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Multiarm clinical trials, which compare several experimental treatments
against control, are frequently recommended due to their efficiency gain. In
practise, all potential treatments may not be ready to be tested in a phase II/III
trial at the same time. It has become appealing to allow new treatment arms to be
added into on-going clinical trials using a “platform” trial approach. To the best
of our knowledge, many aspects of when to add arms to an existing trial have
not been explored in the literature. Most works on adding arm(s) assume that
a new arm is opened whenever a new treatment becomes available. This strat-
egy may prolong the overall duration of a study or cause reduction in marginal
power for each hypothesis if the adaptation is not well accommodated. Within
a two-stage trial setting, we propose a decision-theoretic framework to investi-
gate when to add or not to add a new treatment arm based on the observed stage
one treatment responses. To account for different prospect of multiarm studies,
we define utility in two different ways; one for a trial that aims to maximise the
number of rejected hypotheses; the other for a trial that would declare a success
when at least one hypothesis is rejected from the study. Our framework shows
that it is not always optimal to add a new treatment arm to an existing trial. We
illustrate a case study by considering a completed trial on knee osteoarthritis.
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1 INTRODUCTION

In recent years, a multiarm multistage design is becoming an attractive alternative to the classical randomised
treatment-control design, especially in phase II and phase III trial settings. A multiarm multistage design has attractive
features such as sharing a common control group in a study that investigates multiple treatment interventions concur-
rently and allowing use of an adaptive design to drop arms for futility and efficacy at interim analyses. Another potential
feature of a multiarm multistage design is to consider adding new treatment arm(s) to an on-going study, known as a plat-
form trial. Apart from the benefit of sharing the concurrent control group, adding new treatment arm(s) provides extra
treatment option(s) to future patients who are yet to be enrolled to the trial. This adaptive feature also enhances future
patient benefit as the newly available agents could be tested immediately in the trial when they are available. Moreover,
the overall cost of studying a new treatment intervention would be reduced as the cost of setting up an independent trial
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can be avoided when the new agent can be tested in an on-going trial. Examples of on-going trials that consider the feature
of adding new treatment arm(s) include STAMPEDE,1 I-spy 2,2 and Glioblastoma (GBM) AGILE.3

To date, limited statistical literature on methodology for adding arms is available. Cohen et al4 provided a review of
papers discussing methodology and practical considerations for adding arms to an on-going clinical trial. With the deci-
sion that a newly available treatment is always added to an on-going trial, Elm et al5 compared three analysis approaches
based on the operating characteristics of the trial, which originally has a standard two-arm design. Restricting a fixed max-
imum number of arms that can be added to a study, Ventz et al6 illustrated the benefits of a rolling-arms design, which
is a specific platform design that adds new arms to a study when they become available. On other aspects, Ventz et al7

investigated three randomisation procedures for the design that adds new arms at different time points; Wason et al8 inves-
tigated the impact of adding arms on family-wise error rate. We find that the exact time to open new arm(s) has not been
well addressed by these authors. The strategy of always adding in the treatments once they become available may lead to
having little power for each treatment or prolonging the overall duration of a study. On the contrary, being inflexible on
including new treatments may result in missing the chance of identifying a truly effective treatment.

In the context of screening a large number of agents, Yuan et al9 proposed a platform trial design, whereby a new
treatment arm is opened once an experimental treatment graduates or is dropped. Focusing on futility monitoring,
Hobbs et al10 proposed a framework for designing a screening platform trial that could drop arms or add new agents using
Bayesian modelling. Here, we investigate the strategy of adding a new treatment to an existing study based on responses
that are observed up to date. We focus on phase II/III setting where the objective of a trial is to study the efficacy of treat-
ments. The situation we consider here is similar to those described in the works of Elm et al5 and Ventz et al,6 where a
new treatment becomes available after a trial on different interventions for the same disease has commenced but prior to
the end of enrollment. Instead of following a stringent strategy, we investigate when would be best to add a new treatment
arm to an on-going trial. To provide insight into how to decide whether to add a new treatment to an existing study, we
consider a two-stage multiarm trial setting. We propose a decision-theoretic framework to provide guidance on when to
add an arm to an on-going study based on the observed treatment responses to date.

A decision-theoretic approach explores the consequences of possible decisions and provides an optimal action that gives
the highest gain on making a decision11-13; Hee et al14 provided systematic review on decision-theoretic designs for clinical
trials. The notion of our framework is similar to the work of Berry and Ho,15 who investigated stopping boundaries for
drug development programs. However, we consider a frequentist utility instead of a Bayesian one as the common practise
of clinical studies emphasises the freqentist operating characteristic of the trial. For some common diseases, where many
treatment options are available, a trial might be able to identify as many effective treatments as possible. In others, being
able to identify one efficacious treatment from a study would be considered a success. To cover these different prospects,
we consider two types of utility in this work: one depends on the number of rejected hypotheses, the other is a binary value
that equals one when at least one hypothesis is rejected by the study. The expectation of the former corresponds to the
expected number of rejected hypotheses, and of latter the disjunctive power when at least one of the rejected hypotheses
are false under the null. They are examples of design criteria for designing a trial that has multiple clinical objectives.16

A utility function reflects the point of view of a decision marker. For ease of exposition, we do not include other trial
aspects such as monetary values in our illustration. This may represent the interests of an academic trial sponsor who has
limited budget for recruiting more patients but want to maximise the chance of declaring a trial success by adding a new
treatment arm to an on-going trial. Other decision-makers such as trial sponsors and health regulators can incorporate
the relevant aspects into the utility function and conduct the analysis described in this work.

The structure of this paper is as follows. In Section 2, we describe the background and key elements of our
decision-theoretic framework. In Section 3, we illustrate the optimal decision that is made based on stage one responses
for a case study of a trial in osteoarthritis,17 and the impact of prior distribution on the optimal decision. In Section 4, we
illustrate the framework for an initial design that has (i) one treatment and a control arms, and (ii) two treatment and a
control arms. In Section 5, we summarise our investigation, discuss the limitations of our work, and consider future work.

2 BACKGROUND AND DECISION-THEORETIC FRAMEWORK

Decision theory methods provide an optimal decision to a problem by assessing the utility of each possible action. The
utility is often measured in quantitative value, which is computed by subtracting the costs of taking the action from the
possible gain (or loss if the outcome is negative). In this work, we consider a two-stage setting. We aim to maximise
the expected utility by making a decision at the end of stage one based on data observed up to that point. In this section, we
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first describe the trial setting and the distributions of the responses. We then present the analysis procedure to compute
the probabilities of rejecting hypotheses based on a multivariate normal distribution prior to implementation of stage two
of the trial. Following that, we specify the utility and describe the process of identifying the optimal decision, ie, to add
or not to add a treatment arm to an on-going trial based on the observed stage one responses.

2.1 Distribution of data
Consider a two-stage multiarm trial that initially has K treatments and a control treatment, with a total sample size
N = N1 + N2, where Ns is stage s sample size, s = 1, 2. Denote k = 0 for a control treatment and k = 1, … ,K for
experimental treatments. Let Xkj be the response of treatment k on subject j = 1, … ,nks, where nks is the sample size
of treatment k for stage s,

∑K
k=0 nks = Ns and nk1 + nk2 = nk. Having observed N1 responses in stage one, we could

investigate the benefit of adding a new treatment arm, denoted by K + 1, to the on-going study. A decision problem is to
decide whether to add a new treatment and decide the value of N2 and nk2, k = 0, … ,K + 1 if arm K + 1 is added to the
trial. The value of nK + 1,2 would depend on the randomisation procedure/scheme of the study; the value of N2 would affect
the power of making inference on treatment K + 1. For ease of exposition, we restrict N2 to be fixed in the illustration.
The case where additional patients are available if an arm is added is considered in the Discussion section. Following
the decision to add an arm, we consider the use of an equal randomisation procedure such that each arm has stage two
sample size N2∕(K + 2). In other words, the decision of adding a new treatment arm would cause the initial arms to have
a smaller stage-two sample size per arm.

Consider that Xkj are identically and independently normally distributed with mean 𝜇k and variance 𝜎2
k , where 𝜎2

k is

a known value. Denote by X̄k.s =
∑nks

𝑗=1 Xk𝑗

nks
the stage s mean response of treatment k, X̄k = wk1X̄k.1 + wk2X̄k.2 as the mean

response of treatment k over both stages, wks = nks
nk

. We have X̄k.s
iid∼ N(𝜇k, 𝜎

2
k∕nks) and X̄k ∼ N(𝜇k, 𝜎

2
k∕nk). Without loss

of generality, consider a control treatment k = 0 has 𝜇0 = 0. For k = 1, … ,K,K + 1, let 𝜇k follow a normal prior
distribution with mean mk0 and variance vk0. Prior to implementing the trial, X̄k.1 has a prior predictive distribution that
follows a normal distribution with mean mk0 and variance 𝜎2

k
nk1

+ vk0. Analogously, when treatment K + 1 is added to
the trial at the end of stage one of the trial, the prior predictive distribution of X̄K+1.2 is a normal distribution with mean
mK + 1,0 and variance 𝜎2

K+1

nK+1,2
+ vK+1,0.18

After observing stage one, the posterior distribution of 𝜇k has mean

mk1 = vk0
𝜎2

k
nk1

+ vk0

x̄k.1 +

𝜎2
k

nk1

𝜎2
k

nk1
+ vk0

mk0

and variance

vk1 =

(
1

vk0
+ nk1

𝜎2
k

)−1

,

which become the prior moments for 𝜇k of the next stage. The normal predictive distribution for X̄k.2 has mean mk1 and
variance 𝜎2

k
nk2

+vk1.18 Note that mk1 depends on stage one observation via x̄k.1. In what to follow, let𝑓x̄k.1(x̄k.1) and𝑓x̄k.2 (x̄k.2|x̄k.1)
denote the (predictive) probability density function of stage one responses and of stage two responses. They are used in
the computation of expectations.

2.2 Hypothesis testing
We now describe the analysis plan of the trial. Without loss of generality, positive values indicate that a treatment is more
effective than a control treatment on the patients. Compare treatment k with the control treatment k = 0, a hypothesis
test considers

null hypothesis,H0k ∶ 𝜇k − 𝜇0 ≤ 0,
alternative hypothesis,H1k ∶ 𝜇k − 𝜇0 > 0.
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At the end of the trial, we reject a hypothesis H0k when

(wk1X̄k.1 + wk2X̄k.2) − (w01X̄0.1 + w02X̄0.2)√
𝜎2

k
nk1+nk2

+ 𝜎2
0

n01+n02

> bk2.

When the null hypothesis is true, the left-hand side of the first expression is normally distributed with mean zero and
variance one. To get a level 𝛼 test, we compare this test statistics to the rejection boundary, bk2 = Φ−1(1 − 𝛼), where Φ−1

denotes the cumulative density function of the standard normal distribution. In some trials with K > 1, it is desirable
to control the family-wise type one error rate, ie, the probability of making at least one type one error is ≤ 𝛼, or in the
strong sense that this error rate is ≤ 𝛼 for any configuration of true and false null hypotheses. Methods such as Dunnett's
test, Holm-Bonferroni method, and closed testing procedure are often used to control the error rate in multiarm multi-
stage designs. Without loss of generality, we consider controlling the family-wise error rate in the strong sense. We use
Bonferroni correction, ie, when K > 1 hypotheses are tested by the study, we choose bk2 = Φ−1(1 − 𝛼∕K).

Since X̄k.s, k = 0, 1, … ,K, s = 1, 2, are independent and normally distributed, wksX̄k.s are also independent and
normally distributed but with a variance scaled by w2

ks. It can be shown that the differences in mean response of treatments
for stage two given the stage one data follow a multivariate normal distribution, ie,

⎛⎜⎜⎜⎝
w12 X̄1.2 − w02X̄0.2
w22 X̄2.2 − w02X̄0.2

⋮
wK2 X̄K.2 − w02X̄0.2

⎞⎟⎟⎟⎠ ∼ MVN
⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

m11
m21
⋮

mK1

⎞⎟⎟⎟⎠ , diag

(
w2

12

(
𝜎2

1

n12
+ v11

)
,…,w2

K2

(
𝜎2

K

nK2
+ vK1

))
+ w2

02
𝜎2

0

n02
1K

⎤⎥⎥⎥⎦ ,
where 1K is a square matrix of ones with dimension K. We can compute the probabilities of rejecting some hypotheses
by evaluating the cumulative density function of this distribution using some numerical software. For example, the
probability of rejecting all hypotheses except hypothesis r and hypothesis u is

P(H0r and H0u are not rejected,H0l, l ∈ {1, … ,K}∖{r,u} are rejected)
= P

[
wr2 X̄r.2 − w02 X̄0.2 ≤ Z(r, 2), wu2 X̄u.2 − w02 X̄0.2 ≤ Z(u, 2), wl2 X̄l.2 − w02 X̄0.2

> Z(l, 2), l ∈ {1,…,K}∖{r,u}
]

= ∫
l1

∫
l2

∫
lK

f(x̄2)d(x̄2), (1)

where f(x̄2) is the pdf of the multivariate normal distribution, Z(k, 2) = bk2

√
𝜎2

k
nk1+nk2

+ 𝜎2
0

n01+n02
− (wk1X̄k.1 − w01X̄0.1), k =

1, … ,K, and lk denote the regions of the integrals; lk = [Z(k, 2),∞) for k ∈ {1, … ,K}∖{r,u}, and lk = (−∞,Z(k, 2)]
for k ∈ {r,u}. We consider this K-dimensional joint distribution when we compute the expected utility of not adding an
arm to an on-going trial.

Note that nonequal wks, k = 1, … ,K, imply that the trial has different number of observations on different arms. This
could happen for example by design, ie, using unequal treatment allocation probabilities, or because of the presence of
missing observations and/or delayed outcomes. With equal randomisation probability and fully observed responses that
are available at the time of making a decision, we have wks = w0s for k = 1, … ,K, and s = 1, 2.

For the newly added arm, concurrent control responses are used in making inference and we reject H0,K + 1 when

X̄K+1.2 − X̄0.2 > bK+1,2

√
𝜎2

K+1

nK+1,2
+

𝜎2
0

n02
.

To be consistent with the notation, we denote Z(K + 1, 2) = bK+1,2

√
𝜎2

K+1

nK+1,2
+ 𝜎2

0
n02

. Note that the joint distribution of

X̄K+1.2 − X̄0.2 and the differences in mean response of K treatments are also a multivariate normal distribution. We use
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this K + 1-dimensional multivariate normal distribution to compute the expected utility of adding an arm to an on-going
trial, ie,⎛⎜⎜⎜⎝

w12X̄1.2 − w02X̄0.2
⋮

wK2X̄K.2 − w02X̄0.2
X̄K+1,.2 − X̄0.2

⎞⎟⎟⎟⎠ ∼ MVN
⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

m11
⋮

mK1
mK+1,0

⎞⎟⎟⎟⎠ , diag

(
w2

12

(
𝜎2

1

n12
+ v11

)
,…,w2

K2

(
𝜎2

K

nK2
+ vK1

)
,
𝜎2

K+1

nK+1,2
+ vK+1,0

)

+diag

(
w2

02
𝜎2

0

n02
,…,w2

02
𝜎2

0

n02
,
𝜎2

0

n02

)⎤⎥⎥⎥⎦ .

2.3 Elements of decision-theoretic framework
We now describe the elements of our decision-theoretic framework. Consider rejecting a null hypothesis, H0k, as a gain
and not rejecting the hypothesis as zero loss after implementing a trial. We define the utility in the following two different
ways:

• Uc
D = k when k hypotheses are rejected, k = 0, 1, … ,K;

• Uo
D = 1 when at least one hypothesis is rejected, Uo

D = 0 otherwise.

The expectation of Uc
D corresponds to the expected number of rejected hypotheses, whereas the expectation of Uo

D corre-
sponds to disjunctive power when at least one of the rejected hypotheses is false under the null. The former is an example
of expectation criteria and the latter is an example of exceedance criteria that are often considered when designing a study
that has multiple clinical objectives.16 We can find the expected values of these utilities by evaluating the probability of
rejecting some number of hypotheses. For example, the probability of rejecting K − 2 hypothesis out of K hypotheses is
the sum of (1) over all choices of r and u.

Within a two-stage setting, we consider that a decision needs to be made after observing stage one of the trial, ie, the
decision, D ∈ {Da,DNa}, where Da is the decision that adds a new treatment arm to an on-going trial, and DNa is the
decision that does not add a new treatment arm. The decision of adding the arm, Da, would reduce nk2, ie, stage two
sample size of treatment k, and require adjustment of the rejection boundaries to control the prespecified family-wise
error rate. The decision of not adding the arm, DNa, corresponds to the initial design of the trial.

Let X̄s and x̄s be the vectors (X̄0.s,…, X̄K.s)′ and (x̄0.s,…, x̄K.s)′ for s = 1, 2, representing data from treatment arms 0 to K
in stages one and two. The general procedure of employing our framework is as follows. Firstly, we choose a utility, either
Uc

D or Uo
D, according to the objective of a trial. Then, we compute and compare the expected utility of each decision to

identify whether it is worth adding in the new treatment arm.
To be more specific, given observed data x̄1 and x̄2 and, if we add an arm, x̄K+1.2, the utility Uc

DNa
and Uc

Da
from taking

each action is given by

Uc
DNa

(x̄1, x̄2) =
K∑

k=1
𝕀{wk2 x̄k.2−w02 x̄0.2>Z(k,2)}

and

Uc
Da
(x̄1, x̄2, x̄K+1.2) =

K∑
k=1

𝕀{wk2 x̄k.2−w02 x̄0.2>Z(k,2)} + 𝕀{x̄K+1.2−x̄0.2>Z(K+1,2)},

which give the number of hypotheses rejected in each case. If the objective of a trial is to optimise Uo
D, the utility from

taking each decision is given by
Uo

DNa
(x̄1, x̄2) = min

{
1,Uc

DNa
(x̄1, x̄2)

}
and

Uo
Da
(x̄1, x̄2, x̄K+1,2) = min

{
1,Uc

Da
(x̄1, x̄2, x̄K+1.2)

}
,

which equal to 1 if any hypothesis is rejected and 0 otherwise.
The expected utilities are then given by

E(UDNa | X̄1 = x̄1) = ∫ … ∫ UDNa(x̄1, x̄2)𝑓x̄0.2(x̄0.2 | x̄0.1)… 𝑓x̄K.2(x̄K.2 | x̄K.1)dx̄0.2 … dx̄K.2
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and

E(UDa | X̄1 = x̄1) = ∫ … ∫ UDa(x̄1, x̄2, x̄K+1.2)𝑓x̄0.2(x̄0.2 | x̄0.1)… 𝑓x̄K.2(x̄K.2 | x̄K.1)𝑓x̄K+1.2(x̄K+1.2)dx̄0.2 … dx̄K+1.2

for either Uc or Uo. We identify the optimal decision such that we have

G1(X̄k.1) = max{E(UDNa | X̄1 = x̄1),E(UDa | x̄1 = x̄1)}.

Note the product of the predictive densities can be shown to follow the joint distribution described previously, whereby
the means of the multivariate normal distribution depend on the observed x̄k.1, k = 0, … ,K. We could compute theses
expected utilities using pmvnorm in R as they are the sums of multivariate tail areas. We use the K and K + 1-dimensional
multivariate normal distributions to compute the expected utility of not adding an arm and the expected utility of adding
an arm respectively.

2.3.1 The application of decision-theoretic framework
We remind readers that, in principle, the interest of decision-makers can be incorporated into a decision-theoretic frame-
work. The utilities presented earlier can be part of the utility function considered in practise. Different choices of utility
function (eg, future patients' benefits), action space, and control of error rates can be formulated based on the perspec-
tive of stakeholders. Trial aspects such as trial duration and trial resources (eg, number of patients, number of trial sites)
can be accounted for accordingly. For example, the utility function of trial sponsors can be a function of Uc

D and mone-
tary costs, with action space that includes decision DNa, decision Da with extra patients and longer duration, and another
option that a separate trial will be conducted for the new treatment. On the other hand, Uo

D can be considered as part of
the utility of public health regulators for trials in small populations such as rare diseases. By incorporating a prior distri-
bution for the treatment effect parameters in the utility function, see, eg, the work of Berry and Ho,15 our framework can
be extended for making an optimal decision with respect to maximising the expected profit and the number of correct
rejection of hypotheses.

For ease of presentation, we illustrate the decision-theoretic framework with Uc
D, Uo

D and action space D ∈ {Da,DNa}
without extra patients when a new treatment arm is opened. We do not consider monetary values and which hypotheses
are true or false. We illustrate the impact of prior distribution on the optimal decision given x̄1 in Section 3 and investigate
how the stage one responses influence the optimal decision in Section 4. Appendix B shows the results, which correspond
to those in Section 4 but with extra patients.

3 A CASE STUDY

We first describe a completed study and illustrate how one might make the optimal decision after observing stage one of
the trial. Then, we show the role of the prior distribution on the decision made.

A two-arm randomised control trial17 was conducted to study the efficacy and safety/tolerability of cryoneurolysis for
reduction of pain and symptoms associated with mild to moderate knee osteoarthritis. The control treatment is sham.
The study considered a randomisation ratio of 2:1 in favour of the intervention, and an adaptive design that allowed for
early stopping for success or futility based on the interim analyses of the primary endpoint. The primary endpoint was the
mean change from baseline to Day 30 in WOMAC pain subscale score, with the hypothesis being tested that treatment
(cryoneurolysis) is superior to the control treatment (sham). The effect size for sample size calculation was not reported in
this paper. A maximum total sample size of 180 was determined based on results of an unpublished trial. Interim analyses
were conducted when 80 patients were enrolled and every 20 patients enrolled thereafter. In other words, the minimum
sample size of the study could be 80. Nevertheless, the study continued until a total of 180 patients were enrolled, with
n1 = 121 and n0 = 59.

A one-sided t-test (lower-tailed) with 2.5% type one error declared that the cryoneurolysis had a statistically significant
greater change from baseline to Day 30 than the standard treatment. The study also found that the magnitude of the sec-
ondary outcomes far exceeded the established minimal clinically important improvement thresholds. Table II17 shows
the mean change from baseline to Day 30 is x̄1 =−16.65 with estimated 𝜎2

1∕n1 = 1.262 for the treatment (cryoneurolysis),
and x̄0 =−9.54 with estimated 𝜎2

0∕n0 = 1.632 for the standard treatment (sham). To be coherent with the exposition,
we assume that the estimates are the true variances and use a one-sided (upper-tailed) Wald-test with 2.5% type one
error/family-wise error rate in the illustration. Hence, we consider positive magnitudes instead of negative values to
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indicate effective mean change. We consider a hypothetical situation that the study has only one interim analysis and we
have the option to add a new treatment arm to the study. Assume at stage one, ie, the first interim analysis when 80 patients
were enrolled (with n01 = 27 and n11 = 53), we observed 8 and 5 for X̄1.1 and X̄0.1. These numbers are chosen for illustra-
tion to reflect the fact that the study did not stop for efficacy at the first interim analysis. Following the decision of adding
an arm, Da, we consider equal randomisation probability, ie, {n02,n12,n22} = {33, 33, 34} and control for the family-wise
error rate. We compare this decision to the decision of not adding an arm, DNa, where {n02,n12,n22} = {32, 68, 0} and
the type one error rate is controlled.

3.1 Expected gain of not adding an arm given stage one data
Condition on stage one mean response of treatments, the expected gain following DNa is

E(UDNa | X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕2)
= 0 × P(H01 is not rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 32,n12 = 68)
+ 1 × P(H01 is rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 32,n12 = 68)

= P(H01 is rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 32,n12 = 68)
= P(X̄1.2 − X̄0.2 > Z(1, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 32,n12 = 68)

=

∞

∫
Z(1,2)

𝑓 (x̄1.2 − x̄0.2)d(x̄1.2 − x̄0.2), (2)

where 𝑓 (x̄1.2 − x̄0.2) is the pdf of

X̄1.2 − X̄0.2 ∼ N

(
m11,

𝜎2
1

n12
+ v11 +

𝜎2
0

n02

)
, (3)

and Z(1, 2) = b12
√

1.262 + 1.632 − ( 53
121

× 8 − 27
59

× 5) and b12 = 1.96. We note that m11 and v11 are posterior mean
and variance that depend on stage one responses (see Section 2.1). In this simple case, Uo

DNa
and Uc

DNa
have expectation

equals to (2).

3.2 Expected gain of adding an arm, E(UDa), given stage one data
If the study aims to maximise the number of rejected hypotheses, the expected gain following Da given stage one
responses is

E
(

Uc
Da

| X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕3
)

= P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 ≤ Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 ≤ Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ 2P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)
. (4)

If the trial considers declaring a success when at least one hypothesis is rejected, the expected gain following Da is

E
(

Uo
Da

| X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕3
)

= P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 ≤ Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 ≤ Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)
.

These conditional probabilities can be computed by considering the joint distribution(
X̄1.2 − X̄0.2
X̄2.2 − X̄0.2

)
∼ MVN

⎡⎢⎢⎣
(

m11
m20

)
,

⎛⎜⎜⎝
𝜎2

1
n12

+ v11 +
𝜎2

0
n02

𝜎2
0

n02
𝜎2

0
n02

𝜎2
2

n22
+ v20 +

𝜎2
0

n02

⎞⎟⎟⎠
⎤⎥⎥⎦ .
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We note that m11 and v11 are the same under both decisions but the marginal distribution of (X̄1.2 − X̄0.2) from this
bivariate normal distribution is different to (3) in terms of n12 and n02. Moreover, Z(1, 2) of Da has a rejection boundary

b12 = 2.24, and Z(2, 2) = 2.24
√

𝜎2
2

n22
+ 𝜎2

0
n02

.

3.3 The role of prior moments
We fix 𝜎2 = 𝜎1 and investigate the impact of prior moments on the optimal decision for this case study. For a choice of
{m10,m20, v10, v20}, we compute the expected utility for each decision and identify the optimal decision for this particular
setting. For example, fix {m10,m20, v10, v20} = {0, 5, 10, 10}, we get E(UDNa | X̄0.1 = 5, X̄1.1 = 8,n02 = 32,n12 = 68) = 0.63.
If the trial objective is to maximise the number of rejected hypotheses, we get E(Uc

Da
| X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 =

33,n22 = 34) = 0.815, and hence Da is the optimal decision as this decision would have (0.815∕0.63 − 1) × 100 = 29%
chance of rejecting an extra hypothesis. If the trial objective is to maximise Uo

D, not adding an arm is the optimal decision
for this choice of prior moments as we get E(Uo

Da
| X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34) = 0.618, which is

smaller than 0.63.
We repeat this process for different {m10,m20, v10, v20} and illustrate the optimal decisions on Figure 1. On each plot,

x-axis and y-axis correspond to the value of v10 and m10, blue and red indicate adding an arm and not adding an arm
are the optimal decision for a choice of v10 and m10. The yellow region indicates 0 < |E(UDa |·) − E(UDNa |·)| < 0.01,
which could indicate indifference between the two decisions as the difference between the two expected utility is less
than 0.01, or DNa is better from monetary and logistics point of view. We include this region in the analysis to account for
the presence of Monte Carlo error when using pmvnorm on R to evaluate the probabilities. The first and the second row
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FIGURE 1 Optimal decisions: blue indicates adding an arm, red indicates do not add arm. The yellow region indicates
0 < |E(UDa

|·) − E(UDNa
|·)| < 0.01. First and second row correspond to using Uc

D and Uo
D in the framework, x-axis and y-axis correspond to the

value of v10 and m10 [Colour figure can be viewed at wileyonlinelibrary.com]
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of plots correspond to using Uc
D and Uo

D, respectively, in the framework. Each column corresponds to the situation that
m10∕m20 < 1, m10∕m20 = 1, and m10∕m20 > 1.

We see that the choices of prior moments have some impact on the optimal decision. When Uc
D is considered in the

decision-theoretic framework, choosing positive prior means and large prior variances would generally lead to adding
an arm as the optimal decision. On the other hand, when Uo

D is the objective of the study, it is better not to add the new
treatment arm (when m10 > m20), unless both the prior means and variances are very large. This analysis highlights the
fact that it is more beneficial to add a new treatment arm to an on-going trial when the experimenters believe that the
new treatment is considerably more efficacious than the control treatment and/or the initial treatment. Note that, when
m10 << 0, E(UDNa | X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕2) is very close to zero and hence Da is the optimal decision on the top
left corner in the plots. In practise, consider prior means << 0 for studies where positive magnitudes indicate that better
treatment effect is not logical. This is because, if a treatment is believe to have negative treatment effect, it will not be
chosen to be tested in a phase II or phase III clinical trial. We include this part in the illustration to remind users who
might conduct such an analysis for studies that consider negative magnitudes as efficacious.

4 RELATIONSHIP BETWEEN STAGE ONE RESPONSES AND
OPTIMAL DECISION

We now explore how the optimal decision depends on the stage one data. Having chosen the utility and the values of
{m10,m20, v10, v20}, we can identify the optimal decisions for a range of stage one mean response of treatments. We assume
equal treatment randomisation probability for both stages, type one/family-wise error rate of 5%, and Bonferroni correc-
tion when more than one experimental treatment is included in the trial. In what follows, we denote an optimal decision
by D∗.

The first illustration considers an initial design that has one treatment arm and a control arm, whereas the second illus-
tration has two treatment arms and a control arm. Without loss of generality, we depict the framework with a moderate
and a large total sample size, respectively, in the examples.

4.1 Initial design: one treatment and a control arms
Consider a trial that has one treatment arm (k = 1) and a control arm (k = 0) initially, and stage-wise sample sizes
N1 = 400 and N2 = 300. After observing stage one responses where n01 = n11 = 200, a decision must be made, to
either choose Da that adds a new treatment arm (k = 2) to the concurrent trial, or DNa that do not add the new treatment
arm. Following Da, there will be three arms at stage two. Each arm will have nk2 = N2∕3 = 100, for k = 0, 1, 2 (two
treatments and a control). The family-wise error rate is controlled as two hypotheses will be tested at the end of the
trial. We compute E(Uc

Da
| X̄0.1, X̄1.1,nk2 = N2∕3) and E(Uo

Da
| X̄0.1, X̄1.1,nk2 = N2∕3) using pmvnorm on R as we did in

Section 3.2 but with different values of x̄0.1, x̄1.1 and sample sizes. When the trial follows DNa, the two original arms will
have n02 = n12 = N2∕2 = 150, and the type one error rate is controlled for a treatment effect comparison between
treatment k = 1 and control treatment k = 0. We can likewise compute E(UDNa | X̄k.1, k = 0, 1,nk2 = N2∕2), and then
compare this value to the expected utility of adding an arm to identify the optimal decision for given values of x̄0.1, x̄1.1.

In general, when the objective of a trial is to maximise the number of rejected hypotheses, we find that it is more
beneficial to add a new treatment arm k = 2 when x̄1.1 − x̄0.1 is very large (indicating that treatment k = 1 is considerably
better than the control treatment), or when x̄1.1 − x̄0.1 is very small (indicating that treatment k = 1 is considerably worse
than the control treatment). This could represent two extreme cases. (i) When we have enough power for testing H01,
it is more beneficial to spend the remaining resources on testing the new treatment k = 2. (ii) When we observe that
the current treatment is not efficacious at all, we shall not spend all of the remaining resources on that treatment arm
but open a new arm for studying another intervention in the on-going trial. On the other hand, for the trials that would
consider a success when at least one hypothesis is rejected, the benefit of adding a new treatment arm to an on-going
trial is substantial when the initial treatment is not effective. In the rare scenario where a promising finding is shown by
stage one responses, adding a new treatment arm only results in negligible improvement to the utility of the trial. This is
because the maximum of Uo

D is one and rejecting one hypothesis with high probability is sufficient to declare a success.
Figure 2 shows the optimal decisions for different pairs of mean response of treatments, where x̄0.1 is plotted on the

x-axis, and x̄1.1 on the y-axis. Each column corresponds to using different values of {m10, m20, v10, v20} in the framework.
The last row of plots in the figure shows the probabilities that x̄1.1 − x̄0.1 > 0. For ease of comparison, we focus on the
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FIGURE 2 Optimal decisions when Uc
D (first row) and Uo

D (second row) are considered in the framework. Last row shows the probabilities
that x̄1.1 − x̄0.1 > 0. x̄0.1 is plotted on x-axis and x̄1.1 on y-axis, dashed lines are plotted at approximately zero. Each column considers a choice
of {m10, m20, v10, v20}. Blue and red indicate adding an arm and not adding an arm are the optimal decision. Purple and yellow indicate that
both decisions have the same expected utility and 0 < |E(UDa

|·) − E(UDNa
|·)| < 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]

same values of x̄0.1 and of x̄1.1 for different {m10, m20, v10, v20} in Figure 2. The interpretation of a plot on the first two rows
in Figure 2 is as follows. For a pair of x̄0.1 and x̄1.1, the optimal decision is represented by a colour code: blue indicates
Da has a larger utility value given stage one data, red indicates DNa has a larger utility value given stage one data. The
yellow regions in the plots indicate 0 < |E(UDa |·) − E(UDNa |·)| < 0.01, whereas the purple regions indicate both decisions
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have the same expected utility. Both of this yellow and purple region could be interpreted as indifference between the two
decisions as the gain is less than 0.01, or DNa is better from monetary and logistics point of view.

The blue region on the second quadrant (top right) in all plots highlights that Da is the optimal decision when the
initial treatment is not efficacious (as indicated by the light green region on the probability plots). We see that the region
for which DNa is the optimal decision depend on the prior moments for 𝜇k. Consider choosing Uc

D as the utility in the
decision-theoretic framework. As the prior variances, vk0 increases, ie, when comparing (1,1) and (1,2) plots in Figure 2,
the red area (indicates DNa is the optimal decision) becomes smaller. This result is not surprising as the expected utility
gain of having two rejection of hypotheses is dominating, ie, given Z(k, 2), the relationship between variance parameters
(that depend on vk0) and the last probability in (4) are monotonic increasing. When m10 increases, ie, treatment k = 1 is
believed to have a positive mean response, the red area is slightly enlarged and shifted to the left and upward when we
compare (1,2) with (1,3) plots. This result is less intuitive and we conjecture that the larger sample size per treatment arm
(of stage two) and the rejection boundary following DNa contributes to the small increase in the area of the red region.
We find a similar pattern when Uo

D is considered as the utility gain in the decision-theoretic framework. In addition to
that, there is a purple region where both decision Da and DNa give the same utility value. Within these ranges of x̄0.1 and
x̄1.1, we only see the purple region in (2,2) and (2,3) plot in Figure 2. This occurs in the lower left quadrant (second row
of plots), where both the expected value of Uo

DNa
and of Uo

Da
are approximately equal to one, and the difference between

these values is trivial.

4.2 Initial design: two treatment and a control arm
We now illustrate the decision-theoretic framework for a two-stage trial that has two treatment arms, k = 1, 2, and a
control arm (k = 0) at stage one with nk1 = N1∕3 = 400, and stage-wise samples N1 = 1200 and N2 = 1800. At the end
of stage one, we want to identify the best decision by considering the expected gains prior to implementation of stage two.
With either decision, we control the family-wise error rate accordingly at 5%. The decision of not adding an arm would
have nk2 = N2∕3 = 600 for k = 0, 1, 2. We can compute the expected utilities of DNa with the probability as described in
Section 3.2 but conditioned on x̄k.1, k = 0, 1, 2 and different sample sizes.

On the other hand, the decision Da would involve adding in a third experimental arm, and that nk2 = N2∕4 = 450,
for k = 0, 1, 2, 3. To find the expected gain of adding a new treatment arm, we need to consider possible combinations of
rejecting three hypotheses, H01, H02, and H03, which might be rejected at the end of the trial. In order words, for the trials
that focus on maximising the number of rejected hypotheses, we evaluate

E
(

Uc
Da
| X̄k.1, k = 0, 1, 2,nk2 = N2∕4

)
=

3∑
v=1

v × P(reject exactly v hypotheses out of three hypotheses);

for the other type of utility, we compute

E
(

Uo
Da
| X̄k.1, k = 0, 1, 2,nk2 = N2∕4

)
=

3∑
v=1

P(reject exactly v hypotheses out of three hypotheses)

= 1 − P(not reject all three hypotheses),

which is equivalent to the disjunctive power when at least one of the rejected hypotheses is false under the null.
We can compute these probabilities using pmvnorm on R; with a bivariate normal distribution for the expected utility

of DNa, and a trivariate normal distribution for the expected utility of Da. Note that the means and variances of both
multivariate normal distribution depend on the prior moments and stage one mean response of treatments. To be more
specific, we have three mean response of treatments, ie, x̄0.1, x̄1.1, and x̄2.1, at the end of stage one of the trial. Given these
values and a choice of {m10, m20, m30, v10, v20, v30}, we can compute and compare the expected utility of each decision,
with either Uc

D or Uo
D in the framework, to identify the optimal decision. We can repeat this procedure for different x̄0.1,

x̄1.1, and x̄2.1 for the investigation before seeing stage one of the trial.
Figure 3 shows the results for this multiarm trial setting. Within each plot, x̄2.1 is plotted on the x-axis and x̄1.1 is plotted

on the y-axis, dotted line corresponds to a value of the observed x̄0.1. Each column corresponds to conditioning on a single
x̄0.1; the first and second row of plots correspond to choosing Uc

D and Uo
D, respectively, in the framework. We see that there

is a trend as we move from negative to positive value of x̄0.1. Blue, red, and yellow indicate adding an arm, not adding an
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FIGURE 3 Optimal decisions when Uc
D (first row) and Uo

D (second row) are considered in the framework. x̄2.1 is plotted on x-axis and x̄1.1 is
plotted on y-axis, dashed lines are plotted at approximately zero, and dotted lines correspond to the value of a x̄0.1. Each column considers a
value of x̄0.1. Blue and red indicate that adding an arm and not adding an arm are the optimal decisions. Yellow indicates
0 < |E(UDa

|·) − E(UDNa
|·)| < 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]

arm, and indifference between the decisions when 0 < |E(UDa |·) − E(UDNa |·)| < 0.01 (or DNa is better from monetary and
logistics point of view).

The first quadrant (upper left quadrant that is divided by the dotted lines) on each plot corresponds to the situations
that neither treatment k = 1 nor treatment k = 2 is better than the control treatment. The analysis shows that adding a
new treatment k = 3 to the existing trial is more beneficial than continuing the trial according to the initial design, when
either Uc

D or Uo
D is considered in the framework in this case.

When either (initial) treatment is better than the control arm (the second or the third quadrant), the framework with
Uc

D shows that the expected number of rejected hypotheses could be increased by adding a new treatment arm when
information for the initial arms is sufficient to claim the promising finding. On the other hand, the framework with Uo

D
would not add a new treatment arm in this case as the promising finding on any initial treatments would fulfil the trial
objectives.

When both initial treatments are more efficacious than the control treatment, adding a new treatment arm could
increase the expected number of rejected hypotheses provided that the initial treatments have sufficient information to
claim the promising finding. This is reflected on the first row of plots, bottom right quadrant that is divided by the dotted
lines. On the other hand, for a trial that focuses on declaring a success when at least one hypothesis is rejected, the bot-
tom right quadrant in the second row of plots shows mainly red (DNa is the optimal decision) and yellow (indifference or
DNa is better from monetary and logistics point of view). This is because, if we have observed promising findings on both
initial treatment arms, the expected value of Uo

DNa
is already close to one. Hence, the disjunctive power can no longer be

increased by testing an extra hypothesis. These findings are consistent to the findings of the simpler study that initially
has two arms (one treatment and a control).
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5 DISCUSSION

The development of treatments for diseases is a long process. It is often the case that potential treatments are not available
at the same time for conducting phase II/III studies. This work highlights the benefits of adding a new treatment arm to an
existing study at an interim analysis. Instead of adding in a new treatment with certainty, we propose a decision-theoretic
framework for studying when it is optimal to add an arm to an existing multiarm trial. We defined utility according to
a design objective of a study, ie, (i) maximise the number of rejected hypotheses, and (ii) consider a success when at
least one hypothesis is rejected. The expected value of these utilities is examples of expectation criteria and exceedance
criteria, respectively. We consider a study design that initially has K experimental treatments and a control treatment.
Having observed stage one of the trial, we identify the optimal decision by comparing the expected utility of using this
initial design to the expected utility of using another design that has K + 2 arms at the second stage. Within the two-stage
setting, we looked at the costs where adding in a new arm would reduce stage-two sample size per treatment arm and
require adjustment to account for multiplicity. We acknowledge that multiplicity corrections might not be made in some
multiarm trials. In this case, we only need to consider the cost of having smaller sample size per treatment arm and do
the analysis of adding an arm analogously.

We presented how to investigate whether it is worth adding in a new treatment arm to an on-going multiarm trial based
on the observed stage one mean response of treatments for a case study. We showed the impact of prior distributions
on the optimal decisions. We also illustrated the analysis before the implementation of the trial. For the trial with more
initial arms, the investigation can proceed analogously as described earlier. We find that, in a multiarm study, when none
of the experimental treatments are more efficacious than the control treatment, adding in a new treatment arm to the
on-going study is more beneficial than continuing the trial according to the initial design. This is because the newly
added arm might demonstrate promising finding and hence increase the utility of the study. On the contrary, when the
initial experimental treatments are considerably more efficacious than the control treatment, adding in a new treatment
arm could potentially increase the expected number of rejected hypotheses. However, for multiarm studies that focus on
disjunctive power, the decision to add a new treatment arm in this case is less substantial. This is because being able to
claim any of the initial treatments as promising would have already fulfilled the study objective.

The aim of this manuscript is to present the notion of our decision-theoretic framework and the procedure of the
investigation. We remind readers that the results of the illustrations presented in this paper are not comprehensive. For
ease of exposition, we do not include the consideration of other aspects in the framework, eg, monetary cost of open-
ing the new treatment arm. We also do not compare the utility of conducting a separate trial for the new arm when it
was not added to the existing trial. Practitioners can formulate their utility and action spaces accordingly, as described in
Section 2.3. Nevertheless, we have not considered choosing N2 based on stage one observations in this work. A simple
approach for optimising N2 at the same time could be specifying values for a cost per patient and reward for success.
Together with early stopping for futility and efficacy rules, future work could investigate how best to use the trial resources
by constructing a different utility function. Without adding a prior distribution for the parameter of treatment effect,
future work may also incorporate the probability of finding the treatment to be significant into the utility function.
This could reflect that we are indirectly favouring treatments with higher effects without considering whether the null
hypotheses are true or false.

We note that, as we consider a two-stage design whereby there is a possible change on total sample size per treatment
arm, the type one error rate might be inflated. One could estimate the type one error rate, for example, by consider-
ing a null distribution for the responses and assume a prior distribution for the decision marking, then approximate
the type one error. This investigation could show the magnitude of the inflation, and the experimenters could con-
sider the significance of this inflation when making the decision for implementation. Alternatively, we could avoid this
issue by replacing the aforementioned inference procedure with a combination test19 and conduct the investigation on
adding arm adaptation in a similar fashion. Future work could consider using a recursive combination test20 or a group
sequential approach to adjust the final test21,22 in a decision-theoretic framework for trials that have multiarm multistage
settings.

We acknowledge that more patients may be recruited when a new arm is added to an existing trial. For clinical trials
taking place on small populations, such as for rare diseases, targeted subgroups, and paediatrics, recruiting more patients
can be infeasible and/or time consuming. Figures 2 and 3 show the decision of adding arm when the on-going trial has
fixed resources and time. Figures B1 and B2 in Appendix B show the optimal decisions when extra patients are available.
Table B1 shows the number of patients considered in these illustrations. We find that the pattern of the corresponding
plots is similar when comparing the trials that have extra patients with the trials without any extra patients. The designs
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that initially has two arms and which aims to maximise the number of rejected hypotheses, Uc
D, are exceptional cases.

For these cases, ie, when prior means ≥ 0 and prior variances are large (correspond to (1,2) and (1,3) plots in Figure B1),
we find that adding the new treatment arm is the optimal decision given those observed stage one mean responses. This
finding is not surprising as the initial trial resources are not affected by the decision and adding in the new arm increases
the chance of rejecting an extra hypothesis.

Here, we have focused on a normal outcome. To our knowledge, many clinical trials in psychiatry and psychology stud-
ies involve normally distributed outcomes. The systematic review by Wason et al23 considered 59 multiarm trials, of which
22 (37%) have continuous primary outcome. We think it is possible to amend such a decision-theoretic framework for
trials with a binary outcome. This can be done by changing the test statistics and making some assumptions about the
variances of the response probabilities. For other types of outcome, the framework can be applied when the trial sample
sizes are large. This is because the test statistics can be approximated by the normal distribution even if the individual out-
come data is not normal. We acknowledge that most of the trials in practise have several secondary outcomes that it may
be important to consider, or involve subgroup analysis and follow-up measurements. Further investigation is required to
account for these. Besides that, we have not facilitated the standard power and sample size calculation in the framework.
Wason et al24 investigated sample size for a multiarm multistage drop-the-losers design. Future work could consider the
impact of adding an arm on this design, different approaches and perspectives for the sample size calculation,25-32 and also
account for the presence of missing responses. Some authors33,34 have tackled the presence of missing responses from the
perspective of design of experiments, by having more subjects enrolled to the arm that is expected to have higher miss-
ing response rate. Other future work could incorporate stage one control responses when making pair-wise comparison
between the newly added treatment and the control treatment. A caveat on this aspect is that there might be population
drift if the overall duration of a trial is long. One could also consider the impact of using different randomisation strate-
gies such as a response adaptive randomisation procedure that is robust to time trend.35 We note that we have not focused
on parameter estimation in this work. In seamless phase II/III clinical trials with early stopping for futility, methods have
been proposed for unbiased estimation.36-38 Stallard and Kimani39 indicated that (conditionally) unbiased estimators for
the trial that adds arm(s) could be complicated to derive. This highlights the fact that more research on adding arm(s) to
an on-going trial is required.
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APPENDIX A

THE DERIVATION OF EXPECTED GAIN OF ADDING AN ARM

This section illustrates the intermediate steps of obtaining the expected utilities in Section 3.2, ie,

E
(

Uc
Da
|X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕3

)
= 0 × P(H01 and H02 are not rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 1 × P(H01 is rejected,H02 is not rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 1 × P(H01 is not rejected,H02 is rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 2 × P(H01 and H02 are rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)

= P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 ≤ Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 ≤ Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ 2 P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)
.

E
(

Uo
Da

| X̄0.1 = 5, X̄1.1 = 8,nk2 = N2∕3
)

= 0 × P(H01 and H02 are not rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 1 × P(H01 is rejected,H02 is not rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 1 × P(H01 is not rejected,H02 is rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)
+ 1 × P(H01 and H02 are rejected | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34)

= P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 ≤ Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 ≤ Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)

+ P
(

X̄1.2 − X̄0.2 > Z(1, 2), X̄2.2 − X̄0.2 > Z(2, 2) | X̄0.1 = 5, X̄1.1 = 8,n02 = 33,n12 = 33,n22 = 34
)
.

APPENDIX B

ILLUSTRATIONS: ADDING AN ARM WITH EXTRA PATIENTS

The figures in this section illustrate the scenario that extra patients are available when a new treatment arm is added
to an existing trial. Figure B1 and Figure B2 correspond to the same setting as Figure 2 in Section 4.1 and Figure 3 in
Section 4.2, except that resources are different (see Table B1).

FIGURE B1 Optimal decisions when Uc
D (first row) and Uo

D (second row) are considered in the framework. Last row shows the probabilities
that x̄1.1 − x̄0.1 > 0. x̄0.1 is plotted on x-axis and x̄1.1 on y-axis, dashed lines are plotted at approximately zero. Each column considers a choice
of {m10, m20, v10, v20}. Blue and red indicate adding an arm and not adding an arm are the optimal decision. Purple and yellow indicate that
both decisions have the same expected utility and 0 < |E(UDa

|·) − E(UDNa
|·)| < 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE B2 Optimal decisions when Uc
D (first row) and Uo

D (second row) are considered in the framework. x̄2.1 is plotted on x-axis and x̄1.1

is plotted on y-axis, dashed lines are plotted at approximately zero, and dotted lines correspond to the value of a x̄0.1. Each column considers a
value of x̄0.1. Blue and red indicate that adding an arm and not adding an arm are the optimal decisions. Yellow indicates
0 < |E(UDa

|·) − E(UDNa
|·)| < 0.01 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE B1 Number of patients in the illustrations. N1 and N2 are the sample size of stage
one and stage two, nk2 is the sample size of treatment k at stage two. Equal allocation is
considered in all illustrations

Initial Number of Arms Decision N1 N2 nk2

Figure 2 2 Do not add an arm 400 300 150
Add an arm 400 300 100

Figure B1 2 Do not add an arm 400 300 150
Add an arm 400 300 +150 150

Figure 3 3 Do not add an arm 1200 1800 600
Add an arm 1200 1800 450

Figure B2 3 Do not add an arm 1200 1800 600
Add an arm 1200 1800 + 600 600

http://wileyonlinelibrary.com
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