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ABSTRACT

Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United 
States with a five-year patient survival rate of only 6%. Early detection and treatment 
of this disease is hampered due to lack of reliable diagnostic and prognostic markers. 
Recent studies have shown that dynamic changes in the global DNA methylation 
and gene expression patterns play key roles in the PC development; hence, provide 
valuable insights for better understanding the initiation and progression of PC. In the 
current study, we used DNA methylation, gene expression, copy number, mutational 
and clinical data from pancreatic patients. We independently investigated the DNA 
methylation and differential gene expression profiles between normal and tumor 
samples and correlated methylation levels with gene expression patterns. We observed 
a total of ~23-thousand differentially methylated CpG sites (Δβ≥0.1) between normal 
and tumor samples, where majority of the CpG sites are hypermethylated in PC, and 
this phenomenon is more prominent in the 5’UTRs and promoter regions compared 
to the gene bodies. Differential methylation is observed in genes associated with 
the homeobox domain, cell division and differentiation, cytoskeleton, epigenetic 
regulation and development, pancreatic development and pancreatic signaling 
and pancreatic cancer core signaling pathways. Correlation analysis suggests that 
methylation in the promoter region and 5’UTR has mostly negative correlations with 
gene expression while gene body and 3’UTR associated methylation has positive 
correlations. Regulatory element analysis suggests that HOX cluster and histone 
core proteins are upstream regulators of hypomethylation, while SMAD4, STAT4, 
STAT5B and zinc finger proteins (ZNF) are upstream regulators of hypermethylation. 
Non-negative matrix factorization (NMF) clustering of differentially methylated 
sites generated three clusters in PCs suggesting the existence of distinct molecular 
subtypes. Cluster 1 and cluster 2 showed samples enriched with clinical phenotypes 
like neoplasm histological grade and pathologic T-stage T3, respectively, while cluster 
3 showed the enrichment of samples with neoplasm histological grade G1. To the best 
of our knowledge, this is the first genome-scale methylome analysis of PC data from 
TCGA. Our clustering analysis provides a strong basis for future work on the molecular 
subtyping of epigenetic regulation in pancreatic cancer.
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INTRODUCTION

Pancreatic cancer (PC) is the fourth leading cause 
of cancer deaths today in the United States [1] and it is 
poised to become the second leading cause within a decade 
[2] due to the aggressiveness of the disease and the lack 
of reliable early diagnostic markers. Survival prospects of 
many other cancers have improved over the past decade, but 
only a marginal change was observed in pancreatic cancer 
survival. Pancreatic cancer patients have a median survival 
of 6 months and a 5-year survival rate of only 6% despite 
50 years of research and therapeutic developments [3]. The 
lack of specific symptoms at early stages of tumor initiation, 
high biological aggressiveness of the tumor and resistance 
to cytotoxic drugs, all contribute to the high mortality rate 
of PC. In nearly 95% of PC patients there is neither an 
associated family history of PC nor of diseases known to be 
associated with an increased risk of PC [4]. This points out to 
the fact that the etiology of PC is more sporadic than genetic, 
suggesting that epigenetic alterations may play a key role in 
the transcriptional regulation of genes in pancreatic cancer.

Epigenetic alteration of gene expression can be 
achieved by DNA methylation, which is known to be 
deregulated in pancreatic cancer resulting in altered gene 
expression [5, 6], genome structure reorganization, tumor 
grade, tumor stage and survival time of patients [3]. The 
Cancer Genome Atlas (TCGA) [7, 8] and International 
Cancer Genome Consortium (ICGC) [9] have generated 
methylome data for thousands of tumor samples spanning 
across ~25 cancer types including pancreatic cancer. The 
large number of available TCGA tumor datasets provides 
the opportunity to study the global methylation and gene 
expression patterns of PCs with increased statistical power, 
which would not have been possible otherwise. Several 
DNA methylation pattern analyses were previously reported 
for many cancer types using TCGA data [10–13]; but to 
our knowledge no such report exists for genome scale 
methylation pattern analysis of PCs using TCGA datasets.

Earlier studies on PC methylation analysis have 
used limited patient samples or CpG sites. Sato et. al. [14] 
analyzed genome-scale DNA methylation patterns in PC, 
but the limitation of this study is that they used methylation-
site-specific polymerase chain reaction for only eight genes. 
Later, Tan et. al. [15] studied the methylation patterns of PC 
using data from thirty xenografts, seven adjacent normal 
tissues and fourteen human PC cell lines. This study used 
the Illumina GoldenGate Methylation Cancer Panel, which 
contains 1,536 CpG sites distributed across only 807 genes 
with low genome coverage. Recently, Thompson et. al. 
[3] used Illumina Hiseq 2000 methylation data from 16 
samples (11 tumor, 2 normal and 3 chronic pancreatitis 
sample) to analyze the role of DNA methylation in the 
survival of PC patients. However, this is a focused study 
on correlating DNA methylation with patient’s survival 
using a small dataset. Similarly, Nones et. al. [16] used 
HumanMethylation450 BeadChip data from ICGC to 

analyze genome-wide methylation patterns in PC. This 
study used simple Spearman’s correlation of differentially 
methylated CpGs to integrate DNA methylation and 
gene expression data at the gene-level, whereas, we are 
using TCGA data with special emphasis on correlating 
methylations patterns of genes (100KB up and downstream 
of transcription start site (TSS)) with gene expressions, 
which is biologically more relevant. We are also looking 
at the methylation patterns at the distal enhancer region, 
probable upstream regulator and epigenetic-driven gene in 
TCGA PC. Most recently Kim et. al. [17] published on the 
pan cancer DNA methylation analysis of TCGA data, but 
this study uses only twenty three imprinted genes.

Epigenetic changes such as DNA methylation 
effect gene regulation in normal development. In normal 
cells, DNA methylation assures proper regulation of 
gene expression and stable gene silencing leading to 
physiological homeostasis. Epigenetic signatures are 
acquired by cells during cancer tumorogenesis [18], 
which in turn allows them to overcome physiological 
homeostasis. These properties confer cells with continuous 
proliferation potential, self-sufficiency in growth and 
apoptotic signals and ability to evade the immune system 
[19]. Transcriptional silencing or enhancement of critical 
growth regulators through promoter hypermethylation or 
hypomethylation, respectively, also plays a major role in 
cancer. Hedgehog and notch signaling pathways are very 
important for proper development of pancreas. Reactivation 
of both of these pathways is common in pancreatic cancer 
[20, 21]. Recent work by Thompson et. al. [3] also suggests 
that differential methylation of pancreas development 
related genes including homeobox-containing genes are 
important for PC development and survival of PC patients. 
Yang et. al. [13] used TCGA data for ten major cancer types 
and observed that methylation and expression patterns of 
epigenetic enzymes can play a major role in many cancers, 
but this study did not include data from PC patients.

Given the increasing evidence on the role of 
epigenetics in cancer, we hypothesize that epigenetic 
landscape of PC tumors would be distinct compared 
to those of the normal tissues and that these epigenetic 
alterations can be correlated with the gene expression 
patterns in PCs. It has been shown that DNA methylation 
and gene expression of homeobox-containing genes, 
pancreas development genes and epigenetic regulatory 
genes play a vital role in PC [22]. In the current study, 
we carried out detailed analysis of the global differential 
methylation patterns in individual chromosomes, 
homeobox containing gene family and genes involved in 
epigenetic regulation, and clustered the patient population 
based on these patterns. We correlated the clustered groups 
with somatic mutation loads and copy number variations 
observed in important oncogenes and tumor suppressor 
genes. We also made detailed correlations between 
methylation patterns and gene expression levels using 
methylation data from different sub-regions of genes. 
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Pathway and gene ontology (GO) enrichment analysis 
of differentially methylated and differentially expressed 
genes (DEG) enabled us to understand how changes in 
methylation affect the biological pathways involved in the 
progression of PC. We also examined the correspondence 
between pancreatic cancer-specific hypermethylated and 
hypomethylated distal enhancer probes and the known 
transcription factor binding motifs to obtain details about 
which site-specific transcription factors may be involved 
in the development and progression of PC.

RESULTS

For pancreatic cancer data analysis we downloaded 
DNA methylation, gene expression, copy number, somatic 
mutation and clinical data from TCGA. In the current 
work, first we investigated the global patterns of DNA 
methylation and the affected genes and pathways in PC 
by using tumor and normal samples. We also investigated 
the methylation patterns of homeobox-containing genes, 
pancreas development genes and epigenetic regulatory 
enzymes to understand their role in PC development. 
Further, we looked at the differential gene expression 
patterns, enrichment analysis of differentially expressed 
genes and correlated the DNA methylation and gene 
expression in PC. Apart from these analyses, we also 
looked DNA methylation in distal enhancer region and 
possible molecular subtypes in TCGA PC by using DNA 
methylation data. R/Bioconductor tools and R function 
were used for all these analysis in R version 3.3.1.

Batch effect in TCGA data

High throughput data generation is prone to 
have batch effect due to variations in the equipment 

and/or reagent kits used at different locations or the 
skill level of the handling personnel, etc. As TCGA 
samples are processed in batches rather than a single 
run at different sites of the consortium, the data can 
be vulnerable to batch effects. Hence, we carried 
out Principal Component Analysis (PCA) by using 
Mbatch [23] to identify potential batch effects among 
the data samples and found no batch effect either 
in the DNA methylation (Supplementary Figure 1)  
or in the gene expression data (Supplementary Figure 2).

Global DNA methylation analysis

To study the global methylation patterns in PC, 
we carried out differential methylation analysis of 
level-3 PC data from TCGA. We observed a total of 
23,688 CpG sites that are differentially methylated 
(Δβ≥0.1) between tumor and normal samples; out 
of these 13,501 are hypermethylated and 10,187 are 
hypomethylated (Supplementary Data 1). At higher 
thresholds, the number of differentially methylated CpG 
sites (henceforth referred to as dm-CpGs) fall sharply 
to 11,480 (Δβ≥0.2) or 2,751 (Δβ≥0.3). Figure 1A shows 
all the dm-CpGs on each chromosome at Δβ≥0.1. We 
observed that chromosomes 1 and 2 have maximum 
number of dmCpGs, while chromosomes 21 and 18 
have the least. This is expected given the differences 
in the relative sizes of these chromosomes. Further, we 
also calculated the methylation frequency per Mb for 
each chromosome to determine the net changes in the 
dm-CpGs (Figure 1B), Chromosomes 19, 17, 16, 11 
and 7 in that order show high frequency of dm-CpGs 
(>10 dm-CpGs/Mb). Chromosome 19 has the highest 

Figure 1: Genome-wide differential DNA methylation patterns in pancreatic cancer. (A) Difference in DNA methylation 
in all CpG sites passing false discovery rate (FDR) with Δβ ≥ 0.1. Δβ is weighted by T-statistics such that the distance from central 
core (grey) indicates increasing level of statistical significance. Chromosomes are shown in clockwise from 1 to 22; we did not use sex 
chromosomes (X or Y) in our analysis. (B) Chromosome wise DNA methylation frequency distribution in pancreatic cancer. For each 
chromosome we calculated hypermethylation and hypomethylation frequency per megabase pairs. We sorted chromosomes on the basis of 
DNA methylation/Mb. Chromosome 4, 5, 13 and 18 have two-fold higher hypermethylation frequencies.
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at 20.14 dm-CpGs/Mb while chromosome 9 has the 
lowest with only 2.39 dm-CpGs/Mb (Supplementary 
Data 2). Except chromosomes 1, 11, 16 and 22, all 
chromosomes have more hypermethylated CpG sites 
than hypomethylated CpGs. Of note, chromosomes 4, 5, 
13 and 18 showed more than two-fold hypermethylation 
frequency (Supplementary Data 2). We also observed 
that CpG islands, shores and shelfs regions are 
predominantly hypermethylated, while open sea regions 
are hypomethylated (Supplementary Data 3).

At the gene level, 7,405 genes have dm-CpGs at 
Δβ≥0.1 with a total of 1,351 genes have at least five or 
more dm-CpGs (Supplementary Data 1). Table 1 gives the 
details on the number of dm-CpG sites in different gene 
subregions and the number of genes corresponding to these 
probes. Table 2 has the list of top twenty hypermethylated 
and hypomethylated CpG site IDs with corresponding 
gene and chromosome associations. Results indicate that a 
number of HOX, zinc finger and other transcription factors 
are significantly differentially methylated in PCs.

We also analyzed the differential methylation 
patterns of CpG islands using median β value of CpGs 
in each CpG island. Only those islands that have at least 
three CpG sites after preprocessing of data were included 
in this analysis. We observed a total of 1,570 dm-CpG 
islands, out of these 1,555 islands are hypermethylated 
and 15 are hypomethylated (Supplementary Figure 3 and 
Supplementary Data 4). As shown in Figure 2, the dm-CpG 
islands are highly enriched in chromosomes 1, 2, 5, 6, 7 and 
19, each containing more than hundred dm-CpG islands. 
We also observed that seven genes encoding epigenetic 
regulatory enzymes and 29 homeobox-containing genes 
have one or more dm-CpG islands. A list of top 10 hyper 
and hypomethylated CpG islands are shown in Table 3.

Differential methylation of genes involved in 
epigenome regulation

DNA methylation and histone modification are 
epigenetic regulatory mechanisms that affect the overall 

epigenome and transcriptome landscapes in cancer. These 
epigenetic regulatory genes are divided into writer, reader and 
eraser categories based on their mode of action. We analyzed 
the DNA methylation patterns of each category of epigenetic 
regulatory genes as well as the differential methylation of 
core histone proteins and linker proteins in PC.

Methylation patterns of writer genes

Epigenetic writers catalyze the addition of 
methyl or acetyl group on DNA or histone proteins. 
DNA methyl-transferases (DNMT) are writers of 
epigenome, which can actively methylate cytosine 
of CpG dinucleotides. DNMT1 methylates CpG 
sites; we observed hypomethylation of a single CpG 
site of DNMT1 in PC. In contrast, DNMT3A, a de-
novo DNA methyltransferase is hypermethylated in 
PC, but its homologue, DNMT3B has both hyper and 
hypomethylated CpG sites (Supplementary Data 5). 
Histone methylation writer can methylate histone 
proteins, several histone methylation writer genes 
e.g. euchromatic histone-lysine N-methyltransferases 
(EHMTs), lysine-specific methyltransferases (KMTs), 
genes encoding PR domain-contacting proteins (PRDMs) 
also have dm-CpGs. In addition, we observed differential 
methylation of other epigenome regulatory writer genes 
such as EZH2, BRD4, KMT2C/MLL3, KMT2D/MLL2, 
SMYD2, SMYD3, WHSC1 and WHSC1L1. SET-domain 
containing histone methylation writer genes such as 
SETBP1, SETD3, SETD7 and SETMAR were also 
differentially methylated in PC (Table 4). Differential 
methylation of histone acetylation writers such as 
lysine acetyltransferase proteins 2A (KAT2A), KAT6B 
was also observed in PC. We also observed differential 
methylation of several other histone acetylation writer 
genes such as CREBBP, GTF3C1, NCOA1, NCOA2 and 
NCOA7 (Table 4). Another group of writers, the Arginine 
methylation writer genes such as protein arginine 
methyltransferase 6 (PRMT6) and PRMT8 are also 
differentially methylated in PC (Supplementary Data 5).

Table 1: Total number of differentially methylated CpG sites in different sub-regions

CpG subregions Δβ ≥ 0.1 Δ β ≥ 0.2 Δβ ≥ 0.3

3’UTR 797 (623) 298 (236) 45 (40)

5’UTR 3059 (1563) 1523 (859) 418 (301)

1st Exon 2168 (1086) 1223 (674) 407 (274)

Gene Body 8593 (3663) 3731 (1962) 757 (530)

TSS200 2292 (1054) 1249 (592) 373 (224)

TSS1500 3125 (1691) 1318 (763) 294 (209)

TSS1.5Kb 9465 (3167) 4669 (1719) 1243 (638)

The numbers in parenthesis represent the total number of HGNC genes covered by these CpG sites.
UTR- Untranslated Region; TSS- Transcription Start Site, TSS1.5Kb- 1.5 Kb up and downstream from TSS
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Table 2: Top twenty hypermethylated and hypomethylated CpG sites in known genes

Illumina probe id Δβ value Chromosome Gene symbol Fold change

cg22674699 0.60 chr2 HOXD9 4.713211
cg03692651 0.59 chr19 ZNF729 3.736158
cg03306374 0.57 chr16 PRKCB 6.524701
cg22784954 0.56 chr5 ADAMTS16 4.539619
cg19717586 0.56 chr11 NTM 5.896104
cg16729415 0.55 chr15 GJD2 5.436232
cg15811515 0.55 chr16 YBX3P1 4.782864
cg24221648 0.54 chr13 RNF219-AS1 5.424716
cg17495912 0.54 chr13 CCNA1 4.81373
cg06304097 0.54 chr10 TCERG1L 5.730066
cg26296488 0.53 chr4 DRD5 5.07241
cg22620090 0.53 chr6 LIN28B 3.737363
cg15506157 0.53 chr7 KLRG2 2.38998
cg07915921 0.53 chr12 HOXC13-AS 5.657705
cg22797031 0.52 chr1 PRRX1 3.527956
cg17774559 0.52 chr5 IRX4 4.203264
cg14473102 0.52 chr2 HOXD8 4.714848
cg20302133 0.51 chr1 KCNA3 6.175219
cg17985646 0.50 chr7 TBX20 5.129886
cg25397945 0.49 chr19 ZNF382 5.946388
cg07805542 -0.44 chr1 PIK3CD 0.466222
cg04214938 -0.44 chr2 EN1 0.550001
cg01077100 -0.44 chr10 BTBD16 0.505858
cg13446584 -0.45 chr7 GTF2IRD1 0.548374
cg10728351 -0.45 chr4 ANXA5 0.590933
cg09159452 -0.45 chr7 IQCE 0.540868
cg09077096 -0.45 chr7 CARD11 0.570784
cg21011133 -0.46 chr2 ADCY3 0.434894
cg27411547 -0.47 chr8 SLC45A4 0.587623
cg07388969 -0.47 chr15 SPRED1 0.464429
cg20151476 -0.48 chr7 PSMG3 0.56687
cg07248223 -0.48 chr17 CCR7 0.499523
cg20518446 -0.49 chr11 AHNAK 0.501228
cg20765408 -0.50 chr13 PARP4 0.438326
cg11303839 -0.50 chr7 CCL26 0.505054
cg20928945 -0.53 chr7 ADAP1 0.436731
cg09287864 -0.53 chr7 AHR 0.50094
cg20852851 -0.54 chr2 HDAC4 0.524387
cg05926314 -0.55 chr7 PTPRN2 0.483487
cg23066280 -0.56 chr7 PTPRN2 0.506833
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Table 3: Top ten hypermethylated and hypomethylated CpG islands in TCGA pancreatic cancer data

CpG Island Delta beta Fold change

chr6:105400877-105401149 047 2.91
chr5:178003623-178004247 0.44 5.16
chr14:57278709-57279116 0.43 5.02
chr7:42267546-42267823 0.40 5.54
chr1:158147433-158147854 0.39 2.15
chr4:5709985-5710495 0.39 3.93
chr2:127413696-127414171 0.39 7.09
chr1:111216244-111217937 0.39 4.87
chr7:19184818-19185033 0.38 4.30
chr1:248020330-248021252 0.38 6.09
chr15:66274583-66274838 -0.18 0.29
chr19:1856725-1857443 -0.18 0.47
chr19:1240154-1240546 -0.18 0.26
chr2:85811340-85811855 -0.20 0.48
chr16:29818681-29819554 -0.20 0.30
chr21:45148454-45149262 -0.24 0.44
chr12:6649677-6649897 -0.25 0.46
chr12:6649677-6649897 -0.27 0.47
chr8:103750881-103751088 -0.31 0.50
chr6:33244677-33245554 -0.33 0.33

Figure 2: Genome-wide distribution of DNA methylation CpG islands in pancreatic cancer. For each known CpG island 
with more than 3 methylated CpG sites, we calculated median of β value. Difference in DNA methylation in all CpG islands passing FDR 
with Δβ ≥ 0.1. CpG islands that are hypomethylated are in blue color.
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Methylation patterns of reader genes

Epigenetic readers can recognize epigenetic changes 
in DNA and histone when they get recruited to that specific 
site. DNA methylation reader genes such as CHD2, CHD7, 
MBD1, ZBTB28, ZMYM4 and ZMYM6 are differentially 
methylated in TCGA PC. Hypermethylation of some 
histone methylation reader genes such as ATXN7, CHD2, 
DHX30, euchromatic histone-lysine N-methyltransferase2 
(EHMT2), GATAD2A and ZMYM8 was observed, while 
both hyper and hypomethylated patterns were seed in the 
other histone methylation reader genes such as CBX5, 
CHD7, EHMT1 and UHRF1. Bromodomains (BRDs) 
are epigenetic reader domains that selectively recognize 
acetylated lysine residues. Our results show that BRD1 
and BRD3 have hypomethylated CpGs, while BRD4 is 
hypermethylated (Table 4).
Methylation patterns of eraser genes

Epigenetic code eraser genes are very important 
in cancer; they can erase epigenetic changes and alter 
gene expression. We observed differential methylation 
of numerous eraser genes in PCs. DNA methylation 
eraser genes, APOBEC1 and TET3 are hypomethylated, 

while other eraser genes, IDH2 and MGMT are 
hypermethylated. Histone lysine demethylase (KDM) 
genes such as KDM2A, KDM2B, KDM3B and KDM4B 
are hypomethylated, while KDM3A and KDM6B 
are hypermethylated (Table 4). Histone acetylation 
eraser genes, SIRT6, SIRT7 and histone deacetylase 
11 (HDA11), are hypermethylated while HDAC5 
and HDAC9 are hypomethylated. We also observed 
hypermethylation of histone acetylation eraser genes, 
SIRT6 and SIRT7.
Methylation patterns of core histone and linker 
proteins

Chromatin remodeling proteins are complex 
molecules that can alter the chromatin architecture to 
enable access to the genomic DNA by transcription 
regulatory proteins, and allow transcription signals 
to reach their destinations on the DNA strand. SWI/
SNF chromatin remodeling complex proteins ARID1B, 
SMARCA2 and SMARCD3 are very important for 
remodeling of chromatin. We observed hypomethylation 
of CpG sites of SMARCD3, while SMARCA2, ARID1B 
showed both hyper and hypomethylated CpG sites. A list 

Table 4: List of differentially methylated epigenetic enzyme, chromatin remodeler and histone proteins in TCGA 
pancreatic cancer

Mark Writer Reader Eraser/editor

DNA methylation DNMT1, DNMT3A, 
DNMT3B

CHD2, CHD7, MBD1, 
ZBTB38, ZMYM4, 
ZMYM6,

APOBEC1, IDH2, MGMT, 
TET3

Histone methylation EHMT1, EHMT2, EZH2, 
KMT2C/MML3, KMT2D/
MLL2, MECOM, PRDM1, 
PRDM2, PRDM4, PRDM6, 
PRDM7, PRDM8, PRDM11, 
PRDM12, PRDM13, 
PRDM14, PRDM15, 
PRDM16, SETBP1, 
SETD3, SETD7, SETMAR, 
SMYD2, SMYD3, WHSC1, 
WHSC1L1

ATXN7, CBX5, CHD2, 
CHD7, DHX30, DNMT3A, 
EHMT1, EHMT2, 
GATAD2A, UHRF1, 
ZMYM8

KDM2A, KDM2B, KDM3A, 
KDM3B, KDM4B, KDM6B

Histone acetylation CREBBP, GTF3C1, KAT2A, 
KAT6B, NCOA1, NCOA2, 
NCOA7

ATXN7, BRD1, BRD3, 
BRD4, DHX30, GATAD2A, 
ZMYM8

HDAC4, HDAC5, HDAC9, 
HDAC11, SIRT6, SIRT7

Arginine methylation PRMT6, PRMT8

*Chromatin remodeler ARID1B, CHD2, CHD7, CHD8, DPF3, SMARCA2, SMARCD3, TTF2

*Histone protein H1F0, H1FOO, HIST3H2A, HIST1H1E, HIST1H2AG, HIST1H2APS1, HIST1H2BA, 
HIST3H2BB, HIST1H2BC, HIST2H2BF, HIST1H2BI, HIST1H2BN, HIST1H3B, 
HIST1H3C, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, HIST1H4F, HIST1H4H

In this figure we are using green for hypermethylated probes, similarly red for hypomethylated and black color for genes 
which have both hypermethylated and hypomethylated CpG sites.
*In case of chromatin remodeler and histone proteins there is no reader, writer and eraser
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of all the differentially methylated epigenetic regulatory 
genes with fold-changes and Δβ values are provided in 
Supplementary Data 5.

Histone proteins are the primary protein components 
around which DNA is tightly wrapped. They play essential 
structural and functional roles in the transition between 
active and inactive chromatin states, i.e., the euchromatin 
and heterochromatin. We observed dm-CpGs in core 
histone protein genes (H2A, H2B, H3 and H4) and the 
linker protein gene, H1. HIST1H2AG, HIST1H2APS1, 
HIST1H2BA of core protein H2A are hypomethylated; 
while in case of H2B, HISTH2BC, HIST1H2NB 
are hypomethylated and HIST3H2BB, HIST2H2BF, 
HIST1H2BI are hypermethylated. Similarly, in case of 
H3 core protein, HIS1H3C, HIST1H3 are hypomethylated 
and HIST1H3B, HIST1H3E, HIST1H2F, HISTH3G are 
hypermethylated. However, we did not observe any dm-
CpGs in H4 protein genes. The linker protein genes, H1F0 
and H1FOO are also hypomethylated in PC (Table 4).

Differential methylation of homeobox genes

Homeobox-containing genes play vital role in the 
anatomical development of tissues and organs during 
early embryonic development stage. It has been reported 
that these homeobox genes play a vital role in pancreatic 
cancer cell proliferation [24]. We investigated differential 
methylation of CpG sites in HOX family and other 
homeobox-containing genes such as PAX, PRRX, MSX, 
IRX, SHOX, TGIF, ZEB and HHEX in the TCGA PC 
data.

We observed that almost all the dm-CpGs are 
hypermethylated in HOX family genes except one 

site in HOXA3 and HOXC4 genes (Supplementary 
Figure 4 and Supplementary Data 6). Several other 
homeobox-containing genes also contained dm-
CpGs. In the Paired box (PAX) family, a total of eight 
genes are hypermethylated, while in the case of paired 
related homeobox (PRRX) gene cluster, only PRRX1 is 
hypomethylated. In Msh homeobox (MSX) gene cluster, 
both MSX1 and MSX2 are hypermethylated. An Iroquois 
homeobox (IRX) family protein, IRX1 is reported as 
tumor suppressor gene in gastric cancer [25]. IRX1 
is not differentially methylated but its homolog IRX2 
is hypermethylated in PC. Short stature Homeobox 2 
protein (SHOX2) gene hypermethylation, a well-known 
marker in lung cancer [26] is also hypermethylated in 
PCs. In case of TGFB-Induced Factor Homeobox (TGIF) 
cluster proteins; TGIF1 and TGIF2 that are transcriptional 
repressors of tumor suppressor gene, SMAD are 
hypomethylated. Zinc Finger E-Box Binding Homeobox 
(ZEB) cluster protein ZEB1, which is a transcriptional 
repressor of interleukin-2 (IL-2) gene is hypomethylated, 
while ZEB2, a repressor of E-cadherin with activated 
SMAD is hypermethylated. Homeobox-containing gene, 
HHEX is also hypermethylated in PCs. We observed 
hypermethylation of most of the HOX-containing genes 
except the TGIF cluster genes (Figure 3).

Differential methylation of pancreatic 
development and pancreatic signaling genes

Panaceas development related genes are 
activated only at early embryonic development stage, 
but reactivation of embryonic pancreas development 
program is common in pancreatic cancer development 

Figure 3: Patterns of DNA methylation in homeobox-containing gene cluster families in pancreatic cancer. For each 
homeobox-containing gene subfamily we calculated the number of differentially hypermethylated and hypomethylated CpG sites that meet 
the p-value and FDR thresholds of 0.01. Hypermethylated CpGs are on the right side of the Y-axis and hypomethylated on the left side. 
In the figure, blue and green color shows the total number of differentially hypermethylated and hypomethylated CpGs, respectively, and 
purple color shows the total number of differentially methylated CpG sites with Δβ ≥ 0.2.



Oncotarget28998www.impactjournals.com/oncotarget

[27, 28]. Here we looked at the DNA methylation 
patterns in pancreas development associated genes. We 
observed that pancreas development and pancreatic 
signaling related genes are differentially methylated in 
PCs (Supplementary Data 7). GATA3 [29, 30], FOXA1 
[31], neurogenin3 (NEUROG3) [32, 33], NKX2-2, 
NKX6-1 [32], ISL1, HNF1B, HNF4A, PAX6 [32], HLX, 
SOX9 [34, 35], MNX1 [36], ONECUT1 [36] are known 
to play vital role in pancreas development. In pancreatic 
cancer, GATA3, FOXA1, NEUROG3, NKX2-2, NKX6-
1, ISL1, PAX6 and HLX are all hypermethylated. 
We observed that HNF4A is hypomethylated, while 
HNF1B, MNX1, SOX9, NKX6-2 and ONECUT1 
have both hypermethylated and hypomethylated CpG 
sites. Homeobox-containing protein, MEIS2 involved 
in PDX-based pancreas development [37] is also 
hypermethylated in PCs compared to normal. Matrix 
metalloproteases 2 (MMP2) and MMP9 are important 
proteins for pancreas development [38], which are also 
differentially methylated in PCs.

NOTCH1, NOTCH2, FGF10, HGF, EGF, EGFR 
are important genes involved in pancreatic signaling; 
we observed hypermethylation of CpG sites in FGF10 
and EGF. Hypomethylation of EGFR, and both hypo 
and hypermethylation of NOTCH1. We did not observe 

any dm-CpGs in HGF, but its activator, HGFAC is 
hypomethylated (Supplementary Data 7).

Enrichment analysis of differentially methylated 
genes

Knowing the biological functions of genes 
containing dm-CpGs is important to understand the 
effects of methylation patterns of PC methylome. Here, 
we performed pathway enrichment analysis and gene 
ontology (GO) enrichment analysis for a total of 4,254 
genes that are mapped against dm-CpGs at Δβ≥0.2 
by using WEB-based Gene SeT AnaLysis Toolkit 
(WebGestalt) tool [39]. Out of 4,254 genes, 4,031 are 
mapped against the Entrez Gene Ids of WebGestalt 
database. Enrichment of these genes was observed in 
major KEGG pathways such as pathway in cancer, 
MAPK signaling pathway, calcium signaling, focal 
adhesion, regulation of actin cytoskeleton, and gap 
junction pathways. Table 5 shows the list of top enriched 
pathways, while complete pathway enrichment results are 
available in Supplementary Data 8.

Jones et. al. provided a list of core signaling 
pathways and processes that are altered in most of the PCs 
[40]. Here we observed enrichment of several of those core 

Table 5: WebGestalt based pathway analysis of differentially methylated genes which have delta beta value more than 
0.2 in tumor vs. normal

KEGG pathway KEGG ID Ratio Raw p-value BH adjusted p-value

Pathways in cancer 05200 3.45 8.36e-31 1.50e-28

MAPK signaling 
pathway

04010 3.55 2.06e-27 1.84e-25

Neuroactive ligand-
receptor interaction

04080 3.50 6.95e-27 4.15e-25

Calcium signaling 
pathway

04020 4.17 2.98e-26 1.33e-24

Focal adhesion 04510 3.91 1.33e-25 4.76e-24

Regulation of actin 
cytoskeleton

04810 3.72 2.11e-24 6.29e-23

Endocytosis 04144 3.35 2.12e-18 5.42e-17

Metabolic pathways 01100 1.76 1.63e-14 2.92e-13

Vascular smooth 
muscle contraction

04270 3.69 9.39e-14 1.53e-12

Axon guidance 04360 3.48 2.16e-13 3.22e-12

ECM-receptor 
interaction

04512 4.15 2.87e-13 3.95e-12

Leukocyte 
transendothelial 
migration

04670 3.60 4.81e-13 6.09e-12

Pancreatic secretion 04972 3.71 2.73e-12 3.05e-11
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signaling pathways such as apoptosis, hedgehog signaling, 
TGF-β signaling, Wnt signaling, Notch signaling and 
cell cycle pathways. Enrichment of genes involved in 
pancreatic cancer pathway and pancreatic secretion was 
also observed. Apart from these core PC pathways, we also 
observed enrichment of several other important pathways 
that are related to cancer such as p53 signaling, VEGF 
signaling, phosphatidylinositol signaling, EbrB signaling, 
Jak-STAT signaling, Fc gamma R-mediated phagocytosis, 
insulin signaling, cytokine-cytokine receptor interaction, 
chemokine signaling pathway, natural killer cell mediated 
cytotoxicity, T cell receptor signaling pathway and B cell 
receptor signaling pathway. Enrichment of tight junction, 
cell adhesion molecules, adherens junction pathways 
was also observed in PC (Supplementary Data 8). These 
enriched pathways suggest that apoptosis, cell-cycle/cell 
differentiation, cytoskeleton structure, immune response, 
DNA damage responses are highly affected by DNA 
methylation in PC.

Using Ingenuity Pathway Analysis (IPA), we 
identified that axonal guidance signaling, G-protein 
coupled receptor signaling, hepatic fibrosis/hepatic stellate 
cell activation, molecular mechanism in cancer, Sertoli 
cell-Sertolli cell junction are top enriched canonical 
pathways. We also observed the enrichment of several 
other canonical pathways such as TGF-β signaling, HGF 
signaling, apoptosis signaling, cell adhesion and Wnt 
pathway, which are also important in pancreatic cancer 
(Supplementary Data 9).

To determine the functional relevance of 
differentially methylated genes, we also carried out GO 
enrichment analysis using WebGestalt. GO terms related 
to cell division and cell differentiation are in the enriched 
list of GO biological function. Other enriched GO terms 
include system development, developmental process, 
nervous system development, anatomical structure 
morphogenesis, cell differentiation, skeletal system 
development, cell-cell signaling (Supplementary Data 
10). We also used DAVID [41] in R for pathways and 
GO enrichment analysis. DAVID based pathway and GO 
enrichment analysis also showed similar results at FDR 
0.05 (Supplementary Figure 5).

Clustering analysis using differential 
methylation data

Identifying clinically relevant subtypes of a cancer 
based on the DNA methylation patterns is an important 
computational problem in medicine, which helps to make 
an assertion to provide specific and efficient treatment 
options for patients of different subtypes. Unsupervised 
hierarchical clustering analysis based on the methylation 
patterns of PC patients is a very effective way to identify 
defined patient sub-groups. Here, we first clustered by 
the patient samples and then by the CpG sites to generate 
both patient clusters (columns) and CpG clusters (rows) 

(Figure 4). We used a stringent β value (Δβ ≥ 0.3) of 2,751 
CpG sites for unsupervised clustering using non-negative 
matrix factorization (NMF) [42] method. We defined the 
number of clusters from 2 to 7 with 500 iterations each to 
determine the optimum number of clusters. We observed 
that three patient clusters are optimal as they showed the 
highest cophenetic constant, 0.994 with average silhouette 
width of 0.72 (Supplementary Figure 6). Copenhetic 
constant, which ranges from -1 to +1 is used as a measure 
of the reproducibility of clustering results; positive scores 
mean good clustering. A second measure, Silhouette width 
(also ranges from -1 to +1) indicates how good the data 
are grouped in clusters, positive scores mean data are 
appropriately clustered. The three patient clusters showed 
very distinct patterns of hyper and hypomethylated CpGs. 
We used the Bioconductor tool ComplexHeatmap [43, 44] 
for heatmap analysis of clustering. We also did clustering 
of CpG sites (row-wise) using k-means clustering in five 
clusters. As shown in Figure 4, CpG clusters 1-3 are 
hypermethylated and clusters 4 and 5 are hypomethylated 
in PC.

We downloaded somatic mutation and copy number 
data from cBioPortal [45] and did enrichment analysis 
of important oncogenes and tumor suppressor genes in 
these three patient clusters, using Fisher’s exact test with 
a p-value cutoff of 0.05. Patient cluster two exhibited the 
most distinctive patterns of genome alterations (Figure 
4). TP53, KRAS and JMY are highly mutated in cluster 
2 compared to others. Similarly, high copy number 
deletion of CDKN2A, SMAD4, KDM6A and KMT2C and 
KMT2D genes (P < 0.05) was noticed in cluster 2. On the 
other hand, cluster 3 exhibited high amplification of TP53, 
SMAD4, JMY, KMT2C and KMT2C genes (P < 0.05) 
(Figure 4). We further carried out analysis to correlate the 
patient clusters with their clinical data on tumor grade and 
stage and identified significant relationships. Neoplasm 
histological grade G1 (P 3.44e-05) and pathologic T-stage 
T2 (P 0.0059) are enriched in patient cluster 3. Cluster 
2 showed enrichment of pathologic T-stage T3 (0.0194), 
while cluster 1 has neoplasm histological grade G2 (P 
0.045) enrichment. We did not observe enrichment of 
gender, age, race, or ethnicity in any cluster.

Differential gene expression analysis

We used edgeR, which is one of the best tools 
for differential gene expression analysis for RNASeq 
data [46]. We observed a total of 258 differentially 
expressed genes (DEGs) with both p-value and adjusted 
p-value below 0.05 and a minimum logFC value of two 
(Supplementary Data 11). Of these, 27 are up-regulated 
and 231 are down-regulated in PC samples compared to 
normal samples (Supplementary Figure 7).

We used log2 transformed expected counts data 
of DEGs for clustering using Ward’s distance measure 
for hierarchical clustering using the ComplexHeatmap 
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Figure 4: Unsupervised clustering of PC patient data on the basis of differentially methylated CpG sites. We used 
only the CpG sites with Δβ ≥ 3. We used NMF for consensus clustering of samples by using 500 permutations. Vertical sidebars show 
information on the direction of methylation, fold change in tumor, probe relationship and probe annotation of differentially methylated CpG 
sites. Top annotations of heatmap plot are somatic mutations, copy number deletion and amplification from cBioPortal.
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package. We observed two major clusters, but these 
clusters are not as sharply distinguishable as DNA 
methylation clusters (Supplementary Figure 8). We also 
did enrichment analysis of DEGs using WebGestalt and 
IPA. We observed enrichment of hematopoietic cell 
lineage, cytokine-cytokine receptor interaction, B cell 
receptor signaling pathway, natural killer cell mediated 
cytotoxicity, chemokine signaling pathway (Table 6). 
Apart from these pathways, we also observed enrichment 
of neuroactive ligand-receptor interaction, leukocyte 
transendothelial migration, and intestinal immune network 
for IgA production in PC (Supplementary Data 12).

When we used IPA for canonical pathway analysis 
of DEGs, we observed primary immunodeficiency 
signaling, altered T cell and B cell signaling, crosstalk 
between dendritic cell and natural killer cells, PI3K 
signaling in B lymphocytes, B cell development and 
natural killer cell signaling as major enriched pathways 
(Supplementary Data 13). We also observed IRF4, BCR 
(complex), IL12 (complex), SATB1 and BL6 as the most 
significantly activated upstream regulators in PC. These 
upstream regulator genes are involved in differentiation, 
apoptosis, and proliferation.

Biological significance of DEGs is determined 
by GO enrichment analysis using WebGestalt. We 
observed GO enrichment of immune response, immune 
cell activation, and immune cell differentiation in PC. 
Enriched functions include cell-to-cell interaction, cellular 
development, cellular growth and proliferation, super 
oxide generation and molecular transport with adjusted 
P-value 0.05 (Supplementary Data 14). We observed the 
enrichment of similar pathways and ontologies at FDR 
0.01 by using DAVID [41] in R package (Supplementary 
Figure 9).

Correlation of DNA methylation and gene 
expression

Correlation between DNA methylation and gene 
expression was determined to estimate to what extent 
gene expression may be influenced by DNA methylation 
in pancreatic cancer. We calculated expression quantitative 
trait loci (eQTL) based on non-zero Pearson correlation 
between gene expression and DNA methylation levels of 
CpG sites within 100 kb of corresponding gene’s TSS by 
using linear regression (eMap1 function) in an R based 
tool, eMap [47]. The eQTL analysis allows us to determine 
the locus of the genome (eQTL) containing variation in 
DNA methylation that influences the expression levels 
of one or more genes. Any association is considered as 
significant if the Bonferroni corrected p-value is less than 
0.05. We observed that a total of 21,519 CpG sites were 
significantly correlated with the expression of 4,565 genes 
in PC (Supplementary Data 15).

The expression levels of 2,298 genes are positively 
correlated with the DNA methylation level of at least one 

CpG site, i.e., higher the methylation, higher the gene 
expression, while the expression level of 3,657 genes 
are negatively correlated with the methylation level of at 
least one CpG sites. Positive correlated CpG sites were 
quite evenly distributed at both up and downstream of 
TSS (Figure 5A). Negative correlated CpG sites were also 
found at both up and downstream of TSS (Figure 5A), but 
they were enriched close to the TSS (1500 bp up-stream 
to 5,000 bp downstream). The CpG sites that correlated 
with gene expression were distributed across the whole 
genome, but chromosomes 1, 6p, 11, 12, 16, 17, 19 are 
highly enriched (Figure 5B).

Two-sided non-zero Pearson correlation was also 
calculated between gene expression and DNA methylation 
of corresponding ‘gene subregions’ by using the R 
function, cor.test. The expression of a total of 7,882 genes 
significantly correlated with DNA methylation level in at 
least one gene region (Supplementary Data 16). Of these, 
the expression of 6,088 genes is negatively correlated with 
the methylation level of CpG sites, and the expression of 
1,794 genes is positively correlated. A combined ~43% 
of negatively correlated genes have methylated CpGs 
within 1,500bp upstream of TSS (TSS200 and TSS1500), 
while only ~17% genes show positive correlation with 
methylation in the same region. On the other hand, 
5’UTR showed ~21% negative correlations, while only 
~5% positive correlations in the same region. First-exon 
has only ~9% and ~2% positive and negative correlations, 
respectively. Of the positive correlations, around ~40% 
were found in the 3’UTR and ~35% found in the gene 
body, while only ~25% in remaining sub-regions. It means 
around ~83% positive correlations were found outside of 
the promoter regions (TSS200 and TSS1500), while ~64% 
negative correlation were found in upstream regulatory 
region i.e. promoter plus 5’UTR (Figure 6). In summary, 
differential methylation in the upstream regulatory 
regions resulted in more negative correlations with gene 
expression while in the downstream regions differential 
methylation resulted in more positive correlation with 
gene expression (Supplementary Figure 10). We also 
observed that methylation in 22 homeobox-containing, 
34 epigenetic regulatory, nine histone protein and 
three chromatin remodeler protein expressions are also 
correlated with gene expression (Supplementary Data 17).

Epigenetic-driven gene analysis

We used MethylMix [48, 49] to identify epigenetic-
driven genes, which are hyper or hypomethylated in 
cancer and also have significant predictive effect on gene 
expression. Any gene with an adjusted p-value of 0.001 
between DNA methylation and gene expression correlation 
is considered as an epigenetic-driven gene. In this study, 
we identified 11 genes (CARD16, DHRS2, FGL2, GBP2, 
LOC541471, LRRIQ1, NCRNA00152, PTPLAD2, PTX3, 
SPATA12 and TST) as potentially epigenetic-driven. Of 



Oncotarget29002www.impactjournals.com/oncotarget

these, FGL2, GBP2, LOC541471, LRRIQ1, PTPLAD2 
are hypermethylated, DHRS2, NCRNA00152, PTX3, 
SPATA12, TST are hypomethylated and CARD16 is both 
hyper and hypomethylated genes.

Regulatory element landscape and transcription 
factor analysis

We investigated the coherence between PC-
specific hypermethylated and hypomethylated CpG sites 
and known transcription factor (TF) binding sequence 
motifs to get details about which site-specific TFs may be 
involved in regulating the PC specific DNA methylation 
pattern. We used ELMER to identify differentially 
methylated distal enhancer probes and then the upstream 
regulators of methylation patterns.

For differential methylation analysis of distal 
enhancer region we used both the cut-off p-value and BH 

adjusted p-value at 0.01. A total of 1,744 distal enhancer 
probes are significantly hypermethylated and 4,306 are 
significantly hypomethylated in PC. To get high confidence 
results for distal enhancer probe and gene expression 
correlations, we used 10,000 permutations. In case of 
hypermethylated, 914 distal enhancer probes showed 
statistically significant correlation with gene expression 
(Supplementary Data 18). A total of 91 JASPAR and 
Factorbook TF binding sequence motifs were enriched with 
at least 10 statistically significant hypermethylated probes. 
Finally, we compared the average DNA methylation of all 
distal enhancer probes within +/- 100bp of an enriched motif 
with the expression of 1,982 known human TF genes [50]. 
We found 25 TF binding motifs whose DNA methylation 
has statistically significant association with TF gene 
expression (Supplementary Data 19). All TFs that fall in 
the top 5% of known motif-TF pair ranking are considered 
as candidate upstream regulator of distal enhancer probe 

Table 6: WebGestalt based pathway enrichment analysis of differentially expressed genes in TCGA pancreatic cancer 
data

KEGG pathway KEGG ID Ratio Raw p-value BH adjusted p-value

Hematopoietic cell 
lineage

4640 19.84 9.65e-11 2.22e-09

Primary 
immunodeficiency

5340 34.92 1.09e-09 1.67e-08

Cytokine-cytokine 
receptor interaction

4060 8.57 5.50e-09 6.33e-08

B cell receptor 
signaling pathway

4662 18.62 1.25e-08 1.15e-07

Natural killer cell 
mediated cytotoxicity

4650 11.55 1.02e-07 7.82e-07

Chemokine signaling 
pathway

4062 9.24 1.62e-07 1.06e-06

Neuroactive ligand-
receptor interaction

4080 6.42 4.41e-06 2.25e-05

Leukocyte 
transendothelial 
migration

4670 7.53 0.0006 0.0023

Graft-versus-host 
disease

5332 12.78 0.0017 0.0056

Intestinal immune 
network for IgA 
production

4672 10.91 0.0027 0.0083

Autoimmune thyroid 
disease

5320 10.07 0.0033 0.0095

Cell adhesion 
molecules (CAMs)

4514 5.25 0.0074 0.0197

Antigen processing 
and presentation

4612 6.89 0.0096 0.0232
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hypermethylation. Similarly in case of hypomethylation, 
we observed that 1,492 probe-gene pairs have statistically 
significant correlation (Supplementary Data 18). These 
1,492 probes are enriched in 91 JASPAR and Factorbook TF 
binding sequence motifs with a minimum of 10 significantly 
hypomethylated probes in each TF motif enrichment region. 
We also observed that 6 TF binding motifs have statistically 
significant association with known TF gene expression. Our 
analysis suggests that several HOX, SOX, NKX and SMAD 
genes are the upstream regulators of methylation of distal 
enhancer probes (Supplementary Data 19).

DISCUSSION

DNA methylation is an important regulator of 
transcription, and its role in oncogenesis has been a topic of 
interest in understanding cancer biology. Alterations in DNA 
methylation are commonly found in a variety of tumors and 
global DNA methylation has been recognized as a causative 
factor of oncogenesis [51, 52]. It has been well known that 
subtle differences in the DNA methylation patterns could 
significantly affect gene expression and this information 
could be used as a biomarker to distinguish the cancerous 
cells from normal cells [53–55]. Previous reports from Sato 
et. al. [14] and Tan et. al. [15] showed DNA methylation 
patterns from pancreatic cancer. However to our knowledge, 
exhaustive analysis of the global pancreatic cancer DNA 
methylation data from TCGA has not been reported. Sato 
et. al. used methylation-site specific PCR for methylation 
analysis, while Tan et. al. used GoldenGate methylation 
cancer panel array that has low genome coverage and low 
sensitivity when compared to the HumanMethylation450 
BeadChip used by TCGA. Apart from the smaller data size, 

these studies have used formalin-fixed paraffin embedded 
samples, xenografts and pancreatic cancer cell lines that may 
have limitations on the quality of data generated from their 
experiments. Our study on the other hand has used TCGA 
data from the Illumina HumanMethylation450 chip obtained 
from fresh tissue samples, which has very high genome 
coverage with higher accuracy and consistency. Here we 
carried out comprehensive analysis of global differential 
methylation, differential gene expression, and correlated the 
methylation and gene expression data. To ignore gender bias 
we removed all the CpG probe and gene expression data 
from X and Y chromosomes from our analysis.

We studied the global methylation patterns of 
pancreatic cancer across the genome and observed that all 
chromosomes have differentially methylated CpG sites 
(dm-CpGs) (Figure 1A). Differential methylation analysis 
suggests that while dm-CpGs are distributed across the entire 
genome, chromosomes 4, 5, 13, and 18 are predominantly 
hypermethylated and chromosome 17 is predominantly 
hypomethylated. Length normalized results show that 
chromosome 19 has the highest methylation frequency and 
chromosome 9 has the lowest (Figure 1B). CpG islands and 
regions in close proximity to CpG island (shores and shelfs) 
have more hypermethylated CpG sites compared to the 
regions which are far away from islands (Supplementary Data 
3). CpG island analysis suggests that most of the CpG islands 
are hypermethylated (Figure 2). When we calculated the 
correlation between gene expression and DNA methylation 
of CpG sites between 100kb of TSS, we observed that 
negatively correlated CpG sites (hypermethylation of CpGs 
resulting in reduced gene expression) are predominantly 
located closer to TSS in the upstream region, while positively 
correlated ones are in the down-stream region to the TSS 

Figure 5: CpG sites whose DNA methylation levels were significantly correlated with gene expression with Bonferroni 
corrected P-value < 0.05. (A) Significance level of correlation between DNA methylation β value and gene expression plotted against 
distance between CpG sites and transcription start site (TSS). (B) Significance level and genome-wide distribution of correlation between 
DNA methylation and gene expression. Red dots represent negative correlation and blue dots represent positive correlation. We did not use 
sex chromosomes in this analysis.
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(Figure 5A). This result corroborates the key regulatory role 
of DNA methylation changes in the promoter region on gene 
expression compared to non-promoter regions. When we 
look at different gene sub-regions, around 75% of the positive 
correlations between DNA methylation and gene expression 
levels were found in the gene body and 3’UTR (non-
promoter regions). Similar observations were also found in 
other cancer types that include chronic lymphocytic leukemia 
[56] and breast cancer [57]. On the other hand, around 64% 
upstream CpG sites (i.e. TSS200, TSS1500 and 5’UTR) are 
negatively correlated with gene expression which supports 
that promoter hypermethylation is an important alternative 
biological phenomenon for gene silencing (Figure 6). We 
also observed a total of eleven epigenetic-driven genes in 
TCGA PC samples. The positive relationship between gene 
body DNA methylation and gene expression was previously 
reported [58]. But role of non-promoter hypermethylation is 
not well understood; it was hypothesized that it might play 
an important role in nucleosome positioning, modulation of 
chromatin structure, enabling enhancer region availability 
and gene body regulation of alternative promoter [59]. It 
is also possible that due to the strict parameters we used 
for statistical significance determination, we might have 
underestimated the association between DNA methylation 
and gene expression in the non-promoter region.

Epigenetic regulatory pathway genes are differentially 
methylated in pancreatic cancer patients. DNA methyl 
transferases (DNMTs) play a very important role in DNA 
methylation in cells [60–62] and we observed that DNMT1, 
DNMT3A and DNMT3B are themselves differentially 
methylated in pancreatic cancer. A very recent research 
suggests that TP53 interacts with H3K4 histone methyl 
transferase-2 (MLL2), MLL3 and MOZ genes and play 
major role in chromatin regulation [63, 64]. We observed 
differential methylation of MLL2, MLL3, and also H3K9 
N-methyl transferases EHMT1 in PC. Although the 
epigenetic writer gene, lysine acetyltransferase 6A (KAT6A/
MOZ) is not differentially methylated, the other KAT 

proteins such as KAT6B and KAT2A are differentially 
methylated in PC. Histone-lysine N-methyltransferases 
SETDM3, STDM7, SMYD2, SMYD3, EZH2 genes are 
also differentially methylated. Differential methylation of 
these writer genes indicates their potential role in altering the 
dynamics of transcription in PC. Apart from these, we also 
observed dm-CpGs in components of chromatin regulator 
SWI/SNF complex, core histone proteins and linker proteins. 
Methylation of these epigenetic regulatory pathway genes 
can affect global methylation patterns in pancreatic cancer.

Previous reports on transgenic mice suggest that 
histological changes and genetic aberrations in pancreatic 
cancer development are similar to embryonic pancreas 
development [27, 65]. PDX1 is the most important gene 
for the development of pancreas in early embryonic stage 
but we did not observe any dm-CpG sites in this gene. 
However, several other genes e.g. GATA, HNF1A1/4A, 
ONECUT1, MNX1, NKX2.2/6.1/6.2, NEUROG3, PAX6, 
FOXA1 that play major role in pancreatic development 
are differentially methylated. Matrix metalloproteases 
(MMPs) are required for branching morphogenesis of 
several organs in pancreatic development. MMP2, MMP9 
are two important MMPs that play a vital role in pancreas 
development got differentially methylated in pancreatic 
cancer. Pathway enrichment analysis suggests that major 
pancreatic development signaling pathways, i.e., Hedgehog, 
Notch and TGF-β related genes are affected by differential 
methylation. We also observed differential methylation of 
RMRM (reprimo), CLDN5, LHX1, NTPX2, SPARC and 
ST14, which are already reported as aberrantly methylated 
genes in pancreatic adenocarcinoma [14].

SMAD proteins are important components of TGF-β 
signaling pathway and play vital role in pancreatic cancer 
patient’s survival by causing cell cycle arrest at the G1 
phase [66–68]. TGIF1 and TGIF2 that are repressors of 
tumor suppressor SMAD proteins are also differentially 
methylated. We also observed differential methylation of 
several repressors of IL-2 and E-cadherin proteins. It is a 

Figure 6: Significant correlation between DNA methylation patterns in different gene regions and gene expression 
(Bonferroni corrected P-value < 0.05). Pie chart plot shows the distribution of negative and positive correlations corresponding to the 
functional regions of genes. Distribution patterns are very different for the positive correlations compare to negative correlations.
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well-known fact that GATA3 expression is associated with 
disease free survival and can reverse the cancer metastasis 
[69]. We did not observe statistically significant changes 
at gene expression level in GATA3, but we observed 
hypermethylation of 13 CpG sites in PC. GATA4, recently 
reported as a major player in connecting autophagy and 
DNA damage response to senescence and age dependent 
inflammation [70] is also differentially methylated in PC.

Homeobox containing genes are important for the 
development of tissues and organs in human. We observed 
differential methylation of several important homeobox 
proteins (Figure 3) e.g. HOXA1, HOXA2, HOXB1, HOXB3, 
HOXB7, HOXC4, HOXC9, HOXD4, HOXD8, HOXD10, 
HOXD11, HOXD12 and HOXD3 (Supplementary Figure 
4). We also observed differential methylation of several 
other genes containing homeobox; e.g. PAX1, PAX2, PAX3, 
PAX6, PAX8, PAX9, PRRX1, SHOX2, MSX1, MSX2, 
IRX1, SATB, HHEX, CDX and LHX. TGIF1, a suppressor 
of SMAD and an important homeobox contacting protein that 
plays a vital role in pancreatic cancer patient’s survival is also 
differentially methylated (Supplementary Figure 4). ZEB1 
and ZEB2, important transcription regulators that interact 
with SMAD are also differentially methylated in PC. We 
also observed the differential methylation of four pancreatic 
cancer marker genes, i.e., FOSB, KLF6, ATP4A, GSG1, 
related to survival of patients [71].

Pathway enrichment analysis of differentially 
methylated genes covers major pathways related to cell 
division, differentiation, migration and other biological 
processes, which are very important in cancer development 
and progression. Core pancreatic cancer related signaling 
pathways e.g. Wnt, Notch, TGF-β, Hedgehog, apoptosis 
and cell cycle [40] were affected by DNA methylation in 
our study. Axon guidance pathway was also enriched in IPA 
and WebGestalt analyses, which was also reported as a major 
affected pathway in pancreatic cancer [72]. Pancreatic cancer 
pathway (hsa05121) also got affected with DNA methylation.

We observed differential expression of 258 
genes in PC, pathway enrichment analysis of DEGs 
suggest that immune system is the most affected. From 
the cytoband analysis of DEGs using WebGestalt, we 
observed the enrichment of chromosome arm 19q and 
6p (Supplementary Data 20). We observed that a number 
of dm-CpG sites are also enriched on those cytoband, 
which are also enriched with genes that exhibit significant 
correlation between DNA methylation and gene expression 
(Figure 5B). Our results suggest that cell division and cell 
differentiation are major affected pathways, but infiltration 
of immune cell might be taking place because we observed 
that T-Cell and B-cell proliferation and activation related 
pathways are also affected.

Distal enhancer and transcription factor analysis 
suggest that several important TFs are upstream 
regulators in pancreatic cancer. We observed that 25 TF 
binding motifs are affected by DNA hypermethylation, 
while only six by hypomethylation in PCs. HOXA and 

HOXB TFs are upstream regulators in distal enhancer 
hypomethylation, while only the HOXD8 in enhancer 
hypermethylation. SMAD3 and SMAD6 are upstream 
regulators in enhancer hypomethylation while only 
SMAD4 in enhancer hypermethylation. SOX11 and 
SOX21 are hypomethylated upstream regulators while 
SOX17 is the upstream regulator of hypermethylation. 
We observed that zinc finger proteins (except ZNF488), 
NKX2-3, NKX6-1, STAT4 and STAT5B are also upstream 
regulators of enhancer hypermethylation.

Recently, Waddell et. al. [2] proposed molecular 
sub-types of pancreatic cancer on the basis of point 
mutation and structural variation using PC data from ICGC 
resource. Most recently, Bailey et. al. [73] also proposed a 
new method for molecular sub-typing of PC using ICGC 
data. Also, Waddell et. al. proposed a method based on 
structural variation and somatic mutation data; however, 
this method work only when we have whole genome 
sequencing data. On the other hand, Bailey et. al. proposed 
an integrative method using the whole exome, whole 
genome, whole transcriptome and microarray data. Apart 
from these, Bailey et. al. used the top 2,000 most variable 
genes for clustering analysis rather than differentially 
expressed genes. Both the methods need either high depth 
whole genome sequencing or more than one type of data 
for subtyping. Here we performed molecular sub typing 
of PC solely based on DNA methylation. Our clustering 
analysis based on β value of dm-CpG sites suggests that 
there are three possible sub-groups in TCGA PC (Figure 
4). These clustering sub-groups exhibited different 
somatic mutation and copy number alteration patterns. 
Neoplasm histological grade G2 is enriched in cluster 1 
and pathologic T-stage T3 is enriched in cluster 2. Cluster 
3 has enrichment of neoplasm histological grade G1. 
However, clustering based on gene expression was not 
informative in our study as we did not observe distinctive 
clustering patterns using DEGs (Supplementary Figure 8).

CONCLUSIONS

DNA methylome of pancreatic cancer shows 
significant changes compare to normal pancreatic tissues. 
To our knowledge, this is the first global DNA methylation 
analysis of TCGA PC data on PC patients. We observed 
differential methylation of FOSB, KLF6, ATP4A, and 
GSG1 genes that are previously reported as markers for 
pancreatic cancer survival. Our clustering analysis based 
on methylation patterns suggests that there are three 
potential sub-types of PC in TCGA. These clusters showed 
enrichment of histological grade, pathological grade and 
common PC genomic aberrations. Furthermore, our 
analysis shows that major signaling pathways related to 
pancreatic cancer and pancreas development are perturbed 
with DNA methylation. We observed the enrichment of 
all major pathways as cell adhesion, hedgehog, TGF-β, 
Wnt, Notch which was also reported by Nones et. al. from 
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ICGC PC data. Epigenetic signaling pathway related genes 
also got affected with DNA methylation in pancreatic 
adenocarcinoma. Correlation, both positive and negative, 
between DNA methylation and gene expression was 
observed in substantial part of the genome. Upstream CpG 
sites close to TSS showed mostly negative correlations 
confirming the regulatory role of epigenetic changes in this 
region on gene expression. HOX cluster proteins, SOX11, 
SOX21 and histone core proteins are upstream regulators 
of enhancer hypomethylation, and zinc finger proteins 
(ZNF), SMAD4, STAT4, STAT5B, NKX2-3 and NKX6-
1 are upstream regulators of enhancer hypermethylation. 
Pathway enrichment analysis of differentially methylated 
and DEGs suggests that immune system related pathways 
are top affected pathways suggesting that immune cell 
infiltration is taking place in the tumors.

MATERIALS AND METHODS

DNA methylation and RNAseq data

We downloaded TCGA Firehose level-3 data 
for DNA methylation and gene expression using 
Bioconductor tool RTCGAToolbox [74]. We used the 
Illumina HumanMethylation450 BeadArray data for DNA 
methylation analysis; and IlluminaHiSeq RNASeqV2 
data for gene expression analysis. The DNA methylation 
level-3 data contain β values for 485,578 CpG sites with 
annotations for HUGO Gene Nomenclature Committee 
(HGNC) gene symbols; chromosomes (UCSC hg19) 
and CpG coordinates (UCSC hg19). These β values 
calculated as (M/M+U) range from 0 to 1, where M is 
methylated allele frequencies and U is unmethylated 
allele frequencies; so higher β values indicate higher 
methylation. The gene expression data were obtained as 
single RSEM (RNAseq by Expectation Maximization) 
values for 20,531 HGNC genes.

Methylation data processing

We removed β value for those CpG probes that 
were either mapped against chromosomes X and Y to 
remove gender biases, or missing in more than 20% of 
the samples. We also used k nearest neighbor based 
imputation to estimate the remaining missing values in 
the data [75]. Statistical analyses of DNA methylation of 
194 samples (184 primary tumors and 10 normal samples) 
were performed at two different levels, i.e. the CpG site 
level and the gene level. For distal enhancer analysis, we 
used probes that are 2kb away from the TSS in the cis-
region.

We separately analyzed the CpG probes that are 
mapped to genes in six different subregions: TSS200 
(region from TSS to − 200 bp upstream of TSS), TSS1500 
(200-1,500 bp upstream from TSS), 1st exon, 3’UTR, 
5’UTR and gene body. We also analyzed DNA methylation 

in UCSC CpG island, shores (regions 0–2 kb from CpG 
islands), shelves (regions 2–4 kb from CpG islands), and 
open sea regions (CpG sites in the genome that do not 
have a specific designation). The ‘gene region collapsed 
data’ were constructed to reduce the dimensionality of 
methylation data on regions that are most relevant for 
gene function. DNA methylation levels for each sub-
region were summarized using the median, i.e. if a gene 
has more than one CpG site in the same subregion we used 
the median of β values (by using ‘aggregate’ function in 
R). We also did differential methylation analysis at CpG 
Island level. For dm-CpG island analysis, we used median 
of β value of all CpG sites in the known UCSC island. 
Only those CpG islands that have at least three CpG 
sites with β value after preprocessing steps were used for 
differential CpG island analysis.

RNASeq data processing

The level-3 RNASeq data have gene level expression 
value, meaning any alternate isoforms are included in a 
single normalized RSEM expression value. These values 
were derived by mapping RNASeq reads with MapSplice 
and quantifying with RSEM [76]. The level-3 data in 
TCGA has different types of data for RSEM, but we used 
the expected count data in this analysis. We removed all 
samples that lack expression values for more than 20% of 
the genes, and also removed genes that lack expression 
values for which more than 20% of the samples from our 
analyses. We used the k nearest neighbor imputation for 
handling missing expression values in the data.

Differential methylation analysis

We removed all those probeshaving a SNP within 
10bp of interrogated CpG sites as suggested by previous 
TCGA studies [77, 78]. We also removed the probes on 
chromosomes X and Y and those in the repeated regions 
of chromosomes. We calculated β values for CpGs, 
which have missing β value in ≤ 20% samples by using 
15-nearest neighbor in imputeKNN module of R tool, 
impute. We used the R package, “samr” [79] with 10,000 
permutations for differential methylation analysis. For 
a CpG site to be considered differentially methylated, 
the difference in the median β value in primary tumor 
and normal samples should be at least 0.1 and the FDR 
q-value should be less than 0.01. We also used the same 
parameter in samr for differential CpG island analysis on 
summarized methylation data. Then, we calculated the 
methylation frequency per mega base pairs (Mb) for each 
chromosome. For this, we calculated the total number 
of methylation for each chromosome and divided by the 
chromosome length (Mb). Similarly, we also calculated 
hypermethylation and hypomethylation frequency for 
each chromosome. If the ratio between hypermethylation 
to hypomethylation frequencies is ≥ 1.5, we consider that a 
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particular chromosome is predominantly hypermethylated. 
Similarly if hypomethylation to hypermethylation 
frequency ratio is ≥ 1.5 we consider that chromosome as 
predominately hypomethylated.

Differential gene expression analysis

For differential gene expression analysis, we used 
the expected counts data from 178 primary and 4 normal 
samples. We used the Bioconductor tool, edgeR [80] for 
differential gene expression analysis. Similar to DNA 
methylation, we calculated missing gene expression 
values using 15-nearest neighbor in imputeKNN option in 
R tool, impute. We used a cutoff value of 0.05 for both raw 
p-value and Benjamini-Hochberg (BH) adjusted p-value 
for differential expression analysis.

Correlation between DNA methylation and gene 
expression

For correlation analysis, we used 178 primary tumor 
samples that contain both DNA methylation and gene 
expression data. Correlation between DNA methylation 
and gene expression was done by using linear regression 
in R package, eMap [47]. Methylation and expression 
levels of genes were tested for non-zero correlation 
using Pearson’s correlation i.e. exclude all those with a 
correlation value of zero. For analysis, we used probes 
within 100 kb of TSS of a gene, an association was 
considered as significant if Bonferroni corrected p-value 
was less than 0.05. Genome wide correlation between 
DNA methylation and gene expression was visualized 
using R package, quantsmooth [81].

The median methylation of CpGs in the region 
of ‘gene region collapsed’ and gene expression of 
corresponding gene was tested for non-zero correlation 
using Person correlation (R function cor.test). Correlation 
between DNA methylation and gene expression was 
considered as significant if the raw p-value and BH 
corrected p-value were both less than 0.05.

Epigenetic-driven gene analysis

DNA methylation level of a gene has a significant 
effect on its corresponding gene expression to be 
considered as epigenetic-driven gene. For epigenetic-
driven gene analysis we used Bioconductor tool 
MethylMix [48, 49, 82]. First, each CpG sites is associated 
with its closest corresponding genes. Next, MethylMix 
check the effect of DNA methylation on its corresponding 
gene expression in order to be considered as epigenetic-
driven gene. MethylMix is computationally very 
exhaustive tool; it runs for each CpG and corresponding 
gene pair in parallel mode. Many CpGs show correlated 
methylation profiles, therefore to improve the speed we 
used hierarchical clustering to create cluster of CpGs with 

similar methylation profiles. We used 1-pearson correlation 
as a distance with cutoff correlation 0.3 in each cluster to 
define CpG clusters. Then we summarize the CpG-cluster 
by taking the average β of all CpGs in that cluster. First, we 
used an adjusted p-value cutoff of 0.05 and delta β cutoff 
of 0.10 for differentially methylated CpGs or CpG-clusters. 
Later we used linear regression to model the expression of 
each gene in cancer with its DNA methylation β values. 
We used cutoff p-value of 0.001 and negative correlation 
between DNA methylation and corresponding gene 
expression to select epigenetic-driven genes.

Clustering analysis

Non-negative matrix factorization (NMF) was used 
to identify optimum number of clusters in PC methylation 
data. We used the R tool, NMF v-0.20.6 [83] for clustering, 
and ComplexHeatmap [43, 44] for generating heatmap 
plots. Differentially methylated CpG sites with Δβ ≥ 0.3 
were used as input in NMF. NMF parameters include 
Burnet algorithm, k=2 to k=7 clustering and number of 
iterations equal to 500. The preferred clustering result was 
determined by using the observed cophenetic correlation 
coefficients between clusters and the average silhouette 
width of consensus cluster members by using R package, 
‘cluster’. Fisher’s exact test was used in R to evaluate the 
enrichment of genes in clusters.

Enrichment analysis

We used an online tool, WebGestalt for enrichment 
analysis of differentially methylated and DEGs [39]. 
HGNC genes symbols were uploaded and analysis was 
performed against human reference genome using a BH 
multiple adjustment threshold of 0.01 and a minimum 
number of four genes per category. We also used Ingenuity 
Pathway Analysis (IPA) for canonical pathway and 
upstream regulator analyses. In case of IPA analysis, we 
used only the human pathway data knowledge base at a 
BH multiple correction p-value 0.01 of Fisher exact test.

Regulatory element landscape and transcription 
factor analysis

For regulatory element analysis we used the 
Bioconductor tool, ELMER (Enhancer Linking by 
Methylation/Expression Relationship) [84]. In ELMER, we 
used level-3 data from tumor samples that have both DNA 
methylation and gene expression data and control samples 
DNA methylation data. ELMER used ENCODE/REMC 
ChromHMM, FANTOM5 genomic region as annotated 
enhancer region. We used ELMER to find out the distal 
enhancer probes (in known enhancer region and >2.0 kb 
away from known TSS by UCSC gene annotation) and 
correlates enhancer state with expression of nearby genes to 
identify transcriptional target. In the first step, we will find 
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out distal enhancer probes and used one tailed t-test to find 
out hypermethylated and hypomethylated distal probes. In 
the next step, we determined the correlation between the 
differentially methylated distal enhancer probe and 10 nearest 
up or downward gene expression values to find out putative 
target gene and distal enhancer probe pair. Further, ELMER 
will find the enriched TF binding motifs for differentially 
methylated distal enhancer probes which are significantly 
associated with putative target gene, by using find individual 
motif occurrences (FIMO) with a p-value < 1e-4 to scan a 
+/- 100bp region around each probe using position weight 
matrices (PWMs) of human TF motif database JASPAR-
Core [85] and Factorbook [86]. Finally, ELMER determined 
the list of upstream regulatory TFs whose expression is 
associated with TF binding motif DNA methylation. For 
each motif, we calculated the average DNA methylation 
of all distal enhancer probes within +/- 100bp of a motif 
occurrence regions, and correlated with the expression of 
1,982 known human TFs [50]. Then we made two groups 
of samples: M group (20% sample with the highest average 
DNA methylation for motif) and U group (20% samples 
with lowest average DNA methylation for motif), for each 
motif-gene pair. Mann-Whitney U test was used to test the 
null hypothesis that overall gene expression in group M was 
greater or equal than that in group U, for each candidate 
motif-TF pair. This resulted in a raw p-value (P) for each 
of the 1,982 TFs, for each motif tested. All TFs were ranked 
by the -log10(P), and those falling within the top 5 % of this 
ranking were considered candidate upstream regulators.

Data analysis

All analyses were performed using the R version 
3.2.1 [87]. Enrichment analysis was performed using 
WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) 
and Ingenuity Pathway Analysis (Ingenuity Systems, 
Redwood, California, USA).
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