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Abstract

Background: Geographically weighted Poisson regression (GWPR) was applied to the relation between cervical
cancer disease incidence rates in England and socio-economic deprivation, social status and family structure
covariates. Local parameters were estimated which describe the spatial variation in the relations between incidence
and socio-economic covariates.

Results: A global (stationary) regression model revealed a significant correlation between cervical cancer incidence
rates and social status. However, a local (non-stationary) GWPR model provided a better fit with less spatial correlation
(positive autocorrelation) in the residuals. Moreover, the GWPR model was able to represent local variation in the
relations between cervical cancer incidence and socio-economic covariates across space, whereas the global model
represented only the overall (or average) relation for the whole of England. The global model could lead to
misinterpretation of the relations between cervical cancer incidence and socio-economic covariates locally.

Conclusions: Cervical cancer incidence was shown to have a non-stationary relationship with spatially varying
covariates that are available through national datasets. As a result, it was shown that if low social status sectors of
the population are to be targeted preferentially, this targeting should be done on a region-by-region basis such as
to optimize health outcomes. While such a strategy may be difficult to implement in practice, the research does
highlight the inequalities inherent in a uniform intervention approach.
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Background
Regression is a well known statistical tool for exploring the
relationship between target and explanatory variables [1].
Different types of regression models are used widely in
ecological and disease research, for example, global regres-
sion modelling, multi-level modelling and Bayesian model-
ling for small area studies [2]. For example, regression
has been used to explore the relations between limiting
long-term illness, ethnicity and income in London [3].
However, global regression models are stationary in the
parameters and, thus, geographical variation in the rela-
tions is ignored. Geographically weighted regression
(GWR) is a well established technique that relaxes the

stationarity decision implicit in global models, thereby
allowing parameters to vary spatially [4-6]. This amounts
to a non-stationarity decision. GWR can, thus, be used to
examine spatial variation in relations (i.e., in the para-
meters that define those relations) and reveal spatial pat-
terns in parameters. Information on local spatial variation
in parameters can lead to greater understanding of the
relations between the target and explanatory variables.
Global regression models have an important role in dis-

ease studies [7]. However, in such studies, it is assumed
that the relation between disease rate (or disease inci-
dence) and explanatory variables is spatially constant,
which may not be the case. The decision to ignore poten-
tial local spatial variation in parameters can lead to biased
results which may in turn lead to poor guidance being
provided to healthcare practitioners and the general popu-
lation. Local spatial variation can be important and
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meaningful in disease analysis, pointing to the key local
risk factors associated with disease incidence. Such infor-
mation may have important implications for policy
makers.
Geographical information systems (GIS) are commonly

applied in disease studies [2,8,9]. GIS facilitate the hand-
ling of spatially referenced data and allow visualisation of
spatial patterns in disease and identification of local hot-
spots. The geographical referencing of data that allows
application of GIS also allows application of GWR. GWR
is well developed for different statistical modelling frame-
works (e.g., Gaussian and Poisson models). In the context
of disease studies, Gaussian GWR has previously been
applied to long-term limiting illness in the northeast of
England, and the results showed regional variation in the
regression parameters [10]. Geographically weighted Pois-
son regression (GWPR) can be applied to model disease
counts and incidence rates (the focus of this paper, and a
common focus in disease studies).
Many studies have shown that ill health issues are

related to the surrounding socio-economic and socio-
economic deprivation conditions [11-13]. For example,
children in Bangladesh with a working mother have been
found to have a higher chance of suffering from diar-
rhoea than those who have mothers who stay at home
[14]. Other studies have shown that such relations may
also vary between regions and that such variation should
be taken into account [15] to provide more representative
modelling and more accurate prediction. One reason
postulated for the importance of local variation in such
relations has been local variation in ability to access
healthcare services [16]. Ill-health condition may also be
related to human behaviour which may be a function of
social background as well as educational level.
The Black report [17,18] suggested that higher income

populations commonly made better use of health services,
and there are significant social inequalities in using local
health services in England [19]. Some research showed evi-
dence of inequalities in health care access due to age dis-
tribution, sex structure, local deprivation conditions, and
ethnic mix [16,19,20]. Such factors may explain variation
in willingness to attend regular screening, and such factors
may vary spatially. Therefore, socio-economic conditions
and deprivation may be correlated with ill-health condi-
tion either directly, or through the effect of social condi-
tions on poor service uptake [17].
Cancer is a common cause of death globally, with cervi-

cal cancer the second most common cancer for women
worldwide [21,22]. The number of cases of cervical cancer
is increasing, with about 471,000 new diagnostic cervical
cancer cases per year worldwide [23]. About 80% of cervi-
cal cancer incidence cases occur in low income countries
[22] while 70% of all cancer deaths in 2007 occurred in
low and middle-income countries [24].

The National Statistics Report revealed differences in
incidence in cervical cancer in the UK between manual
and non-manual social classes, with a higher incidence in
manual social classes [25]. In 2006 there were 2,873 new
diagnostic cases and by 2007 there were 2,828 new diag-
nostic cases in the UK [23,26]. It is, thus, important to
understand the risk factors associated with cervical cancer.
Sexual behaviour is considered to be one of the main risk
factors, as research has revealed an association between
Human Papilloma Virus (HPV) and cervical cancer devel-
opment [27]. In particular, HPV 16 and 18 are highly
related to cervical cancer development [28-30]. It is esti-
mated that 99% of cervical cancer cases are related to
HPV infection [22]. Age is considered to be one of the risk
factors associated with cervical cancer incidence, while
other causal factors include family history, and female
reproductive history. It is likely that cervical cancer devel-
opment is also related to further associated factors.
Given the above evidence, it is important to understand

the relations between cervical cancer disease risk and depri-
vation conditions, social status and family structure factors.
Knowledge of such relations may be of use in planning
screening programmes to reduce risk through early detec-
tion. In addition, such knowledge may be used to underpin
resource allocation and service access design in relation to
observed inequalities (e.g., screening programmes).
The aim of screening programmes is to detect abnormal

or cancerous cells at an early stage because patients are
expected to respond better to treatment at early disease
stages. A screening programme can increase the chances
of detecting cancerous and especially pre-cancerous cells
at early disease stages so that the cancer incidence rate
may be reduced and, thus, the likelihood of survival may
be increased [21,23]. Early detection is a cost-effective and
life saving strategy for chronic disease when the disease is
still highly curable or preventable at early disease stages.
The survival rate for cervical cancer in England and Wales
between 1971 to 1999 was up to 80% for a one year per-
iod, 50-60% for a five year period and 40-50% for a 10 year
period [31]. Importantly, the NHS Annual Screening
Review Report [32] and the Cervical Screening Pocket
Guide [23,33] suggested that the UK’s cervical cancer
screening programme can prevent about 75% of cervical
cancer cases on average if all female patients attend
screening regularly [34]. However, there has been concern
that (i) the highest risk population is not tested sufficiently
frequently and (ii) those with a positive test result are not
followed-up and treated properly [33].
The aim of this research was to explore the spatial pat-

tern in the relations between cervical cancer incidence and
a set of socio-economic and deprivation conditions, social
status and family structure factors in England using
GWPR. The analysis has implications for the UK National
Cervical Cancer Screening Programme.
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Methods
Poisson regression
When modelling disease cases (count data) and particu-
larly for rare diseases with low numbers of cases, the
Poisson model is an appropriate regression model
[35,36]. Many disease analysis studies over small areas
have applied the Poisson model to describe the disease
distribution [2,8,36].
In practice, the standardized mortality ratio (SMR) is

commonly used to measure and compare regional mortal-
ity rates. In this research, the property of interest is the
incidence rate rather than mortality rate, and so the stan-
dardized incidence rate (SIR) was used [13]. The SIR is
defined as [13,37];

SIRi =
yi

Ei
= θi, (1)

Where yi is the number of observed incidence cases,
and Ei is the expected number of cases for region i,
where i = 1, 2, ..., N. The expected number of cases Ei is
based on the overall incidence rate rg applied to the
demographic structure [37]. The expected number of
cases was calculated by using the normalized incidence
rate rg per age group. This rate was normalized by multi-
plying by the ratio (~2.4) between total cervical cancer
cases (the data used here) and new diagnosed cases (the
data used in the Cancer Research UK rates). The normal-
ized rate was then multiplied by the female population
pgi within that age group in region i, where g is the age
group. The female population per age group was deter-
mined from the 2001 UK Census of those aged between
25-29, 30-34, ..., 80-84 and is defined as;

rg =

∑
g

yg

∑
g

pg
(2)

where, g is the age group

Ei =
∑

g

rgpgi (3)

Since SIR is a standardized indicator of incidence rate,
it varies around one; if the rate is above one, the
observed incidence is greater than expected; if the rate
is less than one, the observed incidence is less than
expected. The Poisson regression model can be written
as [4,6];

yi ∼ Poisson(Hi exp(f (xi)) (4)

The link between the target variable and K covariates
can be described by a function f(xi). Hi is the offset vari-
able, which is a measurement unit of exposure for
region i. Most disease studies based on the Poisson

distribution framework use the expected number of
cases Ei as the offset variable.

Geographically Weighted Poisson Regression (GWPR)
GWR is a well established technique that can be used to
examine spatial variation in relations (i.e., non-stationary
regression parameters). Information on local variation in
parameters can lead to greater understanding of the rela-
tions between the target and explanatory variables. When
GWR was first developed, the Gaussian model was used
in disease studies [10]. This section expands on GWR to
describe the GWPR method. The theory and materials in
this section are covered by Fotheringham et al. [4] and
Nakaya et al. [6] and so only a summary is provided. The
traditional linear regression model is generally defined as
below in equation (5);

yi = Ei exp(β0 +
∑

k

βkxki + εi)

log yi = log Ei + (β0 +
∑

k

βkxki + εi)
(5)

Where b0 is the intercept, the bk are the coefficients of
the covariates k and εi is the error term for region i = 1,
..., N. The estimated parameters are constant over space.
GWR is an extension of the above traditional model in
which all parameters are allowed to vary over space.
The model framework is defined as below [4,6];

yi = Ei exp(β0(ui, vi) +
∑

k

βk(ui, vi)xki + εi)

log yi = log E+i(β0(ui, vi)

+
∑

k

βk(ui, vi)xki + εi)

(6)

where, (ui, vi) is the coordinate of the ith region,
which describes the location of i. For polygons, such
coordinates are normally defined as the centroid of
region i recorded as a two-dimensional vector. b0 (ui, vi)
is the intercept for location i, bk (ui, vi) is a realisation
of the continuous function of bk at region i and εi repre-
sents the error term and it is assumed to follow a Gaus-
sian distribution with mean zero and variance s 2 .
As discussed at the beginning of this section, the Pois-

son model is generally more appropriate for disease
data. The GWPR model can be written as [4,6];

yi ∼ Poisson(Ei exp(
∑

k

βk(ui, vi)xki)) (7)

Such a model allows the parameters to vary geogra-
phically [6]. The model can be calibrated based on a
kernel regression method, which allows users to esti-
mate the geographical variation in model parameters
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with a given spatially weighted kernel. The optimal size
of the kernel is usually estimated through calibration.
To estimate the GWPR parameters, a local likelihood

methodology was applied to estimate the local parameters
at location i by maximizing the geographically weighted
log-likelihood function in equation (8) [4,6,38]:

max L(ui, vi) =
∑

(−ŷj(β(ui, vi))

+yj log ŷj(β(ui, vi)))wij(
∥∥(ui, vi) − (uj, vj)

∥∥)
(8)

where, wij is the weighted value and (ui, vi) - (uj, vj)
represents the distance between regression point i and
data point j.
The weighting function is defined by the kernel type and

the size of kernel (referred to here as the bandwidth). The
weighting function wij determines the geographical weight
of the jth observation at the ith regression point. In theory,
the weight should decrease gradually as the distance
between i and j increases, eventually, converging to or
reaching zero. Parameter estimates are highly related to
kernel size such that choice of kernel is an important con-
sideration. There are two commonly employed types of
kernel: (i) the Gaussian kernel and (ii) the bi-square
kernel:
(i) Gaussian kernel with fixed bandwidth in which each

local regression model has the same spatial size of kernel,
but each kernel may cover a different number of data
points. The function is defined as [4];

wij = exp(−1
2

dij

d
) (9)

where dij is the distance between regression point i and
data point j and d is a non-linear parameter (bandwidth).
The closer a data point j to regression point i, the larger
the weight given [4].
(ii) Adaptive method with bi-square kernel, in which

the bandwidth covers the same number of data points
with non-zero weight within each regression model. Any
points outside the bandwidth d have zero weight and are
excluded from the local regression. This adaptive kernel
is a common choice, especially, when the sampling den-
sity varies greatly across space. The function is given as
[4];

wij =

⎧⎨
⎩

[1 − (
dij

d
)

2

]
2

dij < d

0 otherwise
(10)

The choice of bandwidth has an important role in
relation to the level of smoothing of the outputs. A lar-
ger bandwidth generally produces greater smoothing.
An optimal bandwidth may be selected in terms of
some criterion. In practice there are three common
means of choosing the bandwidth, (i) subjective, (ii)

smallest cross-validation error and (iii) smallest Akaike
information criterion (AIC). In this paper, parameter
estimates were calibrated in a point-wise way, and the
kernel size with minimum adjusted Akaike Information
Criterion (AICc) was selected as optimal (and the Baye-
sian Information Criterion (BIC) was also considered).

Geographically weighted Poisson regression statistics
In GWPR, all parameter estimates are made using an
iterative procedure that continues until convergence;
once the prediction at location i has changed, the pre-
diction at j may also be affected if j is within the band-
width of the regression point i. Therefore, it is necessary
to maximise equation (8). The method for solving this
equation is to apply a type of local Fisher scoring proce-
dure, which is called iteratively reweighted least squares
[6]. All the methods in this section are covered by [4,6]
and only a brief summary is given.
The estimation of local parameters is given in equation

(11),

β(l+1)(ui, vi) = (XtW(ui, vi)A(ui, vi)(l)X)−1

XtW(ui, vi)A(ui, vi)(l)z(ui, vi)(l)
(11)

where, z(ui, vi)
(l) is a vector of adjusted dependent vari-

ables, A(ui, vi )
(l) is the variance weights matrix associated

with Fisher scoring for each location i, W (ui, vi ) is the
diagonal spatial weights matrix for location i, X is the
design matrix, X t is the transpose of X, and l represents
the number of iterations. Finally, the parameters are esti-
mated for each location i, until the estimates converge.

Standard error
Since the aim is to estimate local parameters, it is
important to calculate the local standard errors. Such
standard errors take account of variation in the data,
which can be used to compare the estimates. If there
are only a few points within the regression bandwidth
area or those regression points are far away from the
regression point the local error may be large. The local
standard errors are highly related to the j points (data),
which lie within the regression bandwidth. So the loca-
tions of the regression point i and data points j deter-
mine the standard error of the parameters.
In this section, estimation of the local standard errors

is considered. The local parameter estimates are defined
as in equation (11). When the estimation process has
converged the number of iterations l can be ignored and
the equation redefined as [4,6];

β̂(ui, vi) = C(ui, vi)z(ui, vi)

= (XtW(ui, vi)A(ui, vi)X)−1

XtW(ui, vi)A(ui, vi)z(ui, vi)

(12)
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where, A(ui, vi) and z(ui, vi) are calculated based on
the converged estimates of β̂(ui, vi) . The z(ui, vi), are

assumed to follow a normal distribution with zero mean
and variance-covariance A(ui, vi)

-1. The asymptomatic
variance-covariance of the kth parameter estimate is
given by,

cov(β̂(ui, vi)) = C(ui, vi)A(ui, vi)−1C(ui, vi)t (13)

where, the standard error of the kth parameter estima-
tion is given by,

Se(βk(ui, vi)) =
√

cov(β̂(ui, vi))k
(14)

Model measurement and comparison for GWPR
The coefficients vary continuously over space. Therefore,
it is almost impossible to achieve universally accurate
estimation. Models with very few data points lead to
large standard errors in local parameter estimation. On
the other hand, a model with a large number of data
points can provide more reliable local parameter estima-
tion. However, such models may contain a large amount
of bias as the distances between regression point i and
data points j increase. Thus, it is important to obtain a
balance between the bias and variance of the parameters
being estimated.
An optimal size of bandwidth is needed to provide

unbiased estimation of the local parameters. There are
many indicators available, such as the Akaike information
criterion (AIC) and Bayesian information criterion (BIC).
For GWR, it is common to use the AIC to assess the per-
formance of the fitted model with certain covariates and
for a given bandwidth. One way of achieving the right bal-
ance is to use some model selection indicators. There are
many available indicators. In this study, the adjusted AIC
was used to assess the performance of the bandwidth size
and BIC was used as an alternative measurement. AIC was
developed by Akaike in 1974 [39,40] to measure the per-
formance of statistical models. The AIC of the model with
bandwidth d is given as [4,6];

AIC(d) = D(d) + 2K(d) (15)

The deviance is represented by D and the effective num-
ber of parameters is represented by K with bandwidth d.
The model with the smallest AIC (i.e., the model with
optimal bandwidth) is called the minimum AIC estimator
(MAICE). In practice, if the difference in AIC between
two models is less than or equal to two, there is no signifi-
cant difference between the two models.
In some situations the AIC can perform poorly or may

even be biased, for example, when there are too many
parameters with a small number of observations [40,41].
To avoid such biased estimation from AIC, Sugiura [41]

derived a second order variant of AIC which is called
the c-AIC, and Hurvich and Tsai [42] incorporated a
small sample (second order) bias adjustment which led
to a criterion called AICc.

AICc(d) = D(d) + 2K(d) + 2
K(d)(K(d) − 1)
N − K(d) − 1

= AIC(d) + 2
K(d)(K(d) + 1)
N − K(d) − 1

(16)

The other bandwidth selection criterion that can be
used in GWPR is called the BIC [4], the calculation of
which is given by,

BIC = −2 log(L) + Kloge(N) (17)

where, L is denoted as the model likelihood, K is the
effective number of parameters and N is the total num-
ber of regions. BIC was derived from Bayesian theory,
where each of a discrete number of candidate models
have equal prior probabilities (the prior distributions on
the model parameters). The model with the smallest
BIC is the better fitted model compared to the other
candidate models. AICc was used here to compare can-
didate models, and BIC was used as an alternative.

Data collection
Any locations with a small number of incidence cases
and deaths per district or unitary authority (i.e. 0-5)
were represented as missing data (NAs) for reasons of
confidentiality. In the modelling, such NAs were treated
as truncated data. Further details of the data collection
are described below.

Cervical cancer and socio-economic data
Two sets of data were included for analysis; cervical
cancer count data for 2004 and explanatory variables for
2001. The cervical cancer count data were provided by
the Association of Public Health Observatories (APHO),
which represents the set of nine Public Health Observa-
tories (PHO) in England (Table 1). In total, 7179 cervi-
cal cancer cases and 2391 deaths were recorded in 2004.
The data are represented at the district and unitary
authority levels of the Cancer Registries in England. At
the beginning of this study the data were subjected to a
Chi-square goodness of fit test, which showed that the
data approximately follow a Poisson distribution.
In this research, the Townsend index was chosen to

measure deprivation. It is a common index and it has
been used widely in health studies. The Townsend index
comprises four scores (Figure 1) that represent socioeco-
nomic deprivation (Table 2).
The calculation of the Townsend score for each vari-

able is defined below. Let Vih be the value of each socio-
economic variable, for variables h = 1 to 4 and i = 1 to N
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areal units in the data. The Townsend score zih is a stan-
dardized measure for each of the four deprivation vari-
ables obtained by subtracting from Vih the mean mih and
dividing by the standard deviation sih as below.

zih =
Vih − mih

σih
where i = 1, 2, . . . , N and h = 1, 2, 3, 4 (18)

Both variables (i) unemployed population and (iv)
over-crowded housing were transformed by a natural log
q = ln(s + 1), where q is the value after the transforma-
tion and s is the observed value of the socio-economic
variables, to make the variables approximately normally
distributed.
The Townsend index is calculated from the sum of zih

as follows:

Zi =
4∑

h=1

zih where i = 1, 2, . . . , N and h = 1, 2, 3, 4 (19)

The greater the Z value the greater the deprivation.
Other variables were added to represent family struc-

ture and social status. Thus, the set of explanatory vari-
ables comprises the Townsend Index plus family
structure (the proportion of married females, proportion
of single females, proportion of lone parents including
male and female parents, and proportion of female lone
parents) and low social status. All explanatory variables
are listed in Table 2 and mapped in Figure 2. All data
were downloaded from the UK Census of 2001. Since
the census is carried out once every ten years the closest
matched year to 2004 was 2001.

Truncated data
Because of confidentiality restrictions, data were aggre-
gated as summary counts for regions rather than being
provided for individuals. For districts with less than or
equal to five cases, the number of incidence cases was
not disclosed in order to protect the patients’ privacy.
Closed, missing or truncated data are common in

disease studies. While it is possible to exclude or
remove truncated data from analysis such an approach
would amount to information being discarded, poten-
tially reducing predictive power [43]. Therefore, within
the analysis all the counts between 0-5 were treated as
truncated data. In total, these truncations were applied
to 21 regions (6%).
One way of dealing with truncation is to estimate the

basic true mean of the Poisson distribution from the
data, including the missing data. Accepting the esti-
mated means to be true, then a random number can be
drawn from the Poisson distribution for each of the
regions. For each region, a stream of random numbers
was drawn and the first 100 random numbers between
0-5 were used to replace the missing data. 100 sets of
missing values were produced, and the GWPR models
were fitted 100 times, each time with a different set of
missing values. Then the mean and variance of the pre-
dictions was calculated.
Since there were 100 different sets of realisations for

the missing data, the GWPR model was fitted 100 times
and the average of the predictions for the 100 models
was estimated:

E(ŷi) =

100∑
n=1

ŷin

n

(20)

where, n is the number of GWPR models, ŷin is the

prediction for the nth model, and E(ŷi) is the expecta-

tion of ŷi , the overall average prediction from the 100
GWPR model predictions.
The variance for the 100 predictions was estimated to

characterise the overall variation resulting as a function
of the uncertainty due to truncating the distribution.
The variance provides information on prediction uncer-
tainty and parameter estimation uncertainty. The var-
iance was calculated as;

var(ŷi) =

n∑
i=1

(ŷin − E(ŷi))2

n − 1

(21)

where, var(ŷi) is the overall variance between the n =
100 models.

Results
Global model
To examine the possible determinants of the geographi-
cal patterns in cervical cancer incidence, a traditional
global Poisson regression model was fitted with an offset
equal to the expected number of cases based on the
demographic composition of each region. All covariates
were significant to the observed incidence. For full

Table 1 The set of nine Public Health Observatiories
(PHO) in England

Public Health Observatory (PHO) Number of regions in PHO

1. South West 45

2. South of England 67

3. London 33

4. East of England 48

5. East Midlands 40

6. West Midlands 21

7. North West 23

8. Yorkshire and Humber 43

9. North East 34
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Figure 1 The spatial distribution of the components of the Townsend index, which are shown for reference: (a) percentage of
unemployed, (b) percentage of households with no car, (c) percentage of households not owned and (d) percentage of rooms
occupied by more then one person.
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details of measurements of all other candidate models
please refer to Table 3. The final fitted global Poisson
regression model is defined as:

ŷi = Ei exp(−0.718 + 2.832xG45i) (22)

where, xG45i represents the proportion of low social
grade population (i.e., from social status IV and V)
(Table 2). xG45i was found to be significant and associated
to cervical cancer incidence rate at the global level. The
AICc of this model is 612.97 and BIC is 620.67 (Model 6
in Table 3), which can be used to compare this model
with other models. The proportion of low social status
population includes semi-skilled manual workers,
unskilled manual workers, people on state benefit, the
unemployed and the lowest grade workers (Table 2).
When this proportion of the population increases the
incidence rate is likely to increase. The ratio between the
likelihood of cervical cancer for the low social grade
population and that for the high and medium social
grade population is about 2.8. The xG45i variable may
reflect the amount of general knowledge about personal
ill-health issues or the ability or willingness to access
local healthcare services including attending regularly the
National Cervical Cancer Screening Programme.

GWPR analysis
The global regression model showed that the proportion
of low social status population is significant covariate of
incidence rate at the global level, but such a model may
mask potential local spatial variation in the relation

between incidence rate and the covariates. Thus, the
GWPR model was applied.
As summarized above, the use of an adaptive weight-

ing function and the optimal bandwidth were selected
based on the smallest AICc in Table 3. Figure 3 shows
the AICc plotted against kernel size, and that the opti-
mal bandwidth is 91 regions. The size is relatively large,
which may be due to the sample size being small in
most of the regions. Therefore, a large bandwidth was
required to cover sufficient data to predict reliably.
As described in the methods section, the models were

compared using the AICc; the smallest AICc values were
assumed to provide the best fitting model from the can-
didate models. One of the datasets from the set of 100
randomly imputed datasets is shown in Table 3. From
Table 3, it can be concluded that the best fitting model is
the GWPR model with the proportion of low social status
population as a covariate (model 6 in Table 3). The final
fitted model is given as (model 6 in Table 3);

log ŷi(ui, vi) = log Ei + (β0(ui, vi) + β1(ui, vi)xG45(ui, vi)) (23)

The overall means and variances of the predictions of
SIR from the 100 local models are displayed in Figure
4b and 4c). The average estimated means and variances

of β̂0(ui, vi) and β̂1(ui, vi) from the 100 samples are
displayed in Figure 5.
The GWPR analysis revealed an interesting positive

local relationship between incidence rate and the pro-
portion of low social status population, which was hid-
den from the global model. The raw data (Figure 4a)
and the mean of the 100 predictions (Figure 4b) have a

Table 2 Summary of explanatory variables used as indicators in the regression analysis

Property Covariate Description Table from UK census 2001

Deprivation (i) Townsend index score Includes:
(i) unemployment,

KS009a Economic activity: all persons (from
the key statistics)

(ii) households not owned, KS018 Tenure (from the key statistics)

(iii) car ownership (all households with no
cars or vans) and

KS017 Cars or vans: all households (from the
key statistics)

(iv) over-crowded housing (over one
person per bedroom)

UV 058 Person per room (from the census
area statistics univariate tables)

Family
structure

(ii) Female marital status:
proportion of single females

Defined as single (never married) +
divorced + widowed

ST002 Age by sex and marital status

(iii) Female marital status:
proportion of married females

Defined as married + remarried +
separated (but still legally married)

(iv) Households with lone parents:
all

All lone parents (both male and female) KS022 Lone parents households with
dependent children

(v) Households with lone parents:
females only

Female lone parents only

Social grade
(proportion)

(vi) Proportion of social grade IV +
V

Includes: UV050 Approximated social grade IV and V
(low socio-grade)

(i) Grade IV: semi- skilled and unskilled
manual workers

(ii) Grade V: on state benefit, unemployed,
lowest grade workers
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similar spatial pattern and the variance in Figure 4c
reveals only a small amount of variation between the
100 models, meaning that data truncation had little
effect on the results. The map of the mean of the 100

maps of residuals from the 100 local models (Figure 6a)
exhibits little spatial correlation and the variance of
these residuals (Figure 6b) again reveals only a small
amount of variation between the 100 models. The R2

Figure 2 The spatial distribution of the covariates used in the analysis (a) percentage of socio-grade IV and V, (b) percentage of
married female population, (c) percentage of single female population, (d) percentage of lone parent households, (e) percentage of
female lone parent households and (f) the Townsend index.

Cheng et al. International Journal of Health Geographics 2011, 10:51
http://www.ij-healthgeographics.com/content/10/1/51

Page 9 of 17



values of the local models in Figure 7a are generally
large, between 0.78 to 0.98, and the variance of the R2

values from the 100 models is relatively small between
0.00075 to 0.0045 (Figure 7b).
The correlation is generally positive, as for the global

model, but the effect of and contribution from the low
social status variable (i.e., the estimated coefficient) var-
ies between 0.07 and 4.40 times across England. There
is a greater contribution from this variable in the south
and north-east of England (see Figure 5c). Low social
status population had far less effect in the west of Eng-
land. This might be related to population structure, due
to the higher proportion of elderly population in the
west of England compared to the national average. Two
regions exhibit a negative relation (-0.22 and -0.04
times) which are Penwith (South West England) and
Scilly. From (Figure 5a and Figure 5c), it is clear that
the contribution from low social status varies over
space, and when b0i decreases then b1i increases. The
intercept b0i varies between -1.18 and 0.44.

Stationary parameters
It is interesting to examine which explanatory variables
are fitted adequately using a model with stationary para-
meters, and which variables required a non-stationary
model. The method used to answer this question is to
compare the inter-quartile range at the local level and
the standard error at the global level. If the local inter-
quartile range is twice the global standard error, then
the variable requires a non-stationary model to repre-
sent it adequately [4] (Table 4).
Table 4 shows that both b0i (intercept) and b1i (low

social grade population G4 and G5) have an inter-quar-
tile range more than twice the global standard error. This
indicates that the socio-economic variables (i.e. low social
grade population G4 and G5) are better fitted by a non-
stationary model in GWPR than using a global regres-
sion. A non-stationary model allows greater prediction
power, and as a result, leads to greater understanding of
the relation between incidence rate and the proportion of
low social grade population and how it varies over space
in relation to deprivation conditions regionally.

Discussion
From the above results it is clear that the relation
between incidence rate and proportion of low social sta-
tus population varies spatially. Specifically, the estimated
parameters mapped in (Figure 5a and Figure 5c) vary
spatially. Low social status was the most significant fac-
tor related to cervical cancer incidence rate. The local
coefficient β̂1i (Figure 5c) showed how the proportion
of low social status of population contributed to the
incidence rate. The coefficient mapped in Figure 5c
revealed different contributions across England of
between 0.07 and 4.40 times. A larger contribution is
evident in the south and north-west of England than in

Table 3 Summary statistics of model comparisons

Model Variables Kernel AICc (global) BIC (global) AICc (local) BIC (local)

1 Townsend index score 91 853.02 860.73 640.38 709.92

2 Female single proportion 91 849.38 857.09 651.32 725.37

3 Female married proportion 91 849.38 857.09 651.32 725.37

4 All lone parents proportion 91 750.37 858.08 594.87 666.85

5 Female lone parents proportion 91 754.68 762.32 597.28 669.28

6 G4 + G5 proportion 91 612.97 620.67 539.32 610.35

7 G4 + G5 + Female lone parents
proportion

91 614.88 626.41 539.80 642.00

8 G4 + G5 + Townsend index score 91 612.22 623.76 538.49 637.54

9 G4 + G5 + Female married
proportion

91 613.47 625.01 539.67 642.53

10 G4 + G5 + All lone parents
proportion

91 614.96 626.50 539.21 641.45

G4 and G5 represent the proportion of low social grade (IV+V) population in region i. G4 (Grade IV) represents the proportion of semi-skilled and unskilled
manual workers. G5 (Grade V) represents the proportion of the population on state benefit, the unemployed, and the lowest grade workers

Figure 3 The AICc plotted against kernel bandwidth.
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the west of England. This suggests that the proportion
of low social status in south and north-west England
has a greater effect than in the Midlands and south-west
of England. Therefore, global models are not suitable to

describe the relationships between cervical cancer risk
and explanatory variables. South-west England (e.g.
Cornwall) has a lower incidence rate and also a small
estimated coefficient. In particular, Penwith and Scilly

Figure 4 The spatial distribution of (a) the raw SIR, (b) the mean of the predictions of SIR from the 100 local models, (c) the variance
of the predictions of SIR from the 100 local models from model 6 in Table 3.
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had a negative relation with incidence rate. This might
have arisen due to the population structure; the propor-
tion of elderly people is larger in the west of England
than the south of England. It might also arise because

the locations are relatively isolated, which hinders pre-
diction due to lack of local data points.
In terms of prediction, some regions were under-pre-

dicted while others were over-predicted. There are two

Figure 5 The spatial distribution of estimated parameters: (a) mean of b0i, (b) variance of b0i, (c) mean of b1i and (d) variance of b1i
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important cases (i) those regions that are relatively large
(i.e. the size of the cell polygon is large), and (ii) those
regions that include extreme cases. For the first case,
when the regions are relatively large, the distance

between the data point i and regression point j is large,
so that the accuracy of the prediction may be reduced.
In the second case, the prediction can be biased because
of the influence of extreme neighbours.

Figure 6 The spatial distribution of (a) the mean of the residual values from the 100 local models from model 6 in Table 3, (b) the
variance of the residual values from the 100 local models from model 6 in Table 3, (c) the residual values from the global model (for
comparison).
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In Figure 6(c), the residual values from the global
model seem to exhibit a small amount of autocorrela-
tion. This autocorrelation was measured using Moran’s I
index as 0.04 with a z-score of 6.60 from Table 5. Mor-
an’s I index was also calculated based on restricting the
local distance to 100 km, in which case Moran’s I was
0.08, with a z-score equal to 6.78. These results suggest
that the global model based on proportion of low social
status cannot explain the spatially correlated variation in
incidence rate. Thus, some potentially explanatory vari-
ables may be missing from the model (e.g., sexual beha-
viour, personal HPV history, family history etc.). The
residual values from the local model (Figure 6a) exhibit
a random pattern with a Moran’s I index of 0.0012 and
z-score 0.63 (Table 5). Moran’s I was also calculated
based on restricting the local distance to 100 km, in
which case Moran’s I was - 0.0021 with a z-score equal
to 0.012. Thus, the GWPR model removed the problem
of autocorrelation in the residuals.

A disadvantage of using the set of socioeconomic cov-
ariates used in the Townsend index is that they account
for socio-economic conditions, but no family structure
information is included. Thus, in this research informa-
tion was added on family structure. However, it is not
possible to distinguish between individuals who are not
able to buy a car and those who do not need a car. Those
people who live in a main city (e.g. London) may not
need a car since public transportation is more conveni-
ent. Similarly, it is not possible to distinguish between
individuals who are not able to buy a property and those
who do not want to buy a property. For example, it is
more common for people who live in a main city to rent
a flat than buy a house.
Most deprivation indices used commonly in the UK are

obtained from the UK census. However, there are limita-
tions in the use of census data, most notably that the data
are aggregated into areal units (i.e. data are not available at
the individual level) and some information is not available

Figure 7 The spatial distribution of (a) the mean of the R2 from the 100 local models and (b) the variance of the R2 from the 100
local models from model 6 in Table 3.

Table 4 Simple test for non-stationarity

Parameters 2* S.E. (Global) Inter-quartile range (Local) Stationary or non-stationary variable

Intercept 0.06 0.46 Non-stationary

Proportion of lower social grade (G4 + G5) population 0.18 1.05 Non-stationary
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(e.g. personal income, environmental conditions). The
analysis presented in this paper is, therefore, valid at the
census unit scale only. Since deprivation indices are com-
monly represented on areal units and the units are likely
to vary over space, some units may be relatively larger
than others. For this reason the covariates may be sensitive
to the size of denominator.
The Townsend variables used here measure local wel-

fare and local socio-economic behaviour which can be
useful in health care studies. These variables are also
adopted in other deprivation indices (e.g. Carstairs and
DoE81) [44]. Alternative indices (e.g. the multiple depri-
vation index) [45] could be applied to explore the
impact on cervical cancer incidence of income, employ-
ment, education deprivation and living environment
deprivation. However, since some variables (i.e. income
and living environment deprivation) were not available
at the national level for the study period, such analysis
is beyond the present scope and will be considered in
further work.
In the present research, a simple method was applied

to deal with truncated data. Random numbers were
drawn from a Poisson distribution to replace the miss-
ing data. However, Figures 4(c) and (Figure 5b and Fig-
ures 5d) show very limited variance around the
predictions for those areas with missing data, which sug-
gests that the results are not affected greatly by trunca-
tion. Further research is needed to explore other
possible methods to solve the truncation problem. For
example, [46] demonstrated an approximate Bayesian
bootstrap method which would be interesting to apply
here.
It is possible to go beyond determining which vari-

ables can be described adequately by a stationary pro-
cess and which are best fitted by non-stationary models
by applying a mixed GWPR. A mixed GWPR is a semi-
parametric GWPR model; it allows some variables to
vary spatially and others to remain constant in a single
approach. This will be explored in future research.
Many studies [3,9,20,47] have suggested that poor

health outcomes often appear in the most deprived
areas. Some studies have demonstrated health care
inequality in terms of patient needs and access to NHS
services in England [16,20,30]. The relation between
health outcomes and social status should be a concern

to all governments that espouse ideals of equality. This
research demonstrated a locally varying relation between
cervical cancer incidence and low social status. This
relation may be associated to some patient factors
including (i) personal understanding of the cervical can-
cer programme, (ii) misunderstanding of the current
screening policy with regard to age criteria between
groups and (iii) lack of knowledge about preventing cer-
vical cancer at early disease stages. However, further
analysis is required to explore the underlying causes.
The GWPR results may be useful for policy makers

engaged with reviewing current policy and services. For
example, it is possible to target patients in at least two
ways: (i) divide the population into risk groups according
to their age and social status (e.g. low, medium and high
risk), or (ii) divide the study area (England) into several
regions with similar social status. Each of the groups
might then be allocated a different screening programme
(e.g. a different screening test or screening interval). From
the financial viewpoint such a strategy may save resources
or make better use of available limited resources. From
the patient’s point of view the benefit may be an increase
in the chances of detecting and preventing long-term dis-
ease. In practice, it is unlikely to be practical to divide the
population into risk groups or divide England into several
regions with varying risk levels. However, the analysis does
provide evidence for the inequality of cervical cancer
screening at the local level.
An NHS study showed that the number of cases with

Cervical Intra-epithelial Neoplasia (CIN3) has increased
for women aged between 20 and 24 because of trends in
sexual behaviour, with increasing numbers of young peo-
ple becoming more active sexually when they are still in
their mid-teens [48]. A recent study discussed the poor
use of cervical cancer screening resources within current
NHS practice [49]. This change in sexual behaviour arises
partly because of socio-economic changes through time
and from place to place. If that is true, then recognizing
the associated risk factors may be useful for developing a
long-term prevention strategy for cervical cancer. For
example, it may be possible to improve sex education in
local schools, teaching mid-teen pupils about protective
sex and sexually transmitted infectious diseases.
A HPV vaccine is available, and some clinical studies

in Italy and Germany showed that use of the vaccine

Table 5 Moran’s I results for global and local models

Global model
(whole area)

Global model
(local distance restricted to 100 km)

Local model
(whole area)

Local model (local distance restricted to 100 km)

Moran’s Index 0.04 0.08 0.0012 -0.0027

Expected Index -0.0028 -0.0028 -0.0028 -0.0028

Variance 0.000040 0.00014 0.000040 0.00014

z-score 6.60 6.78 0.63 0.01
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significantly reduces the incidence of cervical cancer.
Thus, the vaccine might be considered as a means of
achieving increased efficacy and cost-effectiveness in
screening programmes in the future [50,51], particularly
for younger age groups.
For interventions such as the national screening pro-

gramme, sex education in schools and for vaccination, it
may be considered desirable to target preferentially the
low social status sectors of the population (the global
model). The results of this paper show that if such tar-
geting were to be considered then it should be done on
a region-by-region basis (the GWPR model).

Conclusions
Traditionally, global regression models have been used
to explore the relations between health outcomes and
explanatory variables. However, such techniques do
not account for spatial variation in the relations. This
research demonstrated the use of GWPR to examine
the relations between cervical cancer incidence rates
and socioeconomic covariates across England. Cervical
cancer incidence rates were found to vary spatially
across England (e.g. Cornwall and the North of Eng-
land had low incidence rates compared to the rest of
England). Moreover, cervical cancer incidence was
found to be associated with low social status and,
importantly, this relation was found to vary spatially
across England.
Spatial variation in the relations between incidence

and socio-economic covariates means that in some
places socio-economic status has a greater effect on
incidence than in other places. This may reflect differ-
ences in personal behaviour, local differences in educa-
tional levels across the social classes, or differences in
screening up-take rates over space. Ignoring such spatial
variation could lead to inefficient resource usage nation-
ally. To maximise the benefits of the national cervical
cancer screening programme this research suggests that
the low socio-economic status sectors of the population
should be targeted, and in some places more so than in
others.
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