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ABSTRACT
Streptococcus suis is an important zoonotic pathogen. The massive use of tylosin and other
antibiotics in swine production has led to the emergence of resistant phenotypes of S. suis.
However, there are no adequate measures available to address the problem of bacterial resis-
tance. This study involved the use of 1/4 MIC (0.125 µg/mL) of tylosin to investigate resistance-
related proteins by S. suis ATCC 700794. Our results showed that 171 proteins were differentially
expressed in S. suis tested with 1/4 MIC (0.125 µg/mL) of tylosin using iTRAQ-based quantitative
proteomic methods. TCS, heat shock protein and elongation factors were differentially expressed
at 1/4 MIC (0.125 µg/mL) of tylosin compared to non treated, control cells. Using quantitative RT-
PCR analysis, we verified the relationship between the differentially expressed proteins in S. suis
with different MIC values. The data showed that expression profile for elongation factor G (fusA),
elongation factor Ts (tsf), elongation factor Tu (tuf), putative histidine kinase of the competence
regulon, ComD (comD), putative competence-damage inducible protein (cinA) and protein GrpE
(grpE), observed in tylosin-resistant S. suis, correlated with that of S. suis ATCC 700794 at 1/4 MIC
(0.125 µg/mL). The MIC of tylosin-resistant showed high-level resistance in terramycin, chlorte-
tracycline, ofloxacin and enrofloxacin. Our findings demonstrated the importance of elongation
factors, TCS and heat shock protein during development of tylosin resistance in S. suis. Thus, our
study will provide insight into new drug targets and help reduce bacterial multidrug resistance
through development of corresponding inhibitors.
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Introduction

Tylosin is one of the most common macrolide antibiotics,
which is effective against both Gram-positive and Gram-
negative bacteria [1]. It is widely used to prevent respiratory
diseases caused by organisms, such as Mycoplasma,
Staphylococcus aureus, Pseudomonas aeruginosa and
Streptococcus suis [2]. S. suis is an important zoonotic
pathogen that causes a wide range of diseases in pigs,
includingmeningitis, septicemia, pneumonia, endocarditis,
and arthritis [3]. With the massive use of tylosin, different
parts of the world have reported widespread clinical resis-
tance [4,5]. During 2010 to 2013, characterization of
227 S. suis strains isolated from pigs showed high levels of
resistance to tylosin (93.8%) in Korea [6].Moreover, 95.6%
of the isolates were resistant to clindamycin, tilmicosin,
tylosin, oxytetracycline and more classes of antimicrobials,
indicating the high prevalence ofmultidrug resistant S. suis.

Generally, there are at least four classical antibiotic
resistance mechanisms including inactivation of drugs

via hydrolysis or modification, alteration or bypass of
the drug target, permeability changes in the bacterial
cell wall which restricts antimicrobial access to target
sites, and active efflux of the antibiotic from the micro-
bial cell. In addition to the above mechanisms, new
gene acquisition, gene expression modifications, two-
component regulatory systems (TCS), heat shock pro-
teins, and bacterial elongation factor are involved in
drug resistance [7,8].

TCS, the most widespread regulatory systems in
bacteria [9], are recognized by two-main protagonists:
the histidine kinase and their cognate response regula-
tor [10]. The competence operon comCDE and puta-
tive competence-damage inducible protein (cinA)
which are involved in the regulation of TCS, provided
evidence for gene transfer events in Streptococcus pneu-
moniae [11]. Meanwhile, previous studies have shown
that TCS regulates antibiotic resistance in many patho-
genic bacteria [12–15]. Therefore, TCS may play an
important role in multidrug resistance. It is well
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known that elongation factors play important roles in
forming bonds between the tRNA attached peptidyl-
transferase and the next amino acid, ribosomal transla-
tion, causing premature dissociation of the peptidyl-
tRNA from the ribosome and protein synthesis [16–
19]. Previous studies have shown that elongation fac-
tors can not only inhibit bacterial protein synthesis
using the antibiotics tetracycline, tylosin and fluoroqui-
nolone [20,21], but also take part in imparting drug
resistance in Escherichia coli. Moreover, elongation fac-
tors have been reported to be differentially expressed in
tylosin-resistant Mycoplasma gallisepticum [22–24].
Thus, elongation factors are considered as potential
targets for multi-drug resistant bacteria. In addition,
heat shock proteins are involved in antibiotic resistance
mechanism. Heat shock proteins are stress-responsive
proteins which act as chaperonins to fold proteins.
Many heat shock proteins (HSP) such as DnaJ, DnaK,
GroEL, GroES, and GrpE have been differentially
expressed in drug-resistant strains [25–28]. They play
a role in the development of drug resistance by provid-
ing coping mechanism during the early stages of expo-
sure to drugs in E. coli [29].

Quantitative proteomics have considerably improved
during the past decade and been employed in comparative
analysis to study whole proteome-wide expression
dynamics of cells grown under a variety of growth or stress
conditions such as antibiotics [30]. Researchers have shown
that quantitative proteomic analysis can be used as an
effective tool to find novel resistance mechanisms [31].
However, changes in the proteomics profile of S. suis in
response to tylosin have not been yet reported.

In our study, iTRAQ labeling-based quantitative proteo-
mics was utilized to study the differentially expressed pro-
teins in S. suis upon addition of tylosin in comparison to
non-treated, control cells. Bioinformatics analysis revealed
that proteins related to TCS, protein elongation factor and
heat shock protein could be involved in tylosin resistance
mechanism. In order to identify whether these proteins
contributed to tylosin-resistance, S. suis was induced in
the presence of sub-minimum inhibitory concentration
(MIC; 0.125 µg/mL) of tylosin, in vitro. In the tylosin-
resistant strain, candidate proteins were further verified
for changes at mRNA level by qRT-PCR. The MICs of
tetracycline and fluoroquinolone were determined to con-
firm resistance to these drugs in the strain and to establish
the possibility of multidrug resistance in the presence of
tylosin. Our findings demonstrated the importance of TCS,
protein elongation factor and HSP in tylosin resistance of
S. suis, thus providing insight into developing correspond-
ing inhibitors to reduce bacterial resistance.

Materials and methods

Bacterial strain and cultivation

Streptococcus suis ATCC 700794 was purchased from
American type culture collection. S.suis was grown in
Todd-Hewitt broth (THB) (THB: Summus Ltd, Harbin,
Heilongjiang, China) or Todd-Hewitt broth agar (THA)
with 5% (v/v) fetal bovine serum (Sijiqing Ltd, Hangzhou,
Zhejiang, China). The cultures were used for inducing the
resistance ATCC 700794 (S-t-R 128) and the MIC assays.

Minimum inhibitory concentrations and growth
rates

The MIC of S. suis to tylosin (98% purity, Solaibao
Biotechnology Co., Ltd, Beijing, China) was determined
by microtitre broth dilution method as recommended by
the Clinical and Laboratory Standards Institute (CLSI).
Cultures were diluted to 1 × 106 colony-forming units
(CFU)/mL using THB. Finally, 100 μL of cell suspensions
were inoculated into the wells of a 96-well plates (Corning
Costar® 3599Corning,NY,USA) containing serial dilutions
of tylosin culture medium as previously reported [32,33].
At the same time, negative control was set up as outlined in
a previous study [33]. The inoculated microplates were
incubated at 37°C for 24 h. The MICs of tylosin-resistant
mutants to a variety of antibiotics, terramycin, chlortetra-
cycline, ofloxacin, enrofloxacin, florfenicol and penicillin
K (98% purity, Solaibao Biotechnology Co., Ltd, Beijing,
China) were measured using the same procedure.

The growth rates of S. suis ATCC 700794 treated with
and without 1/4MIC (0.125 µg/mL) tylosin were analyzed
[33]. Briefly, S. suis ATCC 700794 treated without tylosin
and with 1/4 MIC tylosin (0.125 µg/mL) were incubated
at 37℃ for 12 h. Then, the samples were taken every hour
and applied to the blood plate (THA with 5% (v/v) fetal
bovine serum). All samples were diluted into 10−1, 10−2,
10−3, 10−4, 10−5, 10−6, 10−7 and 10−8 CFU/mL. 0.1 mL
bacterial fluid from 10−5, 10−6 and 10−7 dilutions were
taken and applied to the plate. The assays were repeated 3
times. These plates were cultured at 37℃ overnight. The
number of colonies grown on the plate were counted on
the 2nd day and there were 20 to 300 colonies per plate
[34] (Figure 1).

iTRAQ analysis

Protein was extracted from S. suis cells under two differ-
ent conditions at 37℃ for 24 h (cells treated with 1/4MIC
(0.125 µg/mL) of tylosin and non-treated cells) as
described previously [33]. The iTRAQ analysis was
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carried out at Shanghai Applied Protein Technology Co.
Ltd (APT, Shanghai, China). Three biological replicates
were evaluated to minimize experimental error.
According to the FASP procedure and the reagent proto-
col [33], iTRAQ-labeled peptides were fractionated by
strong cation exchange (SCX) chromatography using
the AKTA Purifier system. LC–MS/MS analysis was per-
formed on a Q Exactive mass spectrometer coupled to
EasynLC (Proxeon Biosystems, Thermo Fisher Scientific).

Bioinformatics analysis

The sequence data of 171 differentially expressed pro-
teins were retrieved from Uniprot KB. The differen-
tially expressed patterns were illustrated using K-means
clustering in conjunction with heat map (Figure 2) [35].
The relationships between up-regulated and down-
regulated proteins were analyzed using STRING data-
base (http://string-db.org/). The creation of a PPI net-
work based on experimental data was used to predict
the interactions.

Selection of tylosin-resistant S. suis mutants

S. suis was used to select tylosin-resistant mutants
[32]. To select resistant mutants, we performed
serial passaging in THB medium containing 1/4
MIC (0.125 µg/mL) of tylosin. MIC of tylosin was

determined for S. suis and resistant strains were
induced in vitro using the broth dilution method
in 96-well plates. In these plates, each well con-
tained diluted concentrations of tylosin with 0.125
μg/mL, 0.25 μg/mL, 0.5 μg/mL, 1 μg/mL, 2 μg/mL
and 4 μg/mL. The inoculated microplates were incu-
bated at 37℃ for 24 h before evaluated. In addition,
the stability of tylosin resistance was tested by serial
passage (10 times) on an antibiotic-free medium.

The quantitative RT-PCR (qRT-PCR)

S. suis was grown to mid-log phase and then the culture
mediumwas supplemented with 1/4MIC (0.125 µg/mL) of
tylosin prior to further incubation at 37℃ for 24 h. Control
cells were incubated in the absence of tylosin. Resistant
strains at a drug resistance level of 16 μg/mL of tylosin
(S-t-R 16) and 128 μg/mL of tylosin (S-t-R 128) were also
incubated at 37℃ for 24 h. Total RNA extraction (Omega,
Beijing, China) and cDNA synthesis (Takara, Dalian,
China) were done according to the manufacturer’s instruc-
tions. To investigate the effect of tylosin on the expression
of genes, six proteins were chosen (Table 1). The 16S rRNA
of S. suis strain was selected as a reference gene for all the
experiments and the primers of target genes are listed in
Table 2 [36]. The reaction conditions were 94℃ for 10min
followed by 40 cycles of amplification at 94℃ for 15 s and
60℃ for 60 s [36]. The assays were repeated 3 times.

Figure 1. Growth curve of Streptococcus suis ATCC 700794 in the absence of tylosin and in the presence of 1/4 MIC of tylosin. Data
are expressed as means ± standard deviations.
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Statistical analysis

Each set of values was paralleled with three sets of
controls and compared with the control groups.
Student’s t-test was used to calculate the differences
between the two mean values, with p < 0.05, set as
the statistical significance threshold.

Results

Bacterial growth under the influence of tylosin at
sub-MIC

MIC of tylosin against S. suisATCC 700794 was 0.5 µg/mL
in the present study. Furthermore, after 10 h of incubation
at 37℃, both non-treated and treated (1/4 MIC (0.125 µg/
mL) of tylosin) S. suis ATCC 700794 reached stationary
phase, indicating there was no effect of tylosin on the
growth rates of S. suis strain (Figure 1).

Analysis using iTRAQ

To investigate the effect of tylosin stress on S. suis, 1/4
MIC of tylosin was selected (0.125 µg/mL) for quanti-
tative proteomic analysis. First, bacteria treated and
untreated with tylosin were labeled with isobaric
reagents. Following this, the samples were pooled, frac-
tioned by SCX chromatography, separated by LC and
analyzed by MS/MS. Our analysis detected 1501 pro-
teins. A ratio of proteins with ＞ 1.2 or ＜ 0.8

(p-value<0.05) was categorized as differentially
expressed proteins. A total number of 171 differentially
expressed proteins were identified in 1/4 MIC
(0.125 µg/mL) of tylosin treated cells when compared
to non-treated cells. Due to tylosin stress, 105 proteins
were up-regulated, and 66 proteins were down-
regulated in S. suis treated with tylosin, in comparison
to the non-treated sample. In hierarchical clustering

Figure 2. K-means clustering representation of 171 profiles of Streptococcus suis with up-regulations (a) and down-regulations (b).
The magnitude of the percentage is represented by a color scale (top right) going from low (green) to high (red).

Table 1. Identification of Differentially Expressed Proteins.

Accession Proteins
Fold

change

G7SBK2 Elongation factor Ts 2.27
G7SMG3 Elongation factor G 3.67
Q9EZW2 Elongation factor Tu 1.74
G5L3D2 Putative histidine kinase of the competence

regulon, ComD
0.74

G7SLJ0 Putative competence-damage inducible protein 0.56
A4VZB4 Protein GrpE 0.72

Table 2. Primers used for the quantitative qRT-PCR analysis.
Genes Primer sequence

grpE Forward: 5’AGCCGCAGCAGCACAACAAG 3’
Reverse: 5’CTCGCCATCTACCACATCATCATCTG 3’

cinA Forward: 5’GGTACAGACAGTAGCAGAGCGATTG 3’
Reverse: 5’AAGTACGTTGTCCTCTGTTGATTCCG 3’

comD Forward: 5’AGGTCGTTATAGTCGTCATGTTGAGTC 3’
Reverse: 5’ GTTCGAATCGCATCAATGTCTTCCTC 3’

fus Forward: 5’CTGGATGGAGCAAGAGCAAGAGC 3’
Reverse: 5’ACACCTGATTGTGAGTCAAGAACGG 3’

tuf Forward: 5’TTGGTGTGCTTCTTCGTGGTGTAC 3’
Reverse: 5’TACGGAAGTAGAACTGTGGACGGTAG 3’

tsf Forward: 5’ AGCAGAATTGGCAGCAGAAGGC 3’
Reverse: 5’ GAAGCGTTCACTGAGTTCAAGTAAGC 3’

16S rRNA Forward: 5’ GATATATGGAGGAACACCG 3’[36]

Reverse: 5’ GACCCAACACCTAGCACT 3’ [36]
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analysis (Figure 2), some proteins were found to have
a significant change in their expression as visualized
using the R studio software.

The resistance-related proteins like elongation factor
G (G7SMG3), elongation factor Ts (G7SBK2), elonga-
tion factor Tu (Q9EZW2) were up-regulated and had
fold-change values of 3.67, 2.27 and 1.74, respectively.
Proteins like putative histidine kinase of the compe-
tence regulon, ComD (G5L3D2), putative competence-
damage inducible protein (G7SLJ0), protein GrpE
(A4VZB4) were down-regulated in tylosin-treated sam-
ple with fold-change values of 0.74, 0.56 and 0.72,
respectively (Table 1).

Protein–Protein interaction analysis

Protein-protein interaction and network analysis were
performed on 171 differentially expressed proteins
using the web-based tool STRING. Among these pro-
teins, 77 proteins were included in the network and
connected with each other. These proteins belonged to
protein elongation factor, TCS and heat shock protein
families (Figure 3). The major networking proteins in
the STRING analysis were EF-Tu, Ef-G, EF-Ts, putative
competence-damage inducible protein and protein
GrpE.

MIC determination of resistant strain

The tylosin MIC against S. suis ATCC 700794 was 0.5
μg/mL. After 25 passages induction, the tested strain
could tolerate 128 μg/mL, which MIC increased 256-
fold in comparison with the parent strain. The resis-
tance phenotype remained stable after 10 passages in
antibiotic-free medium. In CLSI, there is no clear clin-
ical breakpoint for tylosin against S. suis, but the strain
which could amplify erm can represent the resistance to
macrolide. In the previous studies, we know the gene of
ermB can mediates high levels of resistance to tylosin
and can be amplified in the resistant strain [37–41]. So,
in our study, the ermB was used to verify whether the
strain was resistant or sensitive to tylosin. The results
showed that the strains S-t-R 16,S-t-R 128 could
amplify ermB, but S. suis ATCC 700794 could not
amplify ermB (Supplementary Material). So, the strains
S-t-R 16,S-t-R 128 were tylosin-resistant, while S. suis
ATCC 700794 was not resistant.

The susceptibility of S. suis to different kinds of
antibiotics were determined using the in-vitro method
recommended by the CLSI. The MICs of terramycin,
chlortetracycline, ofloxacin and enrofloxacin indicated
high-level resistance. However, the MICs of florfenicol
and penicillin K were unchanged (Table 3).

Investigation of changes in mRNA transcript
levels in tylosin-resistant S. suis

To explore whether the differential expression of proteins
reflected a change at the transcription stage, mRNA levels
of six proteins in treated with 1/4 MIC (0.125 µg/mL) of
tylosin and non-treated S. suis were analyzed by qRT-PCR.
Transcript levels of elongation factors (fusA, tuf, tsf), GrpE
(grpE) and TCS (cinA, comD) were analyzed.
Complementing the proteomics data, gene expressions of
grpE, cinA and comDwere down-regulated at mRNA level,
while the gene expression of fusA, tuf and tsf were up-
regulated. In order to verify whether the expressions of
these proteins related to drug resistance, drug-resistant
bacteria was induced and analyzed for changes at the
transcription level. In the drug-resistant bacteria, the
mRNA levels of fusA, tuf, tsf, comD and grpE were consis-
tent with that of S. suis ATCC 700794 which was treated
with 1/4 MIC (0.125 µg/mL) of tylosin (Figure 4(a)). In
order to confirm that the change was caused by tylosin, we
detected the expression levels of fusA, tsf, tuf, cinA, comD
and grpE in S. suis ATCC 700794, S-t-R 16 (Figure 4(b))
and S-t-R 128 (Figure 4(c)).With the increase in the level of
resistance, the gene expression levels of fusA, tsf and tuf
(Figure 4(d)) increased, while that of cinA, comD and grpE
decreased (Figure 4(e)).

Discussion

Generally, antibiotics are the first choice of treatment
opted by veterinarians and farmers whenever there is an
occurrence of bacterial disease. The long term use or
abuse of antibiotics has often resulted in bacterial resis-
tance, as in the cases of bacteria such as E. coli,
Staphylococcus aureus and Coagulase-Negative
Staphylococci [1]. Thus, an understanding of the mechan-
isms involved in antibiotic resistance is necessary to
extend the life of current antibiotics and enable the dis-
covery of novel targets [6]. The intricate molecular varia-
tions within bacterial pathogens associated with
antibiotics, in response to treatment bacterial diseases,
complicates the identification and quantification of func-
tional proteins. So far, S. suis is a major public health issue
and an emerging zoonotic agent in Southeast and East
Asia [42,43]. In order to find appropriate inhibitors that
can reduce bacterial resistance in tylosin-resistant S. suis,
it is very important to focus on discovering specific target
proteins which are related to tylosin resistance or multi-
drug resistance. In the last few years, proteomics methods
have become a powerful tool for investigating antibiotic
resistance mechanisms [44]. In this study, we used an
iTRAQ-based proteomic approach to gain a better
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understanding of proteins that are differentially expressed
under tylosin stress.

In order to explore the differences in protein expression
treated with 0.125 µg/mL tylosin and non-untreated S. suis,

Figure 3. The network of significantly differentially expressed proteins (ratio>1.2 or <0.8 (p-value<0.05)) was analyzed by STRING.
Small nodes represent proteins of unknown 3D structure; large nodes represent proteins with some 3D structure information or
predicted. Coloured nodes represent query proteins and first shell of interactors; white nodes represent second shell of interactors.
The blue lines represent database evidence; the purple lines represent experimental evidence; yellow lines represent text mining
evidence; the black lines represent coexpression evidence; and green lines represent neighbourhood evidence.

Table 3. MICs of resistance strain Streptococcus suis ATCC 700794.

Antibiotic Sensitive strain
(ATCC 700794)

Resistance strain
(S-t-R 128)

CLSI

terramycin 0.5 μg/mL 128 μg/mL S 2 R 8
ofloxacin 1 μg/mL 32 μg/mL S 2 R 8
enrofloxacin 0.5 μg/mL 2 μg/mL S 0.5 R 2
chlortetracycline 0.625 μg/mL 32 μg/mL S 2 R 8
florfenicol 2 μg/mL 2 μg/mL S 2 R 8
penicillin K 1 μg/mL 1 μg/mL S 0.5 R 2
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we observed proteins mainly belonging to protein elonga-
tion factor, two-component signal transduction system
(TCS) and heat shock protein families based on our func-
tional analysis using STRING. Previous studies suggest
three types of elongation factors that required for prokar-
yotic cells translation are involved in drug resistance.
Among them, the translation elongation Factor-G (EF-G)
was reported to increase the resistance to kanamycin in
E. coli via different pointmutations in EF-G [24,45]. EF-Tu,
another elongation factor, is the target of four families of
antibiotics viz kirromycin, enacyloxin IIa, pulvomycin and
GE2270A in E. coli [46,47]. Additionally, EF-G and EF-Tu
have been identified as up-regulated proteins in tylosin-
resistant M. gallisepticum [27]. EF-TS has been displayed
a significant change in themultidrug resistant E. coli strains
[23]. To find out whether these proteins were related to
drug resistance in S. suis, strains S-t-R 16 and S-t-R 128
were induced in our experiment. The genes fusA (EF-G), tuf
(EF-Tu) and tsf (EF-Ts) were up-regulated in strains
S-t-R 16 and S-t-R 128, compared to the S. suis ATCC

700794. The expression of these elongation factor genes
changed significantly with increase in the degree of resis-
tance. This could be attributed to the function of tylosin.
Previous research has reported that the MIC of ofloxacin is
up-regulated in erythromycin-induced strain [48] and the
MIC of chlortetracycline increased 64 times in the tylosin-
induced E. coli [49]. In our experiment, the MICs of terra-
mycin, chlortetracycline, ofloxacin and enrofloxacin were
shown high-level resistance in the S-t-R 128 strain. Some
studies have provided evidence that the “site”mutations of
EF-G result in large changes in gene expression such as
cyaA (adenylate cyclase) and topA (topoisomerase I) [24].
The topA gene acts jointly with topoisomerase IV genes
(parC and parE) and relaxes DNA supercoils in opposition
to GyrAB activity, while the GyrAB protein is the most
important site to form the resistance of fluoroquinolone
[21]. Previous studies have reported that the tetracycline
(TC) antibiotics inhibit bacterial protein synthesis by pre-
venting the attachment of aminoacyl tRNA to the riboso-
mal acceptor A site [50]. The S-t-R 128 strain showed

Figure 4. (a). Effect of 1/4 MIC of tylosin on mRNA expression of genes in Streptococcus suis ATCC 700794. Data are expressed as
means ± standard deviations. The expression was normalized to 16S rRNA. Significantly different (*p < 0.05) compared to untreated
control bacteria. (b). Effect on mRNA expression of genes in drug resistance level at 16 μg/mL of tylosin (S-t-R 16) Streptococcus suis
ATCC 700794. Data are expressed as means ± standard deviations. The expression was normalized to 16S rRNA. Significantly
different (*p < 0.05) compared to control bacteria. (c). Effect on mRNA expression of genes in drug resistance level at 128 μg/mL of
tylosin (S-t-R 128) Streptococcus suis ATCC 700794. Significantly different (*p < 0.05) compared to untreated control bacteria. Data are
expressed as means ± standard deviations. The expression was normalized to 16S rRNA. Significantly different (*p < 0.05) compared
to control bacteria. (d). Effect on mRNA expression of fusA, tuf, tsf in Streptococcus suis ATCC 700794, drug resistance level at 16 μg/
mL of tylosin (S-t-R 16) Streptococcus suis ATCC 700794 and drug resistance level at 128 μg/mL of tylosin (S-t-R 128) Streptococcus
suis ATCC 700794. Data are expressed as means ± standard deviations. The expression was normalized to 16S rRNA. Significantly
different (*p < 0.05) compared to control bacteria. (e). Effect on mRNA expression of comD, cinA, grpE in Streptococcus suis ATCC
700794, drug resistance level at 16 μg/mL of tylosin (S-t-R 16) Streptococcus suis ATCC 700794 and drug resistance level at 128 μg/
mL of tylosin (S-t-R 128) Streptococcus suis ATCC 700794. Data are expressed as means ± standard deviations. The expression was
normalized to 16S rRNA. Significantly different (*p < 0.05) compared to control bacteria.
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multidrug resistance to macrolides, quinolones and tetra-
cycline that means the protein elongation factors may play
important roles in conferring resistance to quinolones and
tetracycline.

Natural transformation is a broadly conserved
mechanism for horizontal gene transfer in bacterial spe-
cies [51]. In S. pneumoniae, several observations suggest
that mosaic PBP genes was taken up at the physiological
state. This sate is referred to as competence. Bacteria
belonging to the Streptococcus genus, such as
S. pneumoniae, Streptococcus mutans and S. suis are
reported to be transformable species [46,52]. The TCS
pathway, ComCDE, is involved in controlling compe-
tence. ComD and putative competence-damage inducible
protein, which were significantly down-regulated in tylo-
sin-treated sample, belong to the TCS of ComCDE.

In our study, comD and cinA gene transcripts were
significantly down-regulated which was in agreement
with to the proteomics data. Similar results were
obtained in tylosin-resistant strain in which the expres-
sion levels of cinA and comD were significantly down-
regulated. Additionally, down-regulation of these genes
correlated with the level of drug resistance due to
tylosin. Since, S. suis has been reported as the trans-
formable species, ComCDE may exist in S. suis and
play an important role in multidrug resistance.

A heat shock protein in Stenotrophomonas maltophilia
acted as a stress-responsive protein by inducing quino-
lone resistance [25]. Additionally, a study demonstrates
role of the heat shock protein GrpE that has proved early
exposure to these drugs in E. coli [53]. In this study, GrpE
was significantly down-regulated in tylosin resistant
S. suis and this correlated with the level of drug resis-
tance. Previous studies have also shown that expression
levels of GrpE in tylosin resistant M. gallisepticum were
significantly altered at various drug concentrations [27].
Taken together, it is possible that GrpE may be involved
in multidrug resistance.

We analyzed differentially expressed proteins of S. suis
in response to tylosin stress by iTRAQ-based proteomic
analysis. Several proteins showed significant changes in
their level of expression upon tylosin stress in S. suis,
including protein elongation factor, TCS and GrpE. Six
drug resistance related proteins were determined in tylo-
sin-resistant S. suis in response to induction with the
drug and the corresponding changes in transcript levels
were determined. The results showed that protein trans-
lation, elongation factor G, elongation factor Tu, elonga-
tion factor Ts, putative histidine kinase of the
competence regulon, ComD, putative competence-
damage inducible protein and protein GrpE were differ-
entially expressed. The MICs of tetracycline and fluoro-
quinolone showed higher level of resistance compared to

the sensitive bacteria. Based on these observations, we
infer that these variations may be due to stress from the
tylosin. Our data would help in identifying new target
responsible for tylosin-resistant in S. suis and reducing
antibiotic resistance by corresponding inhibitors.
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S. suis Streptococcus suis
MIC Minimum inhibitory concentration
iTRAQ isobaric tag for relative and absolute quantitation
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