive ion mode. (D) PLS-DA scores plots depicting obvious difference between the LGG-2 group
and the β-CG group in negative ion mode. (E) Sorting verification chart depicting obvious difference
between the LGG-1 group and the NR-1 group in positive ion mode. (F) Sorting verification chart
depicting obvious difference between the LGG-1 group and the NR-1 group in negative ion mode.
(G) Sorting verification chart depicting obvious difference between the LGG-2 group and the β-CG
group in positive ion mode. (H) Sorting verification chart depicting obvious difference between the
LGG-2 group and the β-CG group in negative ion mode.
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The sorting test demonstrated the correlations between the LGG-1 group and the NR-1
group, and between the LGG-2 group and the β-CG group, which were R2 (0.0, 0.88) and
Q2 (0.0, −0.78) in positive ion mode, R2 (0.0, 0.88) and Q2 (0.0, −0.72) in negative ion mode,
and R2 (0.0, 0.97) and Q2 (0.0, 0.67) in positive ion mode, and R2 (0.0, 0.97) and Q2 (0.0,
0.61) in negative ion mode, respectively (Figure 4E–H). The results showed that the model
was not over-fitted and, thus, could describe the sample well and be used in the search for
differential metabolite.

Hierarchical clustering analysis was performed on the differential metabolites in
which the same or similar metabolic patterns were clustered and used to infer the function
of unknown or known metabolites. Compared with the NR-1 group, we found obvious
metabolic differences in positive ion mode in the LGG-1 group (Figure 5A). Figure 5B
showed the comparison of differential metabolites of the LGG-2 and β-CG groups in
positive ion mode. Note areas with different colors, representing different clustering
information; the results revealed that the mice subject to LGG intervention and β-CG
allergic mice used different metabolic pathways and, hence, had different metabolites in
their intestine.

Figure 5C,D shows the correlation graph of differential metabolites in positive ion
mode. Differential metabolites have a synergistic or mutually exclusive relationship.
We analyzed the correlation between each metabolite by calculating Pearson correlation
coefficients between all metabolites. When the linear relationship between the two metabo-
lites increases, the positive correlation tends to 1, and the negative correlation tends to
−1. The above results revealed that when comparing the LGG-1 group with the NR-1
group, Com_10093_pos was positively correlated with Com_10177_pos, Com_10402_pos,
Com_10750_pos, and Com_10008_pos; Com_10297_pos was positively correlated with
Com_10240_pos; Com_1007_pos was negatively correlated with Com_10001_pos;
Com_10428_pos was negatively correlated with Com_10093_pos and Com_10177_pos.
In comparing the LGG-2 and β-CG groups, Com_11020_pos was positively correlated
with Com_12092_pos; Com_11284_pos was positively correlated with Com_10082_pos;
Com_11102_pos was positively correlated with Com_12252_pos and negatively correlated
with Com_10116_pos and Com_11859_pos.

The Z-score is a transformed value based on the relative content of differential metabo-
lites in the mouse intestine and is used to compare the similarity of the differential metabo-
lites. Figure 5E,F showed the relative metabolite contents of the first 30 compounds in the
LGG-1, NR-1, LGG-2, and β-CG groups. The Z-score analysis revealed the samples had
good repeatability.

According to the above results, a bubble chart of the enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway was drawn. Compared with the NR-1 group, the
main metabolic pathways in the LGG-1 group were the bile secretion pathway, histamine
metabolism, and glycerophospholipid metabolism (Figure 6A). Compared with the β-
CG group, the main metabolic pathway in the LGG-2 group was bile secretion pathway
(Figure 6B). The results showed that the most differentially abundant metabolites after
LGG intervention were of the bile secretion pathway.

Compared with the NR-1 group, histamine and N(α)-γ-glutamylhistamine were sig-
nificantly downregulated in the LGG-1 group (Figure 7A). The results showed that allergic
biomarkers were downregulated in the LGG group more than in the NR group, indicat-
ing that LGG intervention was more effective. Compared with the β-CG allergic mice
(Figure 7B), histamine, N(α)-γ-glutamylhistamine, N-acetylhistamine, arachidonic acid,
phenylalanine, tryptophan, malate, and xanthine were significantly downregulated in the
LGG-2 group, whereas deoxycholic acid and lithocholic acid were significantly upregulated.
The results showed that after LGG intervention, the levels of allergic biomarkers were
significantly lowered.
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in positive ion mode between the LGG-1 group and the NR-1 group. (B) Cluster heat map of differential metabolites in
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4. Discussion

Apoptosis induced by allergies has recently received increased attention. Usually,
the allergic response leads to intestinal damage, such as the rupture of intestinal villi,
increased intestinal permeability, and increased numbers of apoptotic cells. In our previous
work [22], we found that LGG alleviates β-CG allergy by modulating the differentiation
of immune cells in the TCR signaling pathway. However, the effect of LGG on alleviating
cell apoptosis has not been reported. LGG is recognized to regulate the gut microbiota and
metabolites; therefore, in this study, we explored the effects of LGG intervention on cell
apoptosis induced by β-CG allergy and the related mechanisms and metabolites in gut
microbiota.

Our experiments demonstrated that β-CG allergy induced cell apoptosis, including
the occurrence of intestinal inflammation and the destruction of the intestinal wall barrier.
Following LGG intervention, apoptotic cells were significantly decreased, and the state of
intestinal villi was restored. It has been reported that the development of normal tolerance
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of apoptotic cells is related to pro-inflammatory bacteria [24,25]. Probiotics can reduce
pro-inflammatory bacteria, and maintain intestinal immune homeostasis [26]. Therefore,
LGG intervention may reduce the number of apoptotic cells by lowering the tolerance of
apoptotic cells.

Probiotic-related immunomodulatory effects on the intestinal tract have been verified
and reported. It has been reported that probiotic Enterococcus faecium has a regulatory effect
on necrotic enteritis-induced intestinal barrier damage [27]. Probiotic Pediococcus acidilactici
can restore intestinal morphology and enteric immunity [28]. LGG has been demonstrated
to possess the recovery effect on intestinal inflammation induced by lipopolysaccharide [29].
It was observed that β-CG-induced allergy could lead to an increase in the number of
apoptotic cells and rupture of intestinal villi in current study, whereas LGG intervention
was verified to have the functionality to effectively reduce the number of apoptotic cells
and restore the normal state of intestinal villi. The underlying mechanism may rely
on the enhanced intestinal mucosal barrier function and intestinal immune response
induced by LGG, which facilitated the recovery of the intestinal tissue damage. LGG has
the capacity to inhibit cell apoptosis of the intestine, regulate homeostasis of intestinal
epithelium, and prevent intestinal inflammatory diseases. On this basis, further research
revealed that LGG’s inhibition of cell apoptosis is related to the gut microbiota. The gut
microbiota in healthy individuals is in a dynamic equilibrium state, whereas allergic mice
were in an imbalanced state. From our experimental results, the relative abundance of
Enterobacter increased in β-CG allergic mice and then decreased after LGG intervention.
According to reports, the imbalance of gut microbiota is directly related to allergies [30]. The
microbial composition in the intestinal tract of normal mice is diverse, and the proportion
of Enterobacter is low. Bridgman et al. reported changes in the gut microbiota induced by
children’s allergies, in which the abundance of Enterobacter increased [31]. Thus, β-CG
allergy induced an increase in Enterobacter, and LGG intervention reduced Enterobacter. The
results of this study have showed that decreased Bacteroides in the intestine of allergic mice,
which increased after LGG intervention. Bacteroides is the most common beneficial bacteria
in the human ileum and large intestine, and the main component of the host’s normal flora.
Bacteroides has a symbiotic relationship with the host. Some studies have confirmed that
intestinal bacteria, such as Bifidobacteria and Lactobacilli, are involved in reducing the risk
of allergic diseases. Enterococcus and other allergic bacteria, such as Enterobacteriaceae and
Clostridia, increase the risk of developing allergies [32]. Reddel et al. showed that probiotics
promote the abundance of Bacteroides in the intestine of infants [33]. Therefore, the results
revealed that LGG could restore normal microbiota, reduce pro-inflammatory bacteria, and
regulate the imbalance in the gut microbiota.

The metabolic pathways of the gut microbiota are essential for maintaining intestinal
immune homeostasis, and they affect the host’s immunity to a variety of immune-mediated
diseases. In the metabolic results, the bile secretion pathway was significantly enriched
after LGG intervention. The metabolites produced by the bile secretion pathway have
immunomodulatory functions [34]. Thus, we infer that LGG intervention could play an
immunomodulatory role in the bile secretion pathway.

Future research needs to further identify the key metabolites in the bile secretion path-
way because the mutual regulation between the host and its microbiome occurs through
the secretion of metabolites. The bile secretion pathway can be achieved by regulating the
metabolic products of the metabolic and inflammatory pathways. During β-CG allergy,
histamine is present in relatively high concentrations in the bile secretion pathway. After
LGG intervention, key differential metabolites regulate the immune responses, including
upregulation of deoxycholic acid and cholic acid and downregulation of histamine in the
bile secretion pathway. Recent studies have reported that metabolites play an essential role
in the immune system [35]. Histamine is a biogenic amine that has a wide range of effects
on many cell types, and the activation of receptors (H1R-H4R) mediates this effect, such
as causing metabolic abnormalities and allergic diseases. The concentration of histamine
depends on the expression and activity of histamine receptors [36]. Histamine metabolism
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is closely related to food allergy [37]. Deoxycholic acid and lithocholic acid play a conduc-
tive role in maintaining the homeostasis of the bile secretion pathway. Deoxycholic acid
and lithocholic acid can activate FXR, after which FXR heterodimerizes with 9-cis retinoic
X receptor (RXR) to regulate cholesterol catabolism and BA biosynthesis [38]. Therefore,
LGG intervention could regulate key differential metabolites in the bile secretion pathway.

The gut microbiota and its metabolites are closely related, and their interaction plays
an important role in the immune system. Bacteroides express bile salt hydrolase (BSH),
which deconjugates taurine-conjugated BAs and glycine-conjugated BAs. Metabolites
may activate FXR in the intestine to regulate the bile secretion pathway and participate
in the immune regulatory system. The role of the bile secretion pathway in the immune
system is to increase the expression of Muc2 in the intestine and induce production of the
components of mucosal immune cells, thereby reducing apoptotic cells. In conclusion, we
think that apoptotic cells in the intestine were decreased due to the increase in Bacteroides,
which promoted the bile secretion pathway following LGG intervention (Figure 8).
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5. Conclusions

In this study, we found through TUNEL analysis that LGG could reduce cell apoptosis
induced by β-CG allergy. Further analysis of the gut microbiota and metabolic pathways of
the intestinal contents revealed that LGG intervention regulated Bacteroides levels and the
bile secretion pathway. As a new perspective for reducing apoptosis of cells, our findings
provide a basis for the application of dietary intervention in the treatment of allergies.
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