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Cryo-Thermal Therapy
Peng Peng, Yue Lou, Junjun Wang, Shicheng Wang, Ping Liu* and Lisa X. Xu*

School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China

Recent studies suggest that highly activated, polyfunctional CD4+ T cells are incredibly
effective in strengthening and sustaining overall host antitumor immunity, promoting
tumor-specific CD4+ T-cell responses and effectively enhancing antitumor immunity by
immunotherapy. Previously, we developed a novel cryo-thermal therapy for local tumor
ablation and achieved long-term survival rates in several tumor models. It was discovered
that cryo-thermal therapy remodeled the tumor microenvironment and induced an
antigen-specific CD4+ T-cell response, which mediated stronger antitumor immunity in
vivo. In this study, the phenotype of bulk T cells in spleen was analyzed by flow cytometry
after cryo-thermal therapy and both CD4+ Th1 and CD8+ CTL were activated. In addition,
by using T-cell depletion, isolation, and adoptive T-cell therapy, it was found that cryo-
thermal therapy induced Th1-dominant CD4+ T cells that directly inhibited the growth of
tumor cells, promoted the maturation of MDSCs via CD4+ T-cell-derived IFN-g and
enhanced the cytotoxic effector function of NK cells and CD8+ T cells, and promoted
the maturation of APCs via cell-cell contact and CD4+ T-cell-derived IFN-g. Considering
the multiple roles of cryo-thermal-induced Th1-dominant CD4+ T cells in augmenting
antitumor immune memory, we suggest that local cryo-thermal therapy is an attractive
thermo-immunotherapy strategy to harness host antitumor immunity and has great
potential for clinical application.

Keywords: tumor ablation, cryo-thermal therapy, antitumor immunity, CD4+ T cells, Th1, IFN-g
Abbreviations: APC, antigen presenting cells; BFA, Brefeldin A; CAR, chimeric antigen receptor; CCK-8, Cell Counting Kit-8;
CD40L, CD40 ligand; CTL, cytotoxic T lymphocyte; CXCL, C-X-C motif chemokine ligand; DAMP, damage-associated
molecular pattern; DC, dendritic cell; DMEM, Dulbecco’s Modified Eagle’s Medium; FasL, Fas ligand; FBS, fetal bovine serum;
IFN-g, interferon gamma; IL, interleukin; i.p., intraperitoneal injection; mAb, monoclonal antibody; MACS, magnetic-
activated cell sorting; MDSC, myeloid-derived suppressor cells; MHC, major histocompatibility complex; NK cell, Natural
Killer cell; RF, Radiofrequency; TCR, T cell receptor; Tfh, T follicular helper; Th, T helper; TNF-a, tumour necrosis factor-
alpha; Treg, Regulatory T cell; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
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INTRODUCTION

Conventional tumor therapies, such as surgery, chemotherapy
and radiotherapy, can still result in poor prognosis and cause
serious side effects, such as chemoresistance and rapid
metastasis. Immunotherapy has been rapidly developed as a
promising therapy for patients with advanced cancer. The main
goals of anticancer immunotherapy include the induction of
effective tumor-specific immunity for the eradication of tumors
and the achievement of long-term tumor-free survival. As the
most precise “killer” of tumor cells, genetically engineered T-
cell receptor (TCR) or chimeric antigen receptor (CAR) T cells
for adoptive cell therapies is an emerging immunotherapy that
redirects T cells to specifically target cancer (1). However,
tumor antigen heterogeneity and tumor microenvironment
remain major challenges limiting their efficacy against
solid tumors.

In general, CD8+ T cells are considered cytotoxic T-cell
subsets and CD4+ T cells play a crucial role in the efficient
induction of CD8+ CTL responses. Recent studies have shown
that CD4+ T cells are important for anticancer responses and
their significance has been increasingly emphasized (2). CD4+ T
cells may drive cancer into senescence and are capable of
mobilizing both the innate and adaptive immune systems (3).
Moreover, CD4+ T cells can promote type 1 polarization of
dendritic cells (DCs) and macrophages and counter
immunosuppression induced by regulatory T cells (Tregs) and
myeloid-derived suppressor cells (MDSCs) (4–8). Preclinical
studies show that CD4+ T cells mediate the crosstalk between
CAR-T cells and the endogenous immune system, which is
necessary for optimal CAR-T-cell efficacy to prevent tumor
escape and improve long-term survival outcomes (9–11). Thus,
harnessing endogenous CD4+ T cells to modulate the immune
activity of the host immune system and activate the antitumor
immune response is a promising strategy for the long-term
control of cancer.

We developed a novel tumor cryo-thermal therapy through
the alternative cooling and heating of tumor tissue in animal
models (12). The long-term survival rate following the therapy
has been observed in B16F10 melanoma, 4T1 breast cancer and
CT26 colorectal cancer (13–15). A pilot study revealed that the
therapy induced the functional maturation of dendritic cells,
promoted CD4+ T cell-mediated antitumor responses, and
decreased Treg cells, contributing to better therapeutic efficacy
in colorectal cancer liver metastasis (CRCLM) patients (16). It
was found that the innate immune system was remodeled to
promote adaptive T-cell immunity (15, 17–21). More
importantly, cryo-thermal-induced CD4+ T cells, especially
neoantigen-specific CD4+ T cells, mediated stronger systematic
antitumor immunity in the long-term (13, 14). However, the
mechanism by which CD4+ T cells that are induced by cryo-
thermal therapy mediate systematic antitumor immune memory
remains unclear.

In this study, we further investigated the characteristics of
CD4+ T cells after cryo-thermal therapy and determined their
role in antitumor immune memory by tumor rechallenge and T-
cell depletion. Both in vivo and in vitro experiments were
Frontiers in Immunology | www.frontiersin.org 2
performed to study the differentiation and function of other
immune cells modulated by CD4+ T cells, and Th1 dominant
over other CD4+ subsets to execute multiple antitumor
immunologic activities in substantial reduction of accumulated
MDSCs and Tregs for immunosuppression reversal. Results laid
the foundation for future development of a thermo-
immunotherapy strategy delivered by minimally invasive cryo-
thermal therapy, to modulate the host immunological
environment and prevent tumor relapse and metastases.
MATERIALS AND METHODS

Cell Culture
B16F10 mouse melanoma tumour cell line was donated by
Professor Weihai Yin at Med-X Research Institute, Shanghai
Jiao Tong University. The murine mammary carcinoma 4T1 cell
line was provided by Shanghai First People’s Hospital, China.
B16F10 cells and 4T1 cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM; GE Healthcare, Logan, UT)
supplemented with 10% fetal bovine serum (FBS, Gemini Bio-
Products, West Sacramento, CA), 100 units/mL penicillin and
100 µg/mL streptomycin at 37°C in a humidified 5%
CO2 incubator.

Animal Models
The female C57BL/6 and BALB/c were obtained from the
Shanghai Slaccas Experimental Animal Co., Ltd. (China) and
used for experimental study at the age of 6–8 weeks. Mice were
housed in isolated cages and a 12 h light/dark cycle environment,
feeding with sterile food and water with pH value kept at 7.5–7.8.
All animal experiments were approved by the Animal Welfare
Committee of Shanghai Jiao Tong University, and experimental
methods were performed in accordance with the guidelines of
Shanghai Jiao Tong University Animal Care (approved by
Shanghai Jiao Tong University Scientific Ethics Committee).
To prepare the tumour-bearing mice, approximately 5×105

B16F10 tumor cells or 4×105 4T1 tumor cells were injected
subcutaneously into the right flank of C57BL/6 or BALB/c
mouse respectively.

The Cryo-Thermal Therapy Procedures
The system developed in our laboratory was composed of liquid
nitrogen for cooling and radiofrequency (RF) for heating. To
reduce the effect of contact thermal resistance and obtain a
continuous thermal delivery during the treatment, a probe was
designed with a cylinder-shaped tip of 1mm in diameter for the
thermal therapy of subcutaneous tumor. Twelve days after
B16F10 tumor inoculation or sixteen days after 4T1 tumor
inoculation, when the tumor volume reached about 0.25 cm3,
the mice were divided randomly into two groups: tumor-bearing
group without the treatment (control) and the cryo-thermal
group with freezing followed by RF heating on primary tumor
as previously described (13). The mice were anesthetised with
intraperitoneal injection (i.p.) of 1.6% pentobarbital sodium
(0.5 ml/100 g, Sigma-Aldrich, St. Louis, MO, USA). The tumor
July 2022 | Volume 13 | Article 944115
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site was sanitised with 75% alcohol before the treatment. All the
procedures were performed aseptically.

Tumor Rechallenge
Study of tumor rechallenge with B16F10 cells was performed in
survivors 14 days after cryo-thermal therapy. Mice were
intravenously infused with 1 × 105 B16F10 tumor cells, and
lung tumor nodules were enumerated 18 days later. One day
before and four days after tumor cell infused, monoclonal
antibodies were injected to deplete target cells.

Preparation of Single-Cell Suspension of
Spleen and Flow Cytometry Analysis
Mice were sacrificed after the cryo-thermal therapy, and the
spleens were collected (n=4 per group). Single-cell suspension of
splenocytes was prepared using GentleMACS dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany) and then
treated with erythrocyte-lysing reagent containing 0.15 M
NH4Cl, 1.0 M KHCO3, and 0.1 mM Na2EDTA to remove the
red blood cells. The cells were dispersed using 70mm mesh
screens and used for flow cytometry.

For cell surface staining, the cells were stained with
fluorescence conjugated antibodies at room temperature for
20 min. For intracellular cytokine staining, cells were cultured
in the presence of cell activation cocktail with Brefeldin A (BFA)
for 4 hours. Cells were then stained with antibodies of cell surface
antigen, fixed, permeabilised and incubated with antibodies of
intracellular cytokines. Transcription factors staining were
conducted by True-Nuclear Transcription Factor Buffer Set
(Biolegend). Data was acquired using BD FACS Aria II
cytometer (BD Biosciences) and analysed using FlowJo V10
software (FlowJo LLC, Ashland, OR). Fixation Buffer,
Intracellular Staining Permeabilization Wash Buffer and cell
activation cocktail with BFA were purchased from Biolegend
(San Diego, CA). Fluorochrome-conjugated monoclonal
antibodies were purchased from Biolegend, Thermo Fisher
Scientific and BD Bioscience. Zombie Violet Fixable Viability
Kit and Zombie Aqua™ Fixable Viability Kit were purchased
from Biolegend to assess live vs. dead status of cells. Antibodies
using in this article are shown in supplementary information as
key resource table.

Depletion of T Cells In Vivo
For T cell depletion, the treated mice (n=6 mice per group) were
injected with 250mg anti-CD4 or anti-CD8 monoclonal antibody
(Biolegend), respectively. Mice were injected i.p. with 250mg
monoclonal antibody (mAb), on day -1 and 4 after tumor
rechallenge. The effect of mAb depletion was confirmed in vivo
previously (13).

Tumor Cell Growth Inhibition
For tumor cell growth inhibition assay, tumor cells were seeded
into a 96-well plate at 5,000 cells/well, and cocultured with CD4+

T cells at 8:1 of E:T ratio. Twenty-four hours later, the immune
suspension cells were removed, and the viability of tumor cells
was detected by Cell Counting Kit-8 (CCK-8 Kit). For CCK-8
Frontiers in Immunology | www.frontiersin.org 3
assay, 10 mL of CCK-8 was added into each well of culturing cells,
and after 1 h of incubation, the absorbance was measured at 450
nm using the microplate reader. Background reading of medium
was used to normalise the result.

Cell Isolation of CD4+ T Cells, CD8+ T
Cells, NK Cells, Macrophages, and DCs
Spleens from the tumor-bearing C57BL/6 mice or cryo-thermal
treated mice were harvested and splenocytes were prepared using
GentleMACS™ dissociator (Miltenyi Biotec, Bergisch Gladbach,
Germany) and passed through a 40-mm nylon filter. CD4+ T cells
were isolated by EasySep™ Mouse CD4 Positive Selection Kit II
(StemCell Technologies, Vancouver, BC, Canada). CD8+ T cells
were isolated by EasySep™ Mouse CD8+ T Cell Isolation Kit
(StemCell Technologies, Vancouver, BC, Canada). Natural Killer
(NK) cells were isolated by EasySep™ Mouse NK Cell Isolation
Kit (StemCell Technologies, Vancouver, BC, Canada). CD68+

macrophages were isolated by EasySepTM PE positive selection
kit (StemCell Technologies, Vancouver, BC, Canada) and CD68-
PE (clone FA-11, Biolegend, San Diego, CA, USA). DCs were
isolated by EasySep™ Mouse Pan-DC Enrichment Kit II
(StemCell Technologies, Vancouver, BC, Canada). Cells were
all isolated according to the manufacturer’s instructions. Cells
with a purity of >90% were used for experiments.

Adoptive T Cell Therapy
Splenic CD4+ T cells were separated on day 21 on 4T1 model
after cryo-thermal therapy by magnetic-activated cell sorting
(MACS) and were adoptive transferred into nude mice (1.5
million cells in 100 mL PBS per mice, i.v.). After 24 hours, the
nude mice were inoculated with 50 thousand of 4T1 cells
subcutaneously. The tumor volume was measured and
calculated following formula: V (cm3) = p × L (major axis) ×
W (minor axis) × H (vertical axis)/6.

Statistical Analysis
All data are presented as mean ± standard deviation (SD).
Significance was determined using a two-sided Student’s T-test.
GraphPad Prism 9.0 (La Jolla, CA) was used for all
statistical analysis.
RESULTS

Th1-Dominant CD4+ T Cells Mediated a
Stronger Systematic Antitumor Immune
Memory Than CD8+ T Cells After Local
Cryo-Thermal Therapy
Previously, we demonstrated that CD4+ T cells were essential
to mediate local antitumor immune memory, which led to
better long-term survival rates upon local tumor rechallenge
(14). Moreover, a further study revealed that neoantigen-
specific CD4+ T cells are critical for the therapeutic efficacy
of cryo-thermal therapy (13). However, how T cells mediate
systematic antitumor immune memory after cryo-thermal
July 2022 | Volume 13 | Article 944115
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therapy is unknown. Thus, the characteristics of splenic bulk
CD4+ and CD8+ T cells on day 14 after the therapy were
analyzed by flow cytometry (Figure S1). As depicted in
Figure 1A, an increased percentage of CD4+ Th1 cells
Frontiers in Immunology | www.frontiersin.org 4
(interferon gamma, IFN-g+) and a decreased percentage of
Th2 cells (interleukin 4, IL-4+) and regulatory T (Treg) cells
(Foxp3+) were observed. Meanwhile, the percentages of CD4+

cytotoxic T lymphocytes (CTLs) (Thpok-) and Th17 cells (IL-17+)
A

B

D

C

FIGURE 1 | Phenotype of T cells after cryo-thermal therapy and tumor growth in rechallenge model depleted of T cells in vivo. Splenocytes of naïve, tumor bearing
and cryo-thermal treated mice on day 14 after therapy were obtained to detect the phenotype of (A) CD4+ T cells; (B) CD8+ T cells by using flow cytometry. All data
were shown as mean ± SD. n=4 for each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data for graphs were calculated by using two-sided Student’s
T-test. (C) Scheme of tumor rechallenge model. Approximately 5 × 105 B16F10 cells were injected subcutaneously into the right flank of each mouse. Twelve days
later, mice were treated with cryo-thermal therapy. Tumor rechallenge was conducted 14 days later, with 1 × 105 B16F10 cells injected via tail vein. One day before
and four days after tumor rechallenge, monoclonal antibodies were injected to deplete target cells or neutralize target cytokine. All mice were sacrificed on day 44 or
47 to detect tumor nodules in the lung and immune cells in the spleen. (D) Picture of tumor nodules in the lung after tumor rechallenge depleted of CD4+ T cells or
CD8+ T cells. n=6 per group.
July 2022 | Volume 13 | Article 944115
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were also increased, but the level of Th17 cells wasmuch lower than
that of CD4+ Th1 cells (Figure S2A). The percentage of T follicular
helper (Tfh) cells (Bcl-6+) was significantly decreased (Figure S2A),
which indicated that CD4+ T cells underwent a Th1-dominant
response on day 14 after the therapy. The expression of the
cytotoxic cytokines perforin and granzyme B in CD4+ T cells
remained at a low level, thus suggesting that CD4+ T cells would
not mediate their killing by the granzyme/perforin pathway
(Figure S2B). On the other hand, the levels of IFN-g, perforin
and granzyme B in CD8+ T cells were significantly increased after
cryo-thermal therapy (Figure 1B), which indicated that CD8+ T
cells killed tumor cells via a perforin-dependent pathway. To
further verify that cryo-thermal CD4+ or CD8+ T cells mediated
systematic antitumor immune memory, mice were rechallenged
with 1×105 B16F10 tumor cells i.v. on day 14 after cryo-thermal
therapy. Depletion of CD4+ or CD8+ T cells were performed using
anti-CD4 or anti-CD8 monoclonal antibody injection i.p. one day
before and four days after tumor rechallenge, respectively
(Figure 1C). Efficacy of T cell depletion was verified by flow
cytometry (Figure S3A). Lung tumor nodules were quantified 18
days later. First of all, as shown in Figure 1D, cryo-thermal treated
mice could completely reject tumor rechallenge after intravenous
tumor injection. Clearly, depletion of CD4+ T cells or CD8+ T cells
abolished the antitumor effect induced by cryo-thermal therapy,
leading to tumor growth in the lung. However, depletion of CD4+ T
cells resulted in many more pulmonary tumor nodules in
comparison with that with CD8+ T cells depletion, indicating
more severely impaired the systematic antitumor protection
(Figure 1D). These results showed that CD4+ Th1 cells were
predominant after cryo-thermal therapy, CD4+ T cells played a
critical role in systematic antitumor immune memory.

Cryo-Thermal Th1-Dominant CD4+ T Cells
Mediated the Differentiation and Function
of Multiple Innate and Adaptive Immune
Cells In Vivo
The above results indicated that CD4+ T cells did not upregulate the
expression of cytolytic molecules after cryo-thermal therapy, but
CD4+ T cells could perform strong immunological memory against
tumor rechallenge. How CD4+ T cells involved in the maintenance
of antitumor immunememorywas investigated as follows. To study
the changes in immune cells in cryo-thermal treated mice after
intravenous tumor rechallenge (as shown inFigure 1D), the spleens
were harvested on day 18 after tumor rechallenge and the
phenotypes of the immune cells analyzed. The total number of
splenocytes were not altered significantly (Figure S3B). As shown
inFigure 2A, the level of CD4+Thelper (Th) 1 cells in cryo-thermal
treated mice was higher while the percentage of Tregs much lower
than that in the control group (naive mice received tumor
rechallenge). The other Th subsets, including Th2, Th17 and CTL
subsets, showed no significant differences between cryo-thermal
treated and controlled mice (Figure 2A and Figure S3C). These
results indicated that CD4+ Th1 cells induced by cryo-thermal
therapy were predominant over Tregs even after tumor rechallenge.
Frontiers in Immunology | www.frontiersin.org 5
Upon depletion of CD4+ or CD8+ T cells prior to tumor
rechallenge, as shown in Figure 2A and Figure S3C, the
percentage of CD4+ Th1 cells was significantly decreased in
cryo-thermal treated mice. On the other hand, the percentages of
Tregs and Th17 cells were significantly increased by depletion of
CD4+ T cells, but were not obviously changed by depletion
of CD8+ T cells. However, the percentages of Th2, Tfh and CD4+

CTLs were not influenced by depletion of CD4+ T cells or CD8+

T cells. Also, the expression of perforin and granzyme B in CD4+

T cells induced by cryo-thermal therapy was not influenced by
the depletion of CD4+ T or CD8+ T cells (Figure S3C). All these
data suggested that the strong antitumor potential of cryo-
thermal CD4+ T cells against tumor rechallenge could be
attributed to CD4+ Th1-mediated antitumor immune memory.
Although CD8+ T cells could modulate the differentiation of
CD4+ T cells toward the Th1 phenotype, they could not affect
Th1-dominant CD4+ T cell profile induced by cryo-
thermal therapy.

In addition, after tumor rechallenge, the expression levels of
IFN-g, perforin, and granzyme B in CD8+ T cells in cryo-thermal
treated mice were significantly increased, and they were
significantly decreased with depletion of CD4+ T cells, but only
perforin and granzyme B in CD8+ T cells were significantly
decreased with depletion of CD8+ T cells (Figure 2B).
Furthermore, the increased levels of IFN-g, granzyme B and
perforin in NK cells after cryo-thermal therapy were also
significantly decreased with depletion of CD4+ T cells, while
only the level of granzyme B in NK cells was significantly
decreased with the depletion of CD8+ T cells (Figure 2C). All
these results indicated that Th1-dominant CD4+ T cells induced
by cryo-thermal therapy regulated the expression of IFN-g in
CD8+ T and NK cells and enhanced their cytotoxicity against
tumor cells. CD8+ T cells slightly affected the cytotoxicity of
NK cells.

After tumor rechallenge, the fraction of DCs and
macrophages were not changed (Figures S3D, E). Moreover,
the levels of major histocompatibility complex (MHC) class II
and IL-12 in DCs and macrophages in cryo-thermal treated
mice were significantly decreased with depletion of CD4+ T
cells only, while the level of IL-10 in DCs and macrophages was
significantly increased with depletion of CD4+ T cells or CD8+

T cells (Figure 2D), indicating that Th1-dominant CD4+ T cells
induced by cryo-thermal therapy had a striking ability to
promote DC maturation and M1 macrophage polarization in
comparison to CD8+ T cells. After tumor rechallenge, the
percentage of MDSCs was significantly increased with
depletion of CD4+ T cells but not with depletion of CD8+ T
cells, corresponding with the high tumor growth in lung shown
in Figure 1D (Figure 2F). Collectively, these data suggested
that after cryo-thermal therapy, Th1-dominant CD4+ T cells
played a more extensive and principal role in regulating
multiple innate and adaptive immune cell differentiation and
maturation to mediate antitumor immune memory than CD8+

T cells.
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Cryo-Thermal Th1-Dominant CD4+ T Cells
Enhanced the Mature Phenotype of
Multiple Innate Immune Cells and the
Cytotoxicity of NK Cells and CD8+

T Cells In Vitro
To further identify the principal role of CD4+ T cells in
regulating the differentiation and maturation of other
immune cells, the phenotypes of other immune cells
affected by CD4+ T cells from the tumor-bearing or cryo-
Frontiers in Immunology | www.frontiersin.org 6
thermal treated mice were studied in vitro. CD4+ T cells were
isolated by MACS, and the remaining CD4- cells were also
collected. The phenotypes of NK cells, CD8+ T cells, DCs,
macrophages and MDSCs in CD4- splenocytes were further
analyzed after coculturing with CD4+ T cells from the tumor-
bearing or cryo-thermal treated mice, and comparisons
made. The expression levels of IFN-g , perforin and
granzyme B in NK cells and CD8+ T cells were significantly
upregulated (Figures 3A, B), and further cytotoxicity assay
A

B

D E

F

C

FIGURE 2 | Phenotype of immune cells in tumor rechallenge model depleted of T cells after cryo-thermal therapy in vivo. Eighteen days after tumor rechallenge, the
phenotype of (A) CD4+ T cells; (B) CD8+ T cells; (C) NK cells; (D) DCs; and (E) Mjs; and (F) frequency of MDSCs in the spleen. All data were shown as mean ± SD.
n=4 for each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data for graphs were calculated by using two-sided Student’s T-test.
July 2022 | Volume 13 | Article 944115
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confirmed these results (Figures S4A, B). In addition, the
percentage of MDSCs was significantly decreased after
coculturing with cryo-thermal CD4+ T cells (Figure 3C).
Moreover, the levels of MHC II and CD86 in MDSCs were
significantly increased, suggesting that cryo-thermal CD4+ T
cells could promote the maturation of MDSCs to reverse
immunosuppression. Both tumor-bearing CD4+ T cells and
cryo-thermal CD4+ T cells promoted the expression of CD86
in DCs and macrophages, but only cryo-thermal CD4+ T cells
significantly upregulated the expression of MHC II in
macrophages (Figures 3D, E). Cryo-thermal CD4+ T cells
also induced high expression of IL-12 in DCs and maintained
a high level of IL-12 in macrophages compared to tumor-
bearing CD4+ T cells (Figures 3D, E). Overall, these in vitro
studies verified that cryo-thermal Th1-dominant CD4+ T
cells could enhance the cytotoxicity of NK cells and CD8+

T cells and promote the maturation of APCs, whereas they
induced not only the destruction of MDSCs but also the
maturation of MDSCs, leading to strong antitumor immune
memory, which was similar to the in vivo results.
Frontiers in Immunology | www.frontiersin.org 7
Cryo-Thermal-Induced Th1-Dominant
CD4+ T Cells Activated NK Cells and
Regulated CD8+ T Cells via Cell-Cell
Contact, and Promoted Maturation of
Macrophages and DCs Partially via Cell-
Cell Contact
As cryo-thermal Th1-dominant CD4+ T cells widely regulate other
immune cells, it was further studied if such regulation had been via
cell–cell contact. CD4+ T cells were isolated by usingMACS, and the
remaining CD4- cells were also collected. Then, cryo-thermal CD4-

splenocytes were directly cocultured with cryo-thermal CD4+ T cells
or separated with a transwell plate (0.4-mm pore size). As shown in
Figure 4A, the expression of IFN-g, perforin and granzyme B in NK
cells was significantly decreased in transwell plates compared to
normal plates, indicating that cryo-thermal CD4+ T cells activated
NK cells via cell–cell contact. Meanwhile, the expression of perforin
and granzyme B in CD8+ T cells was significantly decreased, but the
expression of IFN-g in CD8+ T cells was increased in the transwell
plate compared to the normal plate (Figure 4B), which revealed that
cryo-thermal CD4+ T cells promoted the cytotoxicity of CD8+
A

B

D

E

C

FIGURE 3 | Phenotype of immune cells cocultured with CD4+ T cells in vitro. Cryo-thermal CD4- cells were cocultured with tumor-bearing or cryo-thermal CD4+ T
cells, and immune phenotype of (A) NK cells, (B) CD8+ T cells, (C) MDSCs, (D) Mjs and (E) DCs were analyzed. All data were shown as mean ± SD. n=4 for each
group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data for graphs were calculated by using two-sided Student’s T-test.
July 2022 | Volume 13 | Article 944115
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T cells but inhibited the production of IFN-g via cell–cell contact.
Moreover, the expression of MHC II and IL-12 in macrophages and
the expression of IL-12 in DCs were significantly decreased in
transwell plates compared to normal plates, suggesting that cryo-
thermal CD4+ T cells could promote the maturation of APCs via
cell–cell contact (Figures 4C, D). However, the levels of CD86 and
MHC II in MDSCs were not significantly different in transwell
plates and normal plates after coculture with cryo-thermal CD4+ T
cells, revealing that cryo-thermal CD4+ T cells regulated the
maturation of MDSCs through soluble factors. Overall, we
discovered that cryo-thermal CD4+ T cells activated NK cells and
regulated CD8+ T cells in a contact-dependent manner and
promoted the maturation of macrophages and DCs partially via
cell-cell contact but regulated the maturation of MDSCs through
soluble factors.
Cryo-Thermal CD4+ Th1 Cells Inhibited the
Growth of Tumor Cells and the
Differentiation of CD4+ T Cells Toward
Other CD4+ Th Subsets Through CD4+ T
Cell-Derived IFN-g
The above studies demonstrated that cryo-thermal Th1-
dominant CD4+ T cells mediated the differentiation and
Frontiers in Immunology | www.frontiersin.org 8
function of multiple innate and adaptive immune cells. To
further reveal how cryo-thermal CD4+ T cells affected tumor
cells and maintained the Th1 subset, splenic CD4+ T cells in
cryo-thermal treated mice and tumor-bearing mice were isolated.
Because CD4+ Th1 cells are characterized by the secretion of
IFN-g, the isolated CD4+ T cells were incubated with B16F10
tumor cells in vitro in the presence of isotype or anti-IFN-g
antibody for 24 hours, and the viability of B16F10 cells was
assessed by using CCK-8. As shown in Figure 5A, the tumor cell
growth inhibition induced by cryo-thermal CD4+ T cells was
much stronger than that induced by tumor-bearing CD4+ T cells,
but via neutralization of IFN-g, cryo-thermal CD4+ T cells
promoted the growth of tumor cells. The cell cycle of tumor
cells was also analyzed, and the result showed that CD4+ T cell
derived IFN-g could induce growth arrest in tumor cells (Figures
S5A, B). These data revealed that cryo-thermal CD4+ T cells
could directly inhibit the growth of tumor cells in an IFN-g-
dependent manner. Furthermore, we investigated how CD4+ T
cells could maintain the CD4+ Th1 subset. The isolated splenic
CD4+ T cells in cryo-thermal treated mice were stimulated with
anti-CD3 antibody in the presence of isotype or anti-IFN-g
antibody. Three days later, CD4+ Th subsets were analyzed by
flow cytometry. Interestingly, although the proportion of Th1
subset was significantly decreased, the levels of other CD4+ Th
A

B D

E

C

FIGURE 4 | Phenotype of immune cells regulated by cryo-thermal CD4+ T cells is dependent on cell-cell contact in vitro. (A-E) MACS-isolated cryo-thermal CD4+ T
cells were stimulated with anti-CD3 monoantibody, washed and then cocultured with cryo-thermal CD4- splenocytes together or separated with a transwell plate for
24 hours. The phenotype of (A) NK cells, (B) CD8+ T cells, (C) Mj, (D) DCs and (E) MDSCs were analyzed by flow cytometry. All data were shown as mean ± SD.
n=4 for each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data for graphs were calculated by using two-sided Student’s T-test.
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subsets, including Th2 cells, Tregs, Th17 cells and Tfh cells, were
obviously increased via neutralization of IFN-g. The level of
CD4+ CTLs was not affected by the neutralization of IFN-g
(Figure 5B). These results indicated that cryo-thermal CD4+ Th1
cells inhibited the differentiation of CD4+ T cells toward other
CD4+ Th subsets through CD4+ T-cell-derived IFN-g.

Cryo-Thermal CD4+ Th1 Cells Regulated
the Antitumor Phenotype and Function of
Other Immune Cells Through CD4+ T Cell-
Derived IFN-g
As cryo-thermal CD4+ Th1 cells secrete IFN-g to maintain
polarization of the CD4+ T-cell response toward Th1
dominance, the effect of IFN-g secreted by cryo-thermal
CD4+ Th1 cells on other immune cells was also studied in
vitro. CD4+ T cells were isolated by MACS, and the remaining
CD4- cells were also collected. Cryo-thermal CD4- splenocytes
were cocultured with cryo-thermal CD4+ T cells in the
presence of isotype or anti-IFN-g antibody. Although the
level of IFN-g in CD8+ T cells was not changed with
neutralization of IFN-g, the increased level of IFN-g in NK
cells and the levels of perforin and granzyme B in NK and
CD8+ T cells were impaired with neutralization of IFN-g
compared to the isotype control (Figures 6A, B). These
results suggested that cryo-thermal CD4+ Th1 cells could
activate NK cells and enhance the cytotoxicity of NK and
CD8+ T cells through CD4+ T-cell-derived IFN-g. The levels
of IL-12 in DCs and macrophages and MHC II in
macrophages were decreased with neutralization of IFN-g
compared to the isotype control (Figures 6C, D). These
data revealed that cryo-thermal CD4+ Th1 cells could
promote the functional maturation of APCs (with a high
level of IL-12) in a CD4+ T-cell-derived IFN-g-dependent
manner. The levels of CD86 and MHC II in MDSCs were
decreased with neutralization of IFN-g compared to the
isotype control (Figure 6E). These results indicated that
cryo-thermal CD4+ Th1 cells could promote the maturation
of DCs, macrophages and MDSCs through CD4+ T-cell-
Frontiers in Immunology | www.frontiersin.org 9
derived IFN-g . As depicted in Figures 4 and 6 , we
concluded that cryo-thermal CD4+ T cells could be involved
in the regulation of endogenous immune cells via cell–cell
contact and CD4+ T-cell-derived IFN-g. Although CD4+ T-
cell-derived IFN-g can regulate NK cells and CD8+ T cells
(Figures 6A, B), cell–cell contact played a more important
role in their cytotoxicity (Figures 4A, B). However, the
maturation of MDSCs induced by cryo-thermal CD4+ T
cells was mainly dependent on CD4+ T-cell-derived IFN-g
(Figures 4E, 6E). Collectively, these data showed that cryo-
thermal Th1-dominant CD4+ T cells could activate NK cells,
enhance the cytotoxicity of NK and CD8+ T cells, promote the
maturation of APCs through cell–cell contact and CD4+ T-
cell-derived IFN-g, and induce the maturation of MDSCs
through CD4+ T-cell-derived IFN-g.

Adoptive Therapy Using Cryo-Thermal
CD4+ T Cells Inhibited Tumor
Growth In Vivo
As the role of CD4+ T cells after cryo-thermal therapy and their
function in antitumor immunity are described above, we further
determined the antitumor immunity of CD4+ T cells in T-cell-
deficient hosts in 4T1 model, a model for the study of late-stage
triple negative breast cancer (TNBC) (22). Cryo-thermal Th1-
dominant CD4+ T cells from the 4T1 model 21 days after
treatment were isolated by MACS and transferred into nude
mice, and 1 day later, 4T1 cells were inoculated. Tumor size was
measured every 5 days (Figure 7A). As shown in Figure 7B,
cryo-thermal CD4+ T cells significantly decreased the growth of
tumors in vivo. This result revealed that adoptively transferred
cryo-thermal Th1-dominant CD4+ T cells, as effector cells, could
mediate effective tumor rejection in vivo.
DISCUSSION

Cell-mediated immunity plays an important role in immune
responses to prevent cancer. Activation of CD8+ cytotoxic T cells
A B

FIGURE 5 | Tumor growth inhibition and Th subsets of CD4+ T cells in vitro. (A)Viability of tumor cells. Tumor cells were cocultured with tumor-bearing or cryo-
thermal CD4+ T cells at 8:1 of E:T ratio in the presence of 10mg/mL isotype or anti-IFN-g antibody. Twenty-four hours later, the viability of tumor cells was detected
by CCK-8 Kit. (B) Percentage of Th subsets. Cryo-thermal CD4+ T cells were stimulated by 1mg/mL anti-CD3 antibody in the presence of 10mg/mL isotype or anti-
IFN-g antibody. Three days later, Th subsets were detected by flow cytometry. All data were shown as mean ± SD. n=4 for each group. *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001. Data for graphs were calculated.
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has long been regarded as a major antitumor mechanism of the
immune system. It has become increasingly apparent that CD4+

T cells possess an extraordinary capacity to induce tumor
rejection as principal effectors rather than as subsidiary helpers
to cytolytic T cells. CD4+ T cells are much more effective in
Frontiers in Immunology | www.frontiersin.org 10
stimulating host immune responses to prevent tumor relapse
than CD8+ T cells after immunotherapy (9–11, 23, 24). However,
the role of CD4+ T cells in antitumor immune responses
generated by various therapeutic strategies remains to be
fully elucidated.
A B

FIGURE 7 | Adoptive therapy of cryo-thermal CD4+ T cells. (A) Scheme of study design. Splenic CD4+ T cells were separated on day 21 after cryo-thermal therapy
by MACS and were adoptive transferred into nude mice (1.5 million cells in 100 mL PBS per mice, i.v.). After 24 hours, the nude mice were inoculated with 50
thousand of 4T1 cells subcutaneously. The tumor volume was measured and calculated following formula: V (cm3) = p × L (major axis) × W (minor axis) × H (vertical
axis)/6. (B) Growth kinetics of a 4T1 breast cancer tumor model in nude mice as described. *p < 0.05. n=6 for each group.
A

B

D

E

C

FIGURE 6 | Phenotype of immune cells regulated by cryo-thermal CD4+ T cells derived IFN-g in vitro. (A-E) MACS-isolated cryo-thermal CD4+ T cells were
stimulated with anti-CD3 monoantibody, washed and then cocultured with cryo-thermal CD4- splenocytes in the presence of 10 mg/mL isotype or anti-IFN-g
antibody for 24 hours. As a control, CD4- splenocytes were cultured with 5 ng/mL recombination IFN-g alone. The phenotype of (A) NK cells, (B) CD8+ T cells, (C)
Mj, (D) DCs and (E) MDSCs were analyzed by flow cytometry. All data were shown as mean ± SD. n =4 for each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001. Data for graphs were calculated by using two-sided Student’s T-test.
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In this study, we demonstrated that after cryo-thermal therapy,
CD4+ T cells orchestrated endogenous systematic antitumor
immune memory and substantially reduced the accumulation of
MDSCs and Tregs to reverse immunosuppression. CD4+ T cells
can recognize peptides presented by professional APCs and
differentiate into multiple subsets, such as Th1, Th2, Treg, Th17,
CTL and Tfh cells (25–28). After cryo-thermal therapy, CD4+ Th1
cells dominated over other CD4+ subsets. Th1-polarized CD4+ T
cells offer long-term protection against tumor rechallenge (29).
CD4+ Th1 cells are characterized by the expression of the
transcription Factor T-bet or signature cytokine IFN-g, which
are primarily responsible for activating and regulating the
development and persistence of CTLs. In addition, Th1 cells
activate APCs via costimulatory molecules (30). Our previous
studies also showed that Th1-dominant CD4+ T cells mediate
long-term antitumor immunity after cryo-thermal therapy (14).
Tumor antigens and damage-associated molecular patterns
(DAMPs) are released after local cryo-thermal therapy and
induce strong neoantigen-specific Th1-dominant CD4+ T-cell
antitumor immunity (13, 15). But the mechanism how CD4+

Th1 cells played the principal role in antitumor immune memory
after cryo-thermal therapy were not understood. In this study, we
comprehensively demonstrated that cryo-thermal induced Th1-
dominant CD4+ T cells, as principal effector cells, inhibited tumor
growth and exhibited multiple antitumor immunologic activities
to enhance the cytotoxicity of CD8+ T and NK cells, promote the
maturation of APCs and MDSCs, and decrease the levels of Tregs
and MDSCs to maintain antitumor immune memory.

In this study, we suggested that the effect of Th1-dominant
CD4+ T cells induced by cryo-thermal therapy could be mediated
by Th1-cell-secreted soluble factors and cell-to-cell interactions.
CD4+ T cells can regulate other immune cells through several
contact-dependent pathways. CD40-CD40 L interactions are
vital in the delivery of CD4+ T-cell help for many immune
cells priming. CD4+ T cells constitutively express CD40 L and
trigger DC maturation with the upregulation of MHC II and
CD86 (31). The activation of macrophages by CD4+ T cells with
the production of inflammatory cytokines and the generation of
reactive nitrogen intermediates is dependent on CD40L (32).
CD8+ T cells can receive CD4+ T cells to help directly through
CD40, which is fundamental for CD8+ T-cell cytotoxic and
memory generation (33, 34). In addition, CD4+ T cells can
control the CD8+ T-cell response, resulting in a decrease in
IFN-g via a tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-mediated or Fas ligand (FasL)-dependent
mechanism (35, 36), which would explain our in vitro results
that cryo-thermal CD4+ T cells inhibited the production of IFN-g
via cell–cell contact (Figure 4B). Interestingly, depletion of
CD8+ T cells showed little effect in antitumor events in vivo.
We suggested that CD4+ T cells orchestrated comprehensive and
diverse endogenous immune memory to inhibit tumor
metastasis, including enhancing CD8+ CTL response,
promoting NK cell activity and APC maturation. Thus, despite
CD8+ T cells were depleted, CD4+ T cells could mobilize the
other immune cells to inhibit the growth of tumor. We identified
that cryo-thermal CD4+ T cells could inhibit the accumulation of
Frontiers in Immunology | www.frontiersin.org 11
MDSCs, and another study reported that activated T cells
promoted MDSC apoptosis through the TRAIL–TRAILR
pathway (8). We found that the interaction between CD4+ T
cells and NK cells was extremely important to the activation and
cytotoxicity of NK cells by CD4+ T cells; however, studies on
CD4+ T-cell-to-NK-cell interactions have not been reported, and
further study of the specific mechanism is needed.

Moreover, CD4+ T cells could modulate other immune cells
through soluble factors. As the signature cytokine produced by
CD4+ Th1 cells, IFN-g can both directly mediate tumor rejection
and recruit and activate innate and adaptive immune cells (37–
41). Cryo-thermal CD4+ T cells directly inhibit the growth of
tumor cells via CD4+ T-cell-derived IFN-g, but the effect of IFN-
g alone seemed modest. It is possible that IFN-g induced growth
arrest in tumors synergistically with tumour necrosis factor-
alpha (TNF-a) (3). In this study, we revealed that cell-derived
IFN-g maintained Th1-dominant CD4+ T cells induced by cryo-
thermal therapy, and IFN-g controls the expression of T-bet; at
the same time, T-bet regulates IFN-g production in an autocrine
feedback loop, leading to the induction of the differentiation of
the Th1 subset (42). Cryo-thermal CD4+ T cells enhanced the
cytotoxicity of NK cells and CD8+ T cells and promoted the
maturation of APCs and MDSCs via IFN-g, which is in
accordance with other studies (43). However, we noticed that
neutralization of IFN-g in vitro only partially abolished the effect
of cryo-thermal CD4+ T cells on other immune cells, indicating
that except through CD4+ T-cell-derived IFN-g, Th1-dominant
CD4+ T cells would perform antitumor immunity through other
factors. IL-2 secreted by CD4+ Th1 cells also helps maintain the
activation and cytotoxicity of CD8+ T cells and NK cells (44–47).
Moreover, activated CD4+ Th1 cells can promote the
recruitment and infiltration of CD8+ T cells, macrophages and
NK cells through the chemokines C-X-C motif chemokine ligand
(CXCL) 10 and CXCL9 (46, 48–51). Importantly, cryo-thermal
CD4+ T cells could promote the maturation of MDSCs with
upregulation of MHC II and CD86 via IFN-g. Although some
studies have shown that IFN-g inhibits the immunosuppressive
function of tumor-induced MDSCs (52), cryo-thermal CD4+ T
cells regulating the maturation of MDSCs should be addressed.
Additionally, although the level of CD4+ Th1 cells was decreased
after depletion of CD8+ T cells when the cryo-thermal treated
mice received tumor rechallenge, the level of Treg and Th17 were
not influenced, which suggested that CD8+ T cells did not affect
Th1 dominance in Th subsets after cryo-thermal therapy. CD8+

T cells modulate CD4+ T-cell immune responses in vivo, thus
promoting their early activation and Tfh differentiation (53).
However, the role of CD8+ T cells in regulating CD4+ Th1
differentiation should be further studied. Thus, the specific
molecular mechanism of how cryo-thermal therapy induced
Th1-dominant CD4+ T cells would be further studied in
near future.

The functional status of CD4+ T cells is a critical determinant
of antitumor immunity. The stimulation of the Th1 response in
cancer immunotherapy is becoming increasingly important
because the Th1 response can shift the direction of adaptive
immune responses toward protective immunity. Polyfunctional
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CD4+ T cells with the ability to produce multiple Th1-type
cytokines exhibit many desirable features for cancer
immunotherapy. CD4+ Th1 cells exert powerful antitumor
immune effects against numerous types of cancers (54–57).
However, how to efficiently activate CD4+ T cells with multiple
antitumor mechanisms in vivo has not been discovered,
especially how to induce the differentiation of the Th1
dominant subset, which has not been defined (58, 59). Our
study showed that polyfunctional Th1-dominant CD4+ T cells
were induced after cryo-thermal therapy to effectively control
distant tumor metastasis. The Th1 response induces epitope
spreading to prevent tumor relapse due to antigen escape
(60).This study highlighted that cryo-thermal Th1-dominant
CD4+ T cells improved CTL generation as well as APC
maturation to augment antitumor responses in the
replacement of typical maturation reagents in vitro, and
adoptively transferred cryo-thermal CD4+ T cells significantly
decreased the growth of tumors in vivo, which suggest that cryo-
thermal therapy could be further developed as a thermo-
immunotherapy for clinical application. Current study is
limited in B16F10 model and additional data from other
qualifying murine models would be required to confirm the
role of CD4+ T cells in antitumor immune memory.

In summary, Th1-dominant CD4+ T cells induced by cryo-
thermal therapy orchestrated comprehensive and diverse
endogenous antitumor immune memory to inhibit tumor
metastasis. Th1-dominant CD4+ T cells induced by cryo-
thermal therapy inhibited the tumor growth, enhanced the
cytotoxicity of CD8+ T and NK cells, promoted the maturation
of APCs and MDSCs, and decreased the levels of Tregs and
MDSCs to maintain antitumor immune memory.
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