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Abstract: The development of mixed matrix membranes (MMMs) for effective gas separation has been
gaining popularity in recent years. The current study aimed at the fabrication of MMMs incorporated
with various loadings (0–4 wt%) of functionalized KIT-6 (NH2KIT-6) [KIT: Korea Advanced Institute
of Science and Technology] for enhanced gas permeation and separation performance. NH2KIT-6
was characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD),
Fourier transform infrared (FTIR), and N2 adsorption–desorption analysis. The fabricated membranes
were subjected to FESEM and FTIR analyses. The effect of NH2KIT-6 loading on the CO2 permeability
and ideal CO2/CH4 selectivity of the fabricated membranes were investigated in gas permeation and
separation studies. The successfulness of (3-Aminopropyl) triethoxysilane (APTES) functionalization
on KIT-6 was confirmed by FTIR analysis. As observed from FESEM images, MMMs with no voids
in the matrix were successfully fabricated at a low NH2KIT-6 loading of 0 to 2 wt%. The CO2

permeability and ideal CO2/CH4 selectivity increased when NH2KIT-6 loading was increased from
0 to 2 wt%. However, a further increase in NH2KIT-6 loading beyond 2 wt% led to a drop in ideal
CO2/CH4 selectivity. In the current study, a significant increase of about 47% in ideal CO2/CH4

selectivity was achieved by incorporating optimum 2 wt% NH2KIT-6 into the MMMs.

Keywords: KIT-6; functionalization; mixed matrix membranes; CO2; CH4

1. Introduction

Polymer membranes have emerged as a potential candidate in carbon dioxide removal due to
their economical alternatives to conventional separation processes. Membrane technology exhibits
operational flexibility, small design, cost efficiency, easy scale-up, high product quality, and a small
footprint [1–3]. However, polymer membranes commonly suffer from a trade-off between permeability
and selectivity [4–10].

In view of the drawbacks of polymer membranes, which limit the application of polymer
membranes in gas separation, development of mixed matrix membranes (MMMs) for gas separation
applications has been gaining popularity among researchers in recent years. MMMs are commonly
formed by incorporating inorganic fillers into the polymer matrix. Among the various inorganic fillers,
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mesoporous silicas appear to be a highly potential filler in the MMMs for efficient gas permeation and
separation [11]. Mesoporous silicas possess several advantages including high specific surface area,
high mechanical and thermal stability, and high CO2 adsorption capacity [12]. In addition, the high
porosity of mesoporous silica facilitates gas permeation during gas separation [13].

KIT-6 (KIT: Korea Advanced Institute of Science and Technology) is a type of mesoporous silica,
which is a highly potential filler for MMMs due to its large pore size. KIT-6 has drawn the attention
of researchers for gas permeation and separation. Owning to the large pore size, KIT-6 is granted
with an interpenetrating pore system, which enables the formation of an intimate structure with
polymer matrix [4]. Intimate structure in MMMs is essential for high gas permeation and separation
performance of MMMs.

The functionalization of mesoporous silica by amine groups is one of the methods to further
enhance the gas permeation and separation performance of MMMs [14]. Wu et al. [14] found that
by using polyethylenimine-functionalized-MCM-41 [MCM: Mobil Composition of Matter], better
interfacial interaction could be formed with the polymer compared to unfunctionalized MCM-41.
The amine-functionalized-MCM-41 resulted in improvement in CO2 permeability and CO2/CH4

selectivity as compared to the MMMs incorporated with unfunctionalized MCM-41 [14]. Meanwhile,
Kim and Marand [11] performed amine functionalization on MCM-41 filler, which resulted in great
compatibility with glassy polysulfone (PSF) membrane and significantly enhanced CO2/CH4 selectivity
of the MMMs [11]. Furthermore, Waheed et al. [1] reported that good dispersion and adhesion of the
filler with the PSF polymer were achieved by functionalizing the rice husk silica (RHS) filler with
4-aminophenazone. The MMMs incorporated with amine-functionalized RHS displayed significantly
higher CO2/CH4 selectivity as well as CO2/N2 selectivity [1]. On the other hand, Khan et al. [13] reported
similar results where MCM-41 was functionalized with aminopropyltrimethoxysilane. The use of
amine-functionalized-MCM-41 as a filler resulted in the elimination of voids as well as good dispersion
of the filler in the MMMs along with significantly higher CO2/CH4 and CO2/N2 selectivities [13].
Thus, amine functionalization on the mesoporous silica filler would significantly improve the structure
of the MMMs by reducing or eliminating the void formations in MMMs, which will then enhance the
gas permeation and separation performance of the MMMs.

The aim of this study was to investigate the effect of incorporation of amine-functionalized-KIT-6
filler on the CO2 and CH4 gas permeability and selectivity performance of the MMMs. The KIT-6
was functionalized with (3-Aminopropyl) triethoxysilane (APTES). The functionalized KIT-6 was
incorporated into the PSF polymer matrix to fabricate different MMMs. PSF is a type of polymer with
good thermomechanical stability, gas permeability, and selectivity [15–19]. The functionalized KIT-6
and the fabricated MMMs were characterized using different analytical techniques. The fabricated
MMMs were subjected to CO2 and CH4 gas permeation and separation at 25 ◦C.

2. Materials and Methods

2.1. Chemicals and Materials Used

(3-Aminopropyl) triethoxysilane (APTES, 99.8%) and polysulfone (PSF) were purchased from
Sigma Aldrich. Tetrahydrofuran (THF, 99.8%) was purchased from Merck. All chemicals were used
without purification.

2.2. Functionlization of KIT-6

KIT-6 (1 g) was dispersed in 100 milliliters of dry toluene in a flask. To this solution, 9.0 mmol
of APTES was added, and the functionalization of KIT-6 was carried out by refluxing the resulting
solution at 80 ◦C for 24 h [20]. The functionalized KIT-6 sample was filtered, washed with 50:50 distilled
water and ethanol mixture, followed by acetone. The obtained sample was dried overnight at room
temperature, followed by drying in a vacuum oven at 80 ◦C for 16 h. The functionalized samples were
named as NH2KIT-6.
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2.3. Preparation of the Membranes

Preparation of NH2KIT-6/PSF MMMs (which were incorporated with functionalized KIT-6) were
conducted following previously reported procedures with some modifications [11,21]. A desired
loading (0–4 wt%) of NH2KIT-6 was added to 10 mL of THF, followed by ultrasonication for 30 min.
The PSF pellet was added and dissolved into the solution for 18 h. Then, the solution was sonicated for
30 min to remove air bubbles, and subsequently was cast on a glass plate using a casting blade with a
gap of 200 µm. The glass plate was covered and left for 3 days at room temperature to ensure complete
solvent evaporation. The prepared membranes were peeled off and stored in desiccators.

2.4. Characterizations of KIT-6, NH2KIT-6, and the Membranes

The morphology of the NH2KIT-6 filler was analyzed by FESEM (VPFESEM, Zeiss Supra55 VP).
NH2KIT-6 were subjected to XRD (X’Pert3 Powder & Empyrean, PANalytical) scanning for crystalline
structure study. Functional groups in KIT-6 and NH2KIT-6 were determined by FTIR (Perkin
Almer, Frontier). The pore characteristics of KIT-6 and NH2KIT-6 were analyzed using N2

adsorption–desorption analysis (TriStar II 3020 V1.04) with liquid nitrogen at 77 K. The specific
surface area of the sample was calculated by using the Brunauer–Emmett–Teller (BET) method.
The mesopore size distribution was determined by using the Barrett–Joyner–Halenda (BJH) method.
The morphology of the fabricated membranes was analyzed by FESEM (VPFESEM, Zeiss Supra55 VP).
The membranes were also subjected to FTIR analysis (Perkin Almer, Frontier).

2.5. Gas Permeation and Separation Studies

The membrane was sealed in a membrane gas cell that was connected to the membrane gas
permeation and separation test system. CO2 or CH4 gas with a purity of 99.99% was fed separately to
the membrane gas permeation and separation system. The gas permeation was performed at 25 ◦C.
The pressure difference was regulated to be 5 bar or 7 bar. The permeate flow was measured using a
bubble flow meter. The gas permeability, P, was calculated using Equation (1):

P =
Nl(

P f − Pp
)
A

(1)

where l is the membrane thickness, N is the permeate flow, Pf is the feed pressure, Pp is the permeate
pressure, and A is the membrane area.

The ideal selectivity, α of the membrane was calculated as the ratio of CO2 gas permeance to CH4

gas permeance.
Each gas permeation measurement was repeated three times.

3. Results and Discussion

3.1. Characterizations of NH2KIT-6

Figure 1 shows the FESEM image of NH2KIT-6. The FESEM image of NH2KIT-6 revealed the
typical rock-like morphology. Figure 2 shows the XRD pattern of NH2KIT-6, which exhibits peak
diffractions of about 1.1◦ at 2θ. This shows that the samples had the ordered mesostructure with a
three-dimensional cubic Ia3d symmetry [22]. The XRD pattern of the NH2KIT-6 sample in the current
project is in agreement with the XRD pattern for KIT-6 reported by Ayad et al. [22].

The FTIR spectra of KIT-6 and NH2KIT-6 are shown in Figure 3. The characteristic band at 3464 cm−1

indicates the stretching vibration of hydrogen bonding from silanol group y(≡Si−OH) [23]. Furthermore,
the characteristic band at 1640 cm−1 indicates the O−H bending vibration mode. The anti-symmetric
and symmetric stretching vibrations of Si−O−Si groups are observed at characteristic bands at 1083 cm−1

and 804 cm−1, respectively [24]. It is interesting to observe the characteristic band at 1459 cm−1, which
is present in the FTIR spectra of NH2KIT-6 but is absent in the FTIR spectra of KIT-6. This characteristic
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band at 1459 cm−1 indicates the appearance of N−H bonds in NH2KIT-6 and hence prove the successful
amine-functionalization of KIT-6 [20,23,25]. In addition, the characteristic band at around 2926 cm−1,
which indicates the C−H stretching vibration of the organosilane, is observed in the FTIR spectra of
NH2KIT-6 but is not found in the spectra of KIT-6 [23]. This further proves the effective functionalization
of KIT-6.Polymers 2020, 12, x FOR PEER REVIEW 4 of 11 
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Figure 4 shows the nitrogen adsorption–desorption isotherms of KIT-6 and NH2KIT-6. Type IV
with a hysteresis loop from the nitrogen adsorption isotherms for KIT-6 and NH2KIT-6 is observed,
which represents the characteristic of a mesoporous material [4,5,20,26]. According to the IUPAC
classification, a type H1 hysteresis loop can be observed from the isotherm; this indicates the
characteristic of mesoporous materials and characteristic of material with interconnected large
cylindrical pore geometry and a high degree of pore size uniformity [26]. In the current study,
NH2KIT-6 sample possessed a specific surface area of 108 m2/g, a pore volume of 0.18 cm3/g, and a
pore diameter of 6.50 nm.
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3.2. Characterizations of the Membranes

Figure 5 shows the top view of FESEM images of NH2KIT-6/PSF MMMs with different loadings
of NH2KIT-6. The particles observed indicate that NH2KIT-6 was successfully incorporated into the
PSF matrix [26]. Figure 6 shows the cross-sectional FESEM images of the NH2KIT-6/PSF MMMs.
Incorporating up to 2 wt% NH2KIT-6 into the MMMs produced MMMs with no void in the matrix.
After the functionalization of KIT-6 silica with APTES, the silane backbone of APTES promoted
good silica–polymer interactions via van der Waals forces in the MMMs [25,27,28]. However, filler
agglomeration was observed when NH2KIT-6 loading in the MMMs was 4 wt%, as highlighted in
Figure 6d.

The FTIR spectra of pristine PSF membrane and NH2KIT-6/PSF MMMs are shown in Figure 7.
As observed from Figure 7a, the pristine PSF membrane shows C–H rocking at the characteristic band
at 831 cm−1. The C−C stretching is indicated by characteristic bands at 1012 cm−1 and 1103 cm−1.
The Ar−SO2−Ar symmetric stretching is observed at a characteristic band at 1147 cm−1, where Ar
corresponds to aromatic. On the other hand, the Ar−O−Ar stretching is observed at 1235 cm−1 and
S=O symmetric stretching is observed at 1294 cm−1 [29]. Besides, the characteristic band at 2926 cm−1

indicates the C–H stretching vibration [1]. It is interesting to find about the interaction between
NH2KIT-6 filler and the PSF polymer phase where the characteristic bands of the PSF were retained in
the FTIR spectra of the MMMs. This is in agreement with the FTIR analysis reported by Khdary and
Abdelsalam [30]. As observed from Figure 7b–e, a small characteristic band at 3464 cm−1, which is
assigned to the Si–OH group, was observed for the FTIR spectra of four NH2KIT-6/PSF MMMs [23].
This indicates the presence of NH2KIT-6 in the MMMs. The small characteristic band at 3464 cm−1,
which is due to the Si–OH group of the NH2KIT-6, was not observed in the FTIR spectra of the pristine
PSF membrane.
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3.3. Gas Permeation and Separation Studies

Figures 8 and 9 show the CO2 permeability and CH4 permeability of the membranes incorporated
with different NH2KIT-6 loadings. The error for the CO2 permeability and CH4 permeability was ±5%.
As observed in Figure 8, the CO2 permeability increased when NH2KIT-6 loading in the MMMs was
increased. At a pressure difference of 5 bar, an increase of about 47% in ideal CO2/CH4 selectivity
was achieved by incorporating 2 wt% NH2KIT-6 into the MMMs. As observed in Figures 8 and 9,
the CO2 permeability and CH4 permeability decreased when the pressure difference increased from 5
to 7 bar. This is a common behavior of glassy polymers [31,32]. Biondo et al. [33] reported a decrease
in CO2 permeability when the pressure increased for PSF and it was explained that the behavior was
typical for a dual-mode model. Figure 10 shows the ideal CO2/CH4 selectivity of the membranes
incorporated with different NH2KIT-6 loadings. After the functionalization of KIT-6, the presence of
amine groups on NH2KIT-6 in the MMMs enhanced the affinity of MMMs toward CO2 and hence
increased the ideal CO2/CH4 selectivity of the MMMs [14]. However, further increasing the NH2KIT-6
loading from 2 to 4 wt% caused a drop in the ideal CO2/CH4 selectivity, as observed in Figure 10.
This might be due to the filler agglomeration in the MMMs, which started to occur at higher NH2KIT-6
loading. In addition, the gas permeability and ideal CO2/CH4 selectivity of the MMMs incorporated
with pristine (unfunctionalized) KIT-6 were reported in our earlier work [34]. The MMMs incorporated
with NH2KIT-6 in the current study displayed higher ideal CO2/CH4 selectivity compared to MMMs
incorporated with the same loadings of pristine KIT-6 in our earlier work [34]. However, the gas
permeation and separation performance of the NH2KIT-6/PSF MMMs in the current study fall below
the Robeson upper bound [35]. Hence, future research work is still needed in order to further enhance
the gas permeation and separation performance of the NH2KIT-6/PSF. Table 1 shows the comparison of
CO2 permeability and ideal CO2/CH4 selectivity between MMMs from the current study and MMMs
incorporated with functionalized silica reported in the literature. The CO2 permeability obtained in
the current study is quite comparable with the CO2 permeability reported in several other studies.
As compared with the research works reported in Table 1, a relatively higher ideal CO2/CH4 selectivity
was achieved by incorporating 2 wt% NH2KIT-6 filler into the MMMs in the current study.
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Table 1. Comparison of CO2 permeability and ideal CO2/CH4 selectivity between MMMs from current
study and MMMs incorporated with functionalized silica reported in the literature.

Polymer/Filler Amine Group Used for the
Filler Functionalization

Filler Loading
(wt%)

CO2
Permeability

(Barrer)

Ideal CO2/CH4
Selectivity Reference

Pebax/MCM-41 Polyethylenimine 5 ~87 ~23 [14]
PSF/RHS 4-aminophenazone 10 ~5.6 ~28.1 [1]

PSF/MCM-41 Aminopropyltrimethoxysilane 10 ~6.2 ~28.0 [13]
PSF/MCM-41 3-aminopropyltriethoxysilane 20 ~7.3 ~28.1 [11]

PSF/NH2KIT-6 (3-Aminopropyl)
triethoxysilane 2 ~5.4 ~32.4 Current

study
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4. Conclusions

In the current study, functionalized KIT-6 (NH2KIT-6) was incorporated into a PSF matrix to
form MMMs. The presence of particles in the MMMs as observed in the FESEM images indicated the
successful incorporation of NH2KIT-6 into the MMMs. The CO2 permeability and CH4 permeability
decreased when the pressure difference increased from 5 to 7 bar. MMMs with no void in the matrix
were successfully fabricated by incorporating up to 2 wt% NH2KIT-6 into the MMMs. Subsequently,
an increase of about 47% in the ideal CO2/CH4 selectivity was achieved by incorporating 2 wt%
NH2KIT-6 into the MMMs. However, filler agglomeration started to occur in the MMMs when a higher
NH2KIT-6 loading was incorporated into the MMMs. The ideal CO2/CH4 selectivity dropped when
the NH2KIT-6 loading was increased from 2 to 4 wt%.
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