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a b s t r a c t 

Cancer of Unknown Primary (CUP) occurs in 3–5% of patients when standard histological diagnostic tests are unable to determine the origin of metastatic cancer. 

Typically, a CUP diagnosis is treated empirically and has very poor outcomes, with median overall survival less than one year. Gene expression profiling alone has 

been used to identify the tissue of origin but struggles with low neoplastic percentage in metastatic sites which is where identification is often most needed. MI GPSai, 

a Genomic Prevalence Score, uses DNA sequencing and whole transcriptome data coupled with machine learning to aid in the diagnosis of cancer. The algorithm 

trained on genomic data from 34,352 cases and genomic and transcriptomic data from 23,137 cases and was validated on 19,555 cases. MI GPSai predicted the tumor 

type in the labeled data set with an accuracy of over 94% on 93% of cases while deliberating amongst 21 possible categories of cancer. When also considering the 

second highest prediction, the accuracy increases to 97%. Additionally, MI GPSai rendered a prediction for 71.7% of CUP cases. Pathologist evaluation of discrepancies 

between submitted diagnosis and MI GPSai predictions resulted in change of diagnosis in 41.3% of the time. MI GPSai provides clinically meaningful information in 

a large proportion of CUP cases and inclusion of MI GPSai in clinical routine could improve diagnostic fidelity. Moreover, all genomic markers essential for therapy 

selection are assessed in this assay, maximizing the clinical utility for patients within a single test. 
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Carcinoma of Unknown Primary (CUP) represents a clinically chal-

enging heterogeneous group of metastatic malignancies in which a pri-

ary tumor remains elusive despite extensive clinical and pathologic

valuation. CUPs comprise approximately 3–5% of cancer diagnoses

orldwide [1] and efforts to secure a definitive diagnosis can prolong

he diagnostic process and delay treatment initiation. Furthermore, CUP

s associated with poor outcome which might be explained by use of

uboptimal therapeutic interventions since there is general agreement

hat CUP tumors retain the biologic properties of the putative primary

alignancy [1,2] . Immunohistochemical (IHC) testing is the gold stan-

ard method to diagnose the site of tumor origin, especially in cases of

oorly-differentiated or undifferentiated tumors. Meta-analysis of stud-

es assessing the accuracy of IHC in challenging cases reported an accu-

acy of 60–70% in the characterization of metastatic tumors [3–6] . Since

herapeutic regimens are highly dependent upon diagnosis, this repre-
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ents an important unmet clinical need. To address these challenges,

ssays aiming at tissue-of-origin (TOO) identification based on assess-

ent of differential gene expression have been developed and tested

linically. However, integration of such assays into clinical practice is

ampered by relatively poor performance characteristics ( Table 1 ) and

imited sample availability. Nevertheless, initial clinical studies demon-

trate possible benefit of matching treatments to tumor types predicted

y the assay [8] . With increasing availability of comprehensive molec-

lar profiling assays, particularly next-generation DNA sequencing, ge-

omic features have been incorporated in CUP treatment strategies [9] .

hile this approach rarely supports unambiguous identification of the

OO, it does reveal targetable molecular alterations in some patients

9] . 

In the work presented here we pursued a different strategy of TOO

dentification by utilizing a novel machine-learning approach to build

OO classifiers based on data from a large next-generation DNA se-

uencing panel in conjunction with data from whole transcriptome se-
 85040, USA. 
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Table 1 

Landscape of tissue of origin approaches. 

Assay 

Cancer 

Categories 

N Independent 

Test Set 

Accuracy Cases Called 

(%) (%) 

Caris MI GPSai 21 13,661 94.7 93 

2020 

PCAWG 14 1436 88 100 

2020 [32] 

MSK IMPACT 22 11,644 74.1 100 

2019 [10] 

Cancer Genetics Tissue 

of Origin 

9 27 94.1 89 

2012 [11] 

Biotheranostics 

CancerTYPE ID 

30 187 83 100 

2011 [7] 

Park SY 7 60 75 78 

2007 [5] 

Dennis JL 7 130 88 100 

2005 [12] 

Brown RW 5 128 66 86 

1997 [6] 

Gamble AR 14 100 70 100 

1993 [13] 
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uencing, which are both used broadly for routine molecular tumor pro-

ling. We show that this computational classification system identified

OO at an accuracy significantly exceeding that of other currently avail-

ble technologies. Moreover, this assay simultaneously determines the

resence of genetic abnormalities that guide treatment selection, thus

enerating substantially increased clinical utility in a single test. 

ethods 

ext-Generation Sequencing (NGS) - DNA 

Genomic DNA isolated from formalin-fixed paraffin-embedded

FFPE) tumor samples was microdissected to enrich tumor purity and

ubjected to NGS using the NextSeq platform (Illumina, Inc., San Diego,

A). FFPE specimens underwent pathology review to measure percent

umor content and tumor size; a minimum of 20% of tumor content

n the area for microdissection was required to enable enrichment and

xtraction of tumor-specific DNA. Matched normal tissue was not se-

uenced. A custom-designed SureSelect XT assay was used to enrich

92 or whole exome whole-gene targets (Agilent Technologies, Santa

lara, CA). All variants were detected with > 99% confidence based on

llele frequency and probe panel coverage, with an average sequencing

epth of coverage of > 500 and an analytic sensitivity of 5%. Prior to

olecular testing, tumor enrichment was achieved by harvesting tar-

eted tissue using manual microdissection techniques. Genetic variants

dentified were interpreted by board-certified molecular geneticists and

ategorized as ‘pathogenic,’ ‘presumed pathogenic,’ ‘variant of unknown

ignificance,’ ‘presumed benign,’ or ‘benign,’ according to the American

ollege of Medical Genetics and Genomics (ACMG) standards. When

ssessing mutation frequencies of individual genes, ’pathogenic,’ ‘pre-

umed pathogenic,’ and ‘variants of unknown significance’ were counted

s mutations while ‘benign’ and ‘presumed benign’ variants were ex-

luded. Copy number alteration (CNA) was tested by NGS and was de-

ermined by comparing the depth of sequencing of genomic loci to a

iploid control as well as the known performance of these genomic loci.

alculated gains of 6 copies or greater were considered amplified. 

ext-Generation Sequencing (NGS) - RNA 

FFPE specimens underwent pathology review to measure percent tu-

or content and tumor size; a minimum of 20% of tumor content in the

rea for microdissection was required to enable enrichment and extrac-

ion of tumor-specific RNA. Qiagen RNA FFPE tissue extraction kit was
2 
sed for extraction, and the RNA quality and quantity were determined

sing the Agilent TapeStation. Biotinylated RNA baits were hybridized

o the synthesized and purified cDNA targets and the bait-target com-

lexes were amplified in a post capture PCR reaction. The Illumina No-

aSeq 6500 was used to sequence the whole transcriptome from patients

o an average of 60 M reads. Raw data was demultiplexed by Illumina

ragen BioIT accelerator, trimmed, counted, PCR-duplicates removed

nd aligned to human reference genome hg19 by STAR aligner [14] .

or transcription counting, transcripts per million molecules was gener-

ted using the Salmon expression pipeline [15] . 

NA expression 

RNA expression, as defined by transcripts per million (TPM) from

he Salmon RNA expression pipeline [15] using the Caris Whole Tran-

criptome Assay, was validated using IHC results from over 5000 hu-

an breast adenocarcinoma cases. Protein amounts were measured

y FDA-approved antibodies using standard quantitative IHC assays.

HC scores come directly from histopathology review by board-certified

athologists for ER/ESR1 (human estrogen receptor), PR/PGR (hu-

an progesterone receptor), AR (human androgen receptor), and

ER2/neu/ERBB2 (human Herceptin, receptor tyrosine kinase CD340).

0 IHC ’positive’ and 50 IHC ’negative’ cases were used to decide the

PM thresholds corresponding to IHC positive and IHC negative for

hese 4 genes. The thresholds were evaluated on 5197 independent cases

nd all four markers had a sensitivity > 86% with specificities ranging

rom 85% to 99%. Full validation results are shown in Supplementary

able S1 and Supplementary Fig. S1. 

Additionally, we compared data between the Caris WTS expression

ssay to the Illumina DASL Expression Microarray and publicly avail-

ble Affymetrix U133A expression arrays from the expO project (Gene

xpression Omnibus accession GSE2109) in a cross-platform comparison

ethod [33] . We selected 10 cases from each dataset from a diagnosed

tage IV uterine carcinoma and 10 cases diagnosed with Stage IV colon

denocarcinoma. We identified 14,473 genes which are common across

hese three platforms. Although these cases are from different people,

e propose that the gene expression profiles from uterine tumors and

olon tumors are sufficiently different from each other and sufficiently

ommon within a tumor type that common patterns of over- and under-

xpression can be seen. To best visualize this, we took the log 2 ratio of

ll 14,473 genes between uterine (numerator) and colon (denominator)

ancer and plotted those ratios between panel A {Caris (X axis) and Illu-

ina (Y axis)}, panel B {Illumina (X axis) and Affymetrix (Y axis)}, and
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Fig. 1. CONSORT diagram. The DNA and RNA components of MI GPSai were 

trained using a combined 57,489 patients, which were then validated on 4,602 

non-CUP and 185 CUP patients to determine optimal performance settings. Fol- 

lowing this evaluation, MI GPSai rendered a prediction on routinely profiled 

cases resulting in the final prospective validation set and CUP cases. 

d  

o  

c  

h  

b  

c  

d  

e

 

n  

t  

p  

f

 

5  

c  

a  

e  

t  

i  

s  

p  

c  

o  

s  

i

1  

d  
anel C {Caris (X axis) and Affymetrix (Y axis)}. Supplementary Fig. S2

hows the ratios plotted against each other with R 

2 listed in panels A

0.468), B (0.565) and C (0.528). Note that the expression data was av-

raged across 10 patients. The Pearson’s correlation coefficient for each

s 0.68, 0.75 and 0.73 respectively. 

ompliance statement 

This study was conducted in accordance with guidelines of the Dec-

aration of Helsinki, Belmont report, and U.S. Common rule. In keeping

ith 45 CFR 46.101(b)(4), this study was performed utilizing retrospec-

ive, deidentified clinical data. Therefore, this study is considered IRB

xempt (WIRB Work Order # 1-1182870-1). 

ata statement 

Due to the size of the raw data and concerns for patient privacy,

aw sequencing data is not available. However, summarized GPS data

s available upon request. 

esults 

atients 

Using the Caris Molecular Database which includes tumors analyzed

t the Caris Life Sciences laboratory from 2008 to 2020, we identified

7,044 cases that had next-generation DNA and RNA sequencing results

ith an available pathology diagnosis including CUP. CUP cases were

efined as those assigned a primary tumor site of “Unknown primary

ite ” and for which the “Cancer of Unknown Primary ” lineage was se-

ected by the submitting site. The submitted pathological diagnosis was

sed as the training label. Subsequent independent validation of the

lassifier was accomplished by including 13,661 cases with a known

rimary and 1,107 CUP cases that were analyzed prospectively as part

f routine tumor profiling ( Fig. 1 ). 

rtificial intelligence training 

Molecular profiles from 57,489 patients were used for initial training

f the global tumor classification algorithm designated MI GPSai. This

ataset was comprised of 34,352 cases with genomic data and 23,137

ith both genomic and transcriptomic data. MI GPSai was generated us-

ng an artificial intelligence platform that leverages the Caris Delibera-

ion Analytics (DEAN) framework. DEAN uses biomarker data as feature

nputs into an ensemble of over 300 well-established machine learning

lgorithms, including random forest, support vector machine, logistic

egression, K-nearest neighbor, artificial neural network, naïve Bayes,

uadratic discriminant analysis, and Gaussian processes models. Mul-

iple feature selection methods were employed to build models along

ith 5-fold cross validation during training to assess performance. High-

erforming models deliberate against one another to determine a final

esult. A set of 115 distinct primary tumor site and histology classes

ere defined and used to generate subpopulations of patients (Supple-

entary Table S2). For training the Genomic Profiling Similarity (GPS),

ll 115 disease types were trained against each other using the training

et to generate 6,555 model signatures, where each signature is built to

ifferentiate between a pair of disease types. The signatures were gen-

rated using Gradient Boosted Forests. The models were validated using

he test cases where each test case was processed individually through

ll 6,555 signatures, thereby providing a pairwise analysis between ev-

ry disease type for every case. The results are analyzed in a 115 ×115

atrix where each column and each row is a single disease type and

he cell at the intersection is the probability that a case is one disease

ype or the other. The probabilities for each disease type are summed

or each column which results in 115 disease types with their probabil-

ty sums. These disease types are ranked by their probability sums. The
3 
isease types were further grouped into 21 broad cancer categories in

rder to achieve the highest predictive power for a clinically relevant

ategory that would assist with therapy selection in challenging cases. A

igher resolution of tumors such as luminal vs basal breast cancer will

e performed in future studies in situations when such distinctions are

linically relevant. A total of 6,559 models were generated and used to

etermine a final probability (MI GPS Score) for each case belonging to

ach of the cancer categories. 

These MI GPS Scores were then clustered into multidimensional sig-

atures which are empirically evaluated in the Caris Molecular Database

o determine the predicted prevalence in each cancer category. The

revalence is the final output of the MI GPSai machine learning plat-

orm. 

The machine learning approach leveraged molecular features from

92 genes and over 62,000 mRNA transcripts for each of the cancer

ategories. The top DNA and RNA features that contribute the largest

mount of information to predictions made for each of the 21 cancer cat-

gories are shown in Supplementary Fig. S3. Key canonical driver muta-

ions are well-represented as the top contributing biomarkers. Examples

nclude IDH1 and EGFR for gliomas, cKIT/PDGFRA in gastrointestinal

tromal tumors (GIST), BRAF/NRAS in melanoma, KRAS/CDKN2A in

ancreatic cancer, GATA3 and CDH1 in breast cancer, VHL in renal cell

arcinoma, BRAF in thyroid, PTEN in endometrial cancer, and FOXL2 in

varian granulosa cell tumors [16–21] . Expression of genes relatively

pecific to tissue lineage are also among the top contributors, e.g., CDX2

n gastroesophageal cancer, KIT in GIST, MITF in melanoma and NKX3–

 in prostate cancer [22–25] . As only markers that are most useful for

ifferentiating cancer categories are found in these lists, canonical mark-
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Table 2 

Summary of performance in the independent validation cohort at the se- 

lected threshold. 

Category n Call Rate (%) Sensitivity (%) 

Global 4602 93.3 93.3 

Primary Specimen 2544 94 94.1 

Metastatic Specimen 1969 92.2 92.5 

Percent Tumor > = 20, < = 50 2885 92.7 93.4 

Percent Tumor > 50, < = 80 1657 94.1 93.1 

Percent Tumor > 80 54 100 100 
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rs such as BRCA1 in Breast Adenocarcinoma are not in the top 10 for

he machine learning for Breast as BRCA1 is found in a number of can-

er categories. Additional biomarkers that haven’t been explicitly as-

ociated with the particular cancer types are also included in the al-

orithm, revealing previously uncovered linkages with biomarkers and

athways that warrants further exploration. Additional details of the

achine learning configurations and inputs are described here [26] . 

alidation of algorithmic disease classification in independent cohorts 

Following the lock of the algorithm, predictions made by the MI GP-

ai platform were first validated in an independent set of 4,602 patients

ith known cancer category and 185 patients with CUP. MI GPSai pro-

ided a top prediction for each case along with a score related to the

onfidence in the call. When evaluating the MI GPSai top prediction

n every case in the cohort irrespective of the score, the top prediction

as concordant with the pathologist-assigned disease type in 90.3% of

ases. An assessment of the scores in this dataset led us to select 0.835

s a minimum score required to report a result as it was the intersec-

ion of accuracy of the top prediction and the call rate (percentage of

ases resulted), resulting in 93.3% accuracy on 93.3% of cases with a

efined primary and 75.6% of CUP cases (Supplementary Fig. S4). At

his threshold, the assay was robust within both primary and metastatic

umors as well as various ranges of tumor purity ( Table 2 ). 

rospective validation 

Subsequently, the assay was used in clinical testing to automatically

rospectively evaluate the tumor of each patient profiled at Caris Life

ciences. Pathologists were notified of the MI GPSai score and empiri-

al prevalence tables if the assay returned a MI GPSai Score of > = 0.835

or any cancer category. The tumors of 13,661 non-CUP patients were

valuated by the algorithm as a prospective validation cohort ( Table 3 ).

lobally, this cohort exhibited a similar call rate compared to the ini-

ial independent validation cohort (93.0% vs 93.3%) and exhibited a

igher sensitivity (94.7% vs 93.3%). The sensitivity of the assay re-

ained above 93% in both primary and metastatic tumors regardless

f tumor purity ( Table 3 ). 

This prospective dataset also allowed us to evaluate the diagnostic

ule-out power (i.e., negative predictive value) of the assay. For all pa-

ients, the empirical prevalence tables yielded an average of 17.6 cancer

ategories that had not been observed per patient (i.e., could be ruled

ut) for their respective MI GPSai scores. The correct cancer category

ad a non-zero empirical probability in 98.9% of all cases, and the 1.1%

f observations in which the true cancer category was incorrectly ruled

ut represents less than 0.1% of the total disease types ruled out. Thus,

he rule out accuracy exceeds 99.9%. 

Each of the 21 cancer categories was represented in the prospective

alidation dataset both with respect to true tumor type and highest pre-

iction ( Table 4 ). Sixteen of the 21 cancer categories had an observed

ositive predictive value (PPV) of > = 90% and three had a PPV of > =
9%. Strikingly, the minimum rule-out accuracy is 98.0%. Five can-

er categories (e.g. central nervous system cancers, GIST, melanoma,

eningioma, and prostate) each exhibited > 99% sensitivity while
4 
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Table 4 

Summary of algorithm performance in the prospective validation cohort by cancer category. 

Category n Call Rate (%) Sensitivity (%) PPV (%) Rule Out Accuracy (%) 

Breast Adenocarcinoma 1533 98 98.4 99 100 

Central Nervous System Cancer 445 99.8 99.8 100 100 

Cervical Adenocarcinoma 60 51.7 38.7 66.7 98 

Cholangiocarcinoma 363 73.8 69.4 83 99.7 

Colon Adenocarcinoma 2119 97 98.5 98.2 100 

Gastroesophageal Adenocarcinoma 613 84.5 90.9 89.5 99.9 

GIST 23 95.7 100 95.7 100 

Hepatocellular Carcinoma 66 84.9 92.9 96.3 99.7 

Lung Adenocarcinoma 2287 95 96.4 93.6 100 

Melanoma 373 96.5 99.7 99.7 100 

Meningioma 21 90.5 100 95 100 

Ovarian Granulosa Cell Tumor 25 88 95.5 95.5 100 

Ovarian, Fallopian Tube Adenocarcinoma 1493 91.6 92.5 94.3 99.9 

Pancreas Adenocarcinoma 815 87.6 91.9 87.7 100 

Prostate Adenocarcinoma 556 97.1 99.1 98.7 100 

Renal Cell Carcinoma 176 92.6 95.7 96.9 99.8 

Squamous Cell Carcinoma 1193 93 93.5 93.4 99.9 

Thyroid Cancer 74 85.1 85.7 91.5 99.2 

Urothelial Carcinoma 354 90.7 85.4 96.1 99.9 

Uterine Endometrial Adenocarcinoma 989 89.4 91.4 89.7 100 

Uterine Sarcoma 83 83.1 98.6 94.4 100 

Fig. 2. Prediction matrix in the prospective validation set. Each row shows the percentage of the actual disease types observed when a MI GPSai achieves a score > 

0.835. The diagonal represents the PPV for the given disease type. Blank cells have values between 0 and 1. 
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welve (e.g., breast, colon, gastroesophageal, hepatocellular, lung, two

ubtypes of ovarian, pancreatic, renal, squamous cell, uterine adenocar-

inoma, and uterine sarcoma) more achieved at least 90% sensitivity.

e show confusion matrices with respect to prediction and truth for the

ancer categories in Figs. 2 and 3 , respectively. 

nalysis of CUP 

Of the 1292 CUP cases analyzed by MI GPSai, 71.7% achieved a

core exceeding the reportable threshold (Supplementary Fig. S5). Val-
5 
dation of a CUP assay at the individual patient level is fundamentally

n impossible task as the “truth ” is unknown. As such, comparing the

opulations generated by MI GPSai for each cancer category in terms of

utation frequencies against the mutation frequencies in populations

f known primaries yields insight into the similarities of these popu-

ations. The genes with mutation frequencies with a 95% confidence

nterval which does not overlap with that of any other cancer category

long with their frequencies in the populations created by MI GPSai can

e seen in Supplementary Table S3. Many of the pathogenic mutation

requencies were similar in the labeled and CUP predicted populations,
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Fig. 3. Confusion matrix in the prospective validation set. Each column shows observed predictions for each disease type when a MI GPSai achieves a score > 0.835. 

The diagonal represents the sensitivity for the given disease type. Blank cells have values between 0 and 1. 
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ut not all. In particular, VHL pathogenic mutations were not seen in the

8 CUP cases classified as Renal Cell Carcinoma. This could potentially

e due to lower proportions of clear cell carcinoma in CUP [27] . 

linical utility and case examples 

For CUP cases, MI GPSai was able to assign a diagnosis in 71.7% of

ases. The RNA expression data provide a guide for IHC selection in or-

er to confirm cases. For example, we received an inguinal lymph node

iopsy on an 82-year-old man which was sent for molecular profiling.

t the time of biopsy, the serum PSA was not elevated, and workup had

ot identified the primary tumor. Evaluation by the referring pathologist

ncluded negative IHC stains with CK7, CK20, PSA, PSAP, CDX2, p40,

ATA3, SOX10, and CD45. A cytokeratin stain was positive (AE1/3)

nd case was diagnosed as carcinoma of unknown primary. Notably,

his carcinoma was evaluated appropriately for prostatic lineage with

SA and PSAP IHC, and given the concurrent low serum PSA, prostatic

denocarcinoma was considered ruled out. 

MI GPSai predicted that this was prostate adenocarcinoma (MI GP-

ai score 0.9998) and review of the gene expression data showed high

xpression of androgen receptor (AR) which guided IHC selection. AR

rotein was highly expressed which supported the MI GPSai call. Im-

ortantly, the molecular profiling also identified pathogenic variants in

RCA2 and PTEN , highlighting the utility of diagnosis and biomarker

nalysis from the same platform. The patient had a follow-up biopsy of

he prostate which confirmed prostatic adenocarcinoma. After discus-

ion with the ordering physician, the diagnosis was changed from CUP

o metastatic prostatic adenocarcinoma. 

In addition to assigning lineage and identifying biomarker data with

UP cases, MI GPSai also can assist with improving pathologic diagno-
6 
is fidelity. We prospectively monitored discrepancies between MI GPSai

nd the pathologist-assigned diagnoses in 1292 cases. In cases where the

athologist-assigned diagnosis was different than the top MI GPSai pre-

iction and the MI GPSai score for the top prediction exceeded 0.999,

n automated email was sent to the pathologist in charge of the case

lerting them to this discrepancy. The pathology group was previously

ducated on the design and performance of MI GPSai and instructed to

onsider the discrepant cases with their medical judgement. The pathol-

gists were able to review patient clinical history, imaging results if

vailable, order immunohistochemistry, and discuss the case with the

eferring oncologist and/or pathologist. 

There were 46 cases with a MI GPSai score greater than 0.999 where

athologists were alerted. After review with additional immunohisto-

hemistry and consultation with the referring physician, the diagnosis

as changed in 19 cases (41.3%). In 11 cases (23.9%), where the sub-

itted diagnosis was not changed despite MI GPSai predictions, the pre-

icted diagnosis was pancreatic adenocarcinoma, a cancer with limited

pecific IHC markers for confirmation. All cases did not result in a di-

gnosis revision for various reasons ranging from a lack of diagnostic

HCs to verify the prediction (such as cholangiocarcinoma vs pancreatic

arcinoma) to a lack of response from the oncologist. In one impor-

ant example, the treatment course was altered. We received a cervical

ymph node from a 61-year-old man for molecular profiling ( Fig. 4 ). The

eferring pathologist assigned a diagnosis of poorly-differentiated squa-

ous cell carcinoma (Fig. 4A). The patient had systemic metastasis and

ad not responded well to squamous cell carcinoma directed therapy.

he MI GPSai predicted diagnosis was urothelial carcinoma (MI GPSai

core 0.9999), and additional immunohistochemical workup was pur-

ued based on the results of RNA expression profiling. This additional

HC was positive for Uroplakin II and GATA3 - both relatively specific for
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Fig. 4. A clinical example showing a representative case in which the pathological diagnosis was reassigned based on MI GPSai predictions using Whole Exome and 

Whole Transcriptome Sequencing (WES, WTS) data. (A) Molecular profiling was performed using WES and WTS data that was then routed into the MI GPSai pipeline 

for diagnostic predictions. (B) The whole transcriptome expression data was then used to select for lineage specific gene expression to guide immunohistochemical 

antibody selection, the current gold-standard for lineage assignment. In the example provided, the mean RNA expression of Uroplakin II and GATA3 of the urothelial 

carcinoma cases in our database is relatively high (box plots). With the specimen being considered (red line), Uroplakin II and GATA3 RNA expression high. (C) and 

(D) Immunohistochemical evaluation of the tumor with clinically validated antibodies against Uroplakin II and GATA3 confirmed lineage specific protein expression 

diagnostic of urothelial carcinoma. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 7 
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rothelial carcinoma and not typically expressed in squamous cell car-

inoma ( Fig. 4 ). Importantly, the choice of the PD-L1 clone and scoring

ystem was affected by the lineage of cancer being tested. In this case,

he referring pathologist and oncologist asked to change the diagnosis

o urothelial carcinoma and run the SP142 PD-L1 antibody according to

he label indications for atezolizumab. This PD-L1 score was positive,

he patient therapy changed, and the patient response will be tracked in

ur prospective study. In sum, MI GPSai has significant clinical utility

ith CUP and diagnostic fidelity. 

iscussion 

Cancer of unknown primary remains a major clinical challenge and

utcomes are poor. Molecular predictors of tumor origin can assist in ad-

ressing this problem by providing critical information in CUP cases that

an inform treatment decisions and potentially improve outcomes. We

erein took advantage of a large collection of molecular and pathology

ata to develop MI GPSai which is, to our knowledge, the first artificial

ntelligence-derived molecular classifier that utilizes DNA and RNA in-

ormation to make tumor type predictions across a broad spectrum of

iagnostic classes with high accuracy. 

Up to this point, development of molecular assays for the identifica-

ion of cancers of unknown primary has been focused on utilizing RNA

rofiles which have degraded performance in situations where the tu-

or is from a site of metastasis or if the tumor percentage is low [7] . Our

pproach overcomes these limitations since nucleic acid is isolated from

icrodissected material, thus enriching for tumor cells. The combined

nalysis of DNA and RNA further reduces susceptibility to the effects of

ormal cell contamination. As demonstrated in our case examples, avail-

bility of mutational and gene expression analysis data further enhances

he clinical utility of our approach from a diagnostic and therapeutic

erspective. 

The accuracy of MI GPSai compares favorably to recent data on the

se of DNA NGS panels for tissue of origin identification or guidance of

tilization of targeted- and immunotherapies [10,28] . However, overall

ccuracy of these approaches is limited. For example, predictions made

y a Random Forrest Classifier using results from a 468-gene NGS panel

s input, resulted in an overall accuracy of 74.1% [10] . Analysis of circu-

ating tumor DNA data from a commercial 70-gene NGS panel revealed

otentially targetable mutations. However, an attempt to identify the

nderlying TOO was not made [28] , possibly due to the limited number

f genes analyzed. In contrast, analysis of DNA methylation across the

enome might add additional information to above-mentioned assays,

s it has been shown to predict a primary tumor in 87% of CUP cases

29] . 

In addition to its role in understanding CUP, MI GPSai functions also

s an outstanding quality control tool when integrated into the pathol-

gy laboratory workflow. As part of our prospective evaluation of MI

PSai, pathologists were alerted to discrepancies between submitted

iagnosis and MI GPSai prediction, resulting in change in diagnosis in

1.3% of these cases. Considering that the rate of inaccurate diagno-

is ranges between 3% and 9% [30] , inclusion of MI GPSai in clinical

outine could improve diagnostic fidelity overall. 

A current limitation of MI GPSai is that it has not yet been trained

n certain classes of tumors that need to be evaluated in a traditional

athologic workup. If the differential diagnostic considerations for any

articular cancer include non-uterine sarcoma or hematologic malig-

ancy, MI GPSai is not indicated. Limitations to training a model to ac-

urately predict a diagnosis include identification of a sufficient cohort

f correctly annotated cases. As data accumulates from routine molecu-

ar profiling for predictive biomarker evaluation, additional diagnostic

ategories will be incorporated into MI GPSai. This highlights our ap-

roach that MI GPSai is a diagnostic tool that parses data to be consid-

red by the pathologist in the overall context of the case. Other tradi-

ional pieces of information important for rendering a diagnosis such as

he clinical, laboratory, and imaging information still maintain salience.
8 
uture versions of the tool will be trained on well-characterized cohorts

f sarcoma and hematologic malignancy and will also incorporate in-

ormation from digital pathology image analysis [31] that will further

nhance the accuracy of the algorithm. 

In summary, MI GPSai displayed robust performance in the diagnos-

ic workup of CUP cases that was consistent across 13,661 cases includ-

ng both metastatic and low percentage tumors. At the same time, MI

PSai can also play an important role in quality control of anatomical

athology laboratories. Since the MI GPSai analysis uses the results of

NA and RNA profiles obtained as part of routine clinical tumor profil-

ng, both diagnostic and therapeutic information can be returned that

ptimize patients’ treatment strategy from a single test. This is a substan-

ial improvement over the current standard of multiple tests that require

ore tissue and increased turnaround time which can delay treatment.

rospective clinical studies are planned to assess the impact of MI GP-

ai on treatment decisions and outcomes. Other prospective clinical tri-

ls are ongoing (CUPISCO; NCT03498521) or completed (GEFCAPI 4;

CT01540058) that evaluate the clinical impact of molecular diagnos-

ic testing on patient outcomes in CUP, but they either do not include an

ttempt to assign a cancer lineage or have failed to show significant dif-

erence between the empiric or cancer-directed therapy. Our approach

ims to utilize the context-specific information gained by lineage assign-

ent when considering biomarker-directed therapy. 
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