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This work is aimed to formulate and analyze a mathematical modeling, 𝑆𝐸𝐼𝑅 model, for COVID-19 with the 
main parameters of vaccination rate, effectiveness of prophylactic and therapeutic vaccines. Global and local 
stability of the model are investigated and also numerical simulation. Local stability of equilibrium points are 
classified. A Lyapunov function is constructed to analyze global stability of the disease-free equilibrium. The 
simulation part is based on two situations, the US and India. In the US circumstance, the result shows that with 
the rate of vaccination 0.1% per day of the US population and at least 20% effectiveness of both prophylactic and 
therapeutic vaccines, the reproductive numbers 0 are reduced from 2.99 (no vaccine) to less than 1. The same 
result happens in India case where the maximum reproductive number 0 in this case is 3.38. To achieve the 
same infected level of both countries, the simulation shows that with the same vaccine’s efficiency the US needs 
a higher vaccination rate per day. Without vaccines for this pandemic, the model shows that a few percentages 
of the populations will suffering from the disease in the long term.
1. Introduction

Coronavirus disease is a severe acute respiratory disease caused by 
a coronavirus 2 (SARS-CoV-2) that is a new member of the genus Beta 
coronavirus and family Coronaviridae [1, 2]. The virus primarily spreads 
from person to person through droplet, airborne, and contact trans-
mission. The clinical symptoms of SARS-CoV-2 infected patients had 
mild, moderate, and severe symptoms such as fever, dry cough, diffi-
culty breathing, fatigue, new loss of taste or smell, nausea, diarrhea, 
pneumonia, and respiratory symptom [3, 4]. The critically severe con-
ditions such as chronic medical illness, organ dysfunctions, and death 
have been frequently reported in elderly patients and people with im-
munodeficiencies [5, 6]. However, many SARS-CoV-2 infected patients 
are minimally symptomatic or asymptomatic [7, 8, 9].

The outbreak of SARS-CoV-2 started in China and then transmit-
ted to humans and animals [10, 11]. Nowadays, the virus has recently 
caused epidemics around the world in more than 215 countries with 
46,403,652 confirmed cases and 1,198,569 mortalities, as of Novem-
ber 2, 2020 [12]. According to a recent report from the World Health 
Organization on SARS-CoV-2 outbreak, the number of confirmed cases 
in America is higher than the number of confirmed cases in Europe, 
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South-East-Asia, Eastern Mediterranean, Africa, and Western Pacific, 
respectively. The top two countries reporting the most confirmed cases 
are the United States of America (9,032,465 cases) and India (8,229,313 
cases). As COVID-19 cases keep increasing, predictions of the number 
of infected cases and the termination of COVID-19 are worth it to study. 
Mathematical model of infectious diseases is a crucial tool that has been 
used to study dynamics of how diseases spread. A mathematical model 
can predict the future situation of an outbreak and evaluate the best 
strategy to control spreading diseases. There are many different types 
of mathematical models for predicting an epidemic infection. One of 
them is called compartment models.

Compartment model is an interesting tool for COVID-19 situation. It 
is a powerful mathematical model for understanding the complex dy-
namics of epidemics. In this work we construct a well known model 
called 𝑆𝐸𝐼𝑅 model with 4 compartments of susceptible population 𝑆, 
exposed population 𝐸, infectious population 𝐼 , and recovered popula-
tion 𝑅. The model 𝑆𝐸𝐼𝑅 is suitable for disease transmission which an 
infected individual needs a short time period to be an infectious. Many 
researches have been studied by adapting 𝑆𝐸𝐼𝑅 model to forecast dy-
namics of endemic and epidemic such as Dengue Fever [13, 14, 15], 
Ebola [16, 17], Middle East Respiratory Syndrome (MERS) [18, 19], 
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Fig. 1. Schematic diagram of 𝑆𝐸𝐼𝑅 model for COVID-19 situation.
Severe Acute Respiratory Syndrome (SARS) [20, 21], to name a few. 
According to [22, 23, 24], COVID-19 has an average incubation period 
of 11.5 days before spreading of the viruses, so 𝑆𝐸𝐼𝑅 model is suitable 
for predicting COVID-19 situation. 𝑆𝐸𝐼𝑅 model have been adapted by 
adding strategy parameters such as social distancing and face mask us-
ing to control and predict COVID-19 situation in several researches [25, 
26, 27, 28, 29, 30].

Vaccine administration is a highly effective method of preventing 
and reducing viral infections [31]. Even though there is no vaccine or a 
specific antiviral for the treatment of patients infected with SARS-CoV-2 
available, several vaccines against SARS-CoV-2 such as a live attenuated 
vaccine, inactivated vaccines, subunit vaccines, DNA and RNA vaccines, 
and vector vaccines have been developed [32, 33]. Vaccination and 
optimal control are key points to control an epidemic situation as dis-
cussed in [34, 35, 36, 37]. In this study, we use SEIR model equipped 
with effectiveness of vaccination to forecast COVID-19 situation when 
a vaccine comes out. There are two main types of vaccine in our 𝑆𝐸𝐼𝑅

model prophylactic and therapeutic vaccines. Prophylactic vaccine is a 
preventing vaccine and therapeutic vaccine is a vaccine that is admin-
istrated after infection [38].

In Section 2, we formulate a model and investigate all equilib-
rium points together with their global and local stability of the model. 
Section 3 is mathematical simulation part. In particular, we applied 
recorded parameters of US and India circumstances to our model and 
predicted the potential of COVID-19 in both countries when vaccines 
come out.

2. Model formulation

We consider the 4-compartment model called 𝑆𝐸𝐼𝑅 which 𝑆(𝑡),
𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are the fractions of susceptible, exposed, infectious, 
and recovered populations, respectively, at the time 𝑡. The trivial solu-
tion 𝑆 ≡ 0, 𝐸 ≡ 0, 𝐼 ≡ 0 and 𝑅 ≡ 0 is out of our interest. The system of 
differential equations related to the schematic diagram in Fig. 1 is as 
follows:

𝑑𝑆

𝑑𝑡
= 𝑏0 − (𝑣𝑝𝑠 + 𝑑0)𝑆 − 𝛽(1 − 𝑣𝑝𝑠)𝑆𝐼

𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝑣𝑝𝑠)𝑆𝐼 − (𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒)𝐸

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖)𝐼

𝑑𝑅

𝑑𝑡
= 𝑣𝑝𝑠𝑆 + 𝑣𝑝𝑒(1 − 𝛼)𝐸 + (𝛾 + (1 − 𝛾)𝑣𝑝𝑖)𝐼 − 𝑑0𝑅 (1)

under the conditions that

0 ≤ 𝑆(0),𝐸(0), 𝐼(0),𝑅(0) ≤ 1. (2)

The density 𝑆(𝑡) at the time 𝑡 is the faction of susceptible numbers, 
𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) are similar. The explanation of variables and param-
eters in (1) are presented in Table 1. A motivation for the model is that 
vaccination rate per day (𝑣) cannot terminate the flow of the system 
immediately since the whole population cannot be vaccinated at once. 
A person can get vaccinated once he or she is susceptible, exposed, or 
infectious. In the first equation of System (1), the rate of change in 
2

Table 1. Description of variables and parameters in the model.

Variable/Parameter Interpretation
S Fraction of susceptible cases

E Fraction of exposed cases

I Fraction of infectious cases

R Fraction of recovered cases

𝛽 Effective transmission rate of COVID-19

𝛼 Changing rate from 𝐸 to 𝐼

𝛾 Changing rate from 𝐼 to 𝑅

𝑣 Vaccination rate of population

𝑝𝑠 Effectiveness of vaccination in 𝑆

𝑝𝑒 Effectiveness of vaccination in 𝐸

𝑝𝑖 Effectiveness of vaccination in 𝐼

𝑏0 Birth rate of population

𝑑0 Death rate of population without COVID-19

𝑑1 Death rate of exposed population plus 𝑑0
𝑑2 Death rate of infectious population plus 𝑑0

susceptible depends on the numbers of vaccinated humans, 𝑣𝑝𝑠𝑆, and 
non-vaccinated humans, (1 − 𝑣𝑝𝑠)𝑆.

Note that by the fundamental existence-uniqueness theorem for 
nonlinear systems, the nonlinear system (1) has a unique solution set 
(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)). To guarantee that the densities 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 
𝑅(𝑡) in the model (1) are non-negative at any time 𝑡 > 0, we prove the 
following lemma.

Lemma 2.1. If (𝑆, 𝐸, 𝐼, 𝑅) is the continuous solution of the system (1) with 
initial (2), then

(𝑆(𝑡),𝐸(𝑡), 𝐼(𝑡),𝑅(𝑡)) ∈ [0,∞)4

for any positive time 𝑡 > 0.

Proof. To prove this lemma we use the fact that a function 𝑓 with 
𝑓 (0) ≥ 0 is a non-negative function if 𝑑𝑓

𝑑𝑡
|𝑡=𝑡∗ ≥ 0 when 𝑓 (𝑡∗) = 0; i.e., the 

function 𝑓 is non-decreasing at 𝑡∗. By the condition (2), there is 𝑡𝑠 such 
that 𝑆(𝑡) ≥ 0 on 0 ≤ 𝑡 < 𝑡𝑠 and 𝑆(𝑡𝑠) = 0. Based on the first equation of 
Model (1), we have

𝑑𝑆

𝑑𝑡
|𝑡=𝑡𝑠 = 𝑏0 > 0

It implies that 𝑆(𝑡) ≥ 0 for any 𝑡 ≥ 0. Next, let 𝑡𝑖 be the time such that 
𝐼(𝑡) ≥ 0 on 0 ≤ 𝑡 < 𝑡𝑖 and 𝐼(𝑡𝑖) = 0. By the third equation of (1), we have

𝑑𝐼

𝑑𝑡
|𝑡=𝑡𝑖 = 𝛼𝐸(𝑡𝑖). (3)

Since 𝑆 and 𝐼 are non-negative on [0, 𝑡𝑖], it follows by the second equa-
tion of (1) that

𝑑𝐸

𝑑𝑡
+ (𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒)𝐸 ≥ 0

on [0, 𝑡𝑖]. This implies that

𝐸(𝑡𝑖) ≥𝐸(0)𝑒−(𝑑1+𝛼+(1−𝛼)𝑣𝑝𝑒)𝑡𝑖 ≥ 0 (4)

Equations (3) and (4) imply that 𝑑𝐼
𝑑𝑡
|𝑡=𝑡𝑖 ≥ 0, so 𝐼(𝑡) ≥ 0 for any 𝑡 ≥ 0. 

It is easy to check that 𝐸(𝑡) ≥ 0 when 𝐼(𝑡) ≥ 0. Since 𝑆, 𝐼 , and 𝐸 are 
non-negative for 𝑡 > 0, it is obvious that 𝑅(𝑡) ≥ 0 for 𝑡 ≥ 0. □
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From this lemma we can conclude that the set [0, ∞)4 is positive 
invariant with respect to the model (1) and it attracts all solutions of 
the model.

2.1. Stability of equilibrium points

Equilibrium points of the system can be found by setting 𝑑𝑆

𝑑𝑡
= 0, 

𝑑𝐸

𝑑𝑡
= 0, 𝑑𝐼

𝑑𝑡
= 0, and 𝑑𝑅

𝑑𝑡
= 0 of (1); i.e., solving the following system:

0 = 𝑏0 − (𝑣𝑝𝑠 + 𝑑0)𝑆 − 𝛽(1 − 𝑣𝑝𝑠)𝑆𝐼

0 = 𝛽(1 − 𝑣𝑝𝑠)𝑆𝐼 − (𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒)𝐸

0 = 𝛼𝐸 − (𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖)𝐼

0 = 𝑣𝑝𝑠𝑆 + 𝑣𝑝𝑒(1 − 𝛼)𝐸 + (𝛾 + (1 − 𝛾)𝑣𝑝𝑖)𝐼 − 𝑑0𝑅 (5)

A disease-free equilibrium is an equilibrium when there is no spread of 
the disease; i.e., 𝐸 ≡ 0 ≡ 𝐼 . By solving (5), the disease-free equilibrium 
is unique in the form

(𝑆0,𝐸0, 𝐼0,𝑅0) =
(

𝑏0
𝑝𝑠𝑣+ 𝑑0

,0,0,
𝑏0
𝑑0

)
(6)

for fixed parameters 𝑏0, 𝑝𝑠, 𝑣 and 𝑑0.
Apart from the disease-free equilibrium, others equilibrium points 

(endemic equilibrium) of the model can be found by solving (5) under 
the conditions that 𝑆 ≢ 0, 𝐸 ≢ 0, 𝐼 ≢ 0 and 𝑅 ≢ 0. Since (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),
𝑅(𝑡)) ∈ [0, ∞)4 as proved in Lemma 2.1, the endemic equilibrium is 
unique for fixed parameters of the model (1) and it is in the form

(𝑆1,𝐸1, 𝐼1,𝑅1) (7)

where

𝑆1 =
𝑏0

𝑣𝑝𝑠 + 𝑑0 + 𝛽(1 − 𝑣𝑝𝑠)𝐼1

𝐸1 =
𝑏0 − (𝑣𝑝𝑠 + 𝑑0)𝑆1
𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒

𝐼1 =
𝛼𝐸1

𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖

𝑅1 =
𝑏0 − 𝑑0𝑆1 − 𝑑1𝐸1 − 𝑑2𝐼1

𝑑0

Next, let

(𝑆∗,𝐸∗, 𝐼∗,𝑅∗) (8)

be a representation of the equilibrium point in the form of (6) or (7). 
The following theorem describes stability of the equilibrium point (8).

Theorem 2.2. For fixed parameters of the model (1) and the initial condi-

tion (2), the equilibrium point of the model is locally asymptotic stable.

Proof. Consider the Jacobian matrix of the model (1) with respect to 
the equilibrium point (8) which is as follows:

𝐽 =

⎡⎢⎢⎢⎢⎣
−𝑣𝑝𝑠 0 −𝐴𝑆∗ 0
𝐴𝐼∗ −(𝑑1 +𝐶𝛼) −𝐴𝑆∗ 0
0 𝛼 −(𝑑2 + 𝑐𝛾 ) 0
𝑣𝑝𝑠 8𝐶𝛼 − 𝛼 𝐶𝛾 −𝑑0

⎤⎥⎥⎥⎥⎦
(9)

where 𝐴 = 𝛽(1 − 𝑣𝑝𝑠), 𝐶𝛼 = 𝛼 + (1 − 𝛼)𝑣𝑝𝑒, and 𝐶𝛾 = 𝛾 + (1 − 𝛾)𝑣𝑝𝑖. 
The eigenvalues, 𝜆, of the matrix (9) is computed by the equation 
det(𝜆𝐼 − 𝐽 ) = 0; i.e., the eigenvalues are the solutions of the charac-
teristic polynomial

(𝑑0 + 𝜆)(𝐷1 +𝐷2𝜆+𝐷3𝜆
2 + 𝜆3) = 0 (10)

where
3

𝐷1 =𝐴3𝐼∗𝑆∗ + 𝑣𝑝𝑠(𝐶𝛼𝐶𝛾 +𝐶𝛾𝑑1 +𝐶𝛼𝑑2 +𝐴2𝑆∗)

𝐷2 = 𝐶𝛼𝐶𝛾 +𝐶𝛾𝑑1 +𝐶𝛼𝑑2 + 𝑑1𝑑2 +𝐴2𝑆∗ + 𝑣𝑝𝑠(𝐶𝛼 +𝐶𝛾 + 𝑑1 + 𝑑2)

𝐷3 = 𝐶𝛼 +𝐶𝛾 + 𝑑1 + 𝑑2 + 𝑣𝑝𝑠.

It is obvious that 𝐷1 > 0, 𝐷2 > 0, and 𝐷3 > 0. Since 𝐷1, 𝐷2, 𝐷3 are pos-
itive real numbers, it follows that all solutions of Equation (10) have 
negative real parts. Therefore, the equilibrium point of the model (1) is 
locally asymptotic stable. □

2.2. The basic reproductive number and global stability

Using the matrices generation method [39], the basic reproductive 
number, 0, is the dominant eigenvalue (the spectral radius) of 𝐹𝑉 −1

where

𝐹 =
[
0 𝛽(1 − 𝑣𝑝𝑠)𝑆
𝛼 0

]
(11)

and

𝑉 =
[
𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒 0

0 𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖

]
. (12)

Hence, the basic reproductive number, 0, corresponding to the 
disease-free equilibrium (6) is in the form

0 =

√
𝛼𝛽(1 − 𝑣𝑝𝑠)𝑏0

(𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒)(𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖)(𝑝𝑠𝑣+ 𝑑0)
(13)

By (11) and (12), we note here that the dominant eigenvalues of 𝐹𝑉 −1

and 𝑉 −1𝐹 are the same. Based on this basic reproductive number (0), 
we then prove the following theorem about the global stability of the 
disease-free equilibrium (6).

Theorem 2.3. If 0 < 1, then the disease-free equilibrium (6) is globally 
asymptotic stable; on the other hand, the equilibrium is unstable if 0 > 1.

Proof. Consider the matrix

𝑢 =
[
1 0(𝑑2+𝛾+(1−𝛾)𝑣𝑝𝑖)

𝛼

]
where 𝑑2, 𝛾, 𝑣, and 𝑝𝑖 are parameters defined in Table 1. Note that 𝑢 is a 
1 × 2 matrix of positive real components. It is easy to check that

𝑢

(
0

[
1 0
0 1

]
− 𝑉 −1𝐹

)
= 0 (14)

where 𝐹 and 𝑉 are defined in (11) and (12), respectively. Equation (14) 
implies that

𝑢0 = 𝑢𝑉 −1𝐹 (15)

Next, let

 =
[
𝐸

𝐼

]
. (16)

We note here that  is a zero matrix only at the disease-free equilib-
rium. By using (1), we have

𝑑

𝑑𝑡
=

[
𝑑𝐸

𝑑𝑡
𝑑𝐼

𝑑𝑡

]

=
[
−(𝑑1 + 𝛼 + (1 − 𝛼)𝑣𝑝𝑒) 𝛽(1 − 𝑣𝑝𝑠)𝑆

𝛼 −(𝑑2 + 𝛾 + (1 − 𝛾)𝑣𝑝𝑖)

][
𝐸

𝐼

]
,

= (𝐹 − 𝑉 ) . (17)

Define the Lyapunov function  as follows:

 = 𝑢𝑉 −1 (18)
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Table 2. Parameter values and initial populations of US (Case I) and India (Case 
II) where initial susceptible 𝑆(0), infected 𝐸(0) + 𝐼(0), and recovered 𝑅(0) are 
based on data in [12, 41] last updated on November 1, 2020. The recovered 
rate is based on 14 days recovery with 96% recovered; i.e., 𝛾 = 1

14
(0.96).

Initial/Parameter Case I/Reference Case II/Reference
S(0) 0.97286 [12] 0.994 [12]

E(0)+I(0) 0.00905 [41] 3.813 × 10−4 [41]

R(0) 0.01809 [41] 5.569 × 10−3 [41]

𝛽 0.462 [42] 0.32 [43]

𝛼 1/11.5 per day [22] 1/11.5 per day [22]

𝛾 0.0686 per day [12] 0.0686 per day [12]

𝑏0 3.178 × 10−5 per day [44] 4.893 × 10−5 per day [45]

𝑑0 2.377 × 10−5 per day [46] 1.992 × 10−5 per day [47]

𝑑1 2.585 × 10−5 per day [12] 2.021 × 10−5 per day [41]

𝑑2 2.585 × 10−5 per day [12] 2.021 × 10−5 per day [41]

Since 𝑢𝑉 −1 is a 1 × 2 matrix of positive real components and  is a 
non-negative matrix, it follows that  ≥ 0 and we also have that  = 0
if and only if 𝐸 = 0 and 𝐼 = 0. This implies that  is positive definite. 
Moreover, by (17) and (15) we obtain

𝑑

𝑑𝑡
= 𝑢𝑉 −1 𝑑

𝑑𝑡

= 𝑢𝑉 −1(𝐹 − 𝑉 )

= (𝑢𝑉 −1𝐹 − 𝑢)

= 𝑢(0 − 1) .

Since 𝑑
𝑑𝑡

< 0 if 0 < 1, it follows that the disease-free equilibrium (6)
is globally asymptotic stable [40]. On the other hand, if 0 > 1, then 
𝑑

𝑑𝑡
> 0 which implies that the equilibrium is unstable. Note that in the 

case of 0 = 1, we can conclude that the equilibrium is locally stable 
since 𝑑

𝑑𝑡
= 0. □

3. Numerical simulations and interpretation of the model

We simulate the model (1) under two cases, Case I (US) and Case 
II (India) where the initial conditions and parameters are shown in Ta-
ble 2. The simulation have been done by Mathematica program which 
approximates the solution of the model by the fourth order-Runge Kutta 
method (RK4).

The maximum reproductive number 0 with respect to the disease-
free equilibrium (6) occurs when there is zero vaccination (𝑣 = 0); that 
is,

0 =

√
𝛼𝛽𝑏0

𝑑0(𝑑1 + 𝛼)(𝑑2 + 𝛾)
(19)

Based on Table 2, the maximum 0 of Case I is 2.99 and the maximum 
0 of Case II is 3.38. By increasing the vaccination rate (𝑣), the values of 
0 are decreasing corresponding the effectiveness of prophylactic (𝑝𝑠) 
and therapeutic (𝑝𝑒, 𝑝𝑖) vaccines, see Fig. 2. We note here as an example 
that 𝑝𝑠 = 0.4 means 40% effectiveness of prophylactic when applied to 
susceptible (𝑆); i.e., if 100 people in 𝑆 are administered a prophylactic 
vaccine, it will be 40 people recovered.

Fig. 2 shows that if the vaccination rate (𝑣) is under 0.0002 or 0.02% 
per day of the populations, the basic reproductive numbers are still 
higher than 1 no matter how much vaccine’s effectiveness is. If the rate 
of vaccination per day is increased (0-5% in the US and 0-1% in In-
dia), see Fig. 3, the infection rate in both countries will be decreased. 
This implies that the vaccination rate are play an important role to 
terminate the pandemic. However, the vaccine efficacy is also impor-
tant, the effectiveness can vary the risk of illness [48]. SARS-CoV-2 is 
a zoonotic infection that has transmitted from a vertebrate to a hu-
man [49]. During outbreak, the virus infections in humans have been 
reported at higher rates than animals infections. SARS-CoV-2 may use 
animals and humans as reservoirs for reemerging, similar to SARS coro-
navirus [50, 51]. Thus, coronavirus disease may be a re-emerging viral 
4

Fig. 2. Contour plots of the reproductive numbers 0 with 0 ≤ 𝑣 ≤ 0.001 and 
0 ≤ 𝑝𝑠 = 𝑝𝑒 = 𝑝𝑖 ≤ 1 in US case (Case I) and India case (Case II).

diseases which is a diseases that has been observed previously within 
a population. To completely control SARS-CoV-2 infection, strategies 
for increasing vaccination rates is interesting to investigate for effective 
infection prevention and control of the disease. We need a sufficient 
vaccination rate depending on the power of vaccines and several doses 
of vaccine might be recommended. Based on Fig. 2, if we had a vac-
cine effectiveness higher than 20%, it would suffice to proceed 0.1% 
of the populations per day to reduce the basic reproductive numbers 
to be under 1. Moreover, with the same vaccine’s efficiency of 70% of 
prophylactic and 60% of therapeutic, the US need higher rate of vacci-
nation than India to flatten the curve as seen in Fig. 3.
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Fig. 3. Fractions of US infectious cases and India infectious cases over time if 
we had 70% and 60% effectiveness of prophylactic and therapeutic vaccines, 
respectively, with different rates of vaccination, 0% (no vaccination process), 
0.1%, 1%, and 5% (only US) per day of each population.

The equilibrium point related to the US and India situations can be 
computed by using Equation (7). With the vaccination rate 0.1% per 
day of the US population (𝑣 = 0.001) and 90% efficiency of prophy-
lactic and therapeutic vaccines, the equilibrium point corresponding 
to the fixed parameters in Table 2 of the US case is (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =
(0.0344, 0, 0, 1.3026). If there is no vaccine, the equilibrium point of the 
US case is (0.1486, 0.0003, 0.0004, 1.1876), that is the disease will not die 
out eventually. In the long term, there are about 0.04% infectious of 
the US population. India’s case has (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = (0.0532, 0, 0, 2.4032)
for 𝑣 = 0.001 and 90% vaccines’ efficiency and it has (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =
(0.2145, 0.0005, 0.0006, 2.2407) for no vaccines. Similarly to the US, a few 
percentages (0.06%) of India’s population are infectious in the long 
term if there is no vaccine.

The difference between efficiency of prophylactic and therapeutic 
vaccines in human SARS-CoV-2 infection treatment is depicted as in 
Fig. 4. The effectiveness of both vaccines was set to the same val-
ues. The results showed that prophylactic vaccine has higher efficiency 
than therapeutic vaccine in both the US and India. Prophylactic vac-
cine will stimulate the immune system and then produce long-lived 
memory lymphocytes [52, 53]. Subsequently, the immune system can 
rapidly respond to virus infection, leading to a reduction of infected 
cases.
5

Fig. 4. US and India cases when we have only prophylactic or only therapeutic 
with the same efficiency of the vaccines.

4. Conclusion

The constructed 𝑆𝐸𝐼𝑅 model in this manuscript gives a future per-
spective when we have a vaccine for COVID-19. The simulation shows 
that having an effective vaccine significantly flatten the peak of infec-
tious population. The model illustrates that having a vaccine does not 
immediately terminate the pandemic. It takes a period of time depend-
ing on the effectiveness of the arrival vaccine and the vaccination rate. 
Under the same vaccine’s effectiveness, the simulation shows that the 
US need vaccination rate per day higher than the rate used in India to 
achieve the same result. According to the formula of 0 in Section 2, 
we see that the vaccination rate and the efficiency of vaccines play an 
important role to reduce the value of 0. The theoretical results have 
confirmed that when the reproductive number 0 of the pandemic is 
less than 1, the COVID-19 situation will be under control; i.e., the model 
is stable. The equilibrium point of the model for specific parameters 
gives the stationary flow of the pandemic situation in the long term 
that a few percentages of the considered populations will be infectious 
if we have no vaccine for COVID-19.
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