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Langevin dynamics encapsulate the
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AMR, 0000-0002-7103-3841

In contrast to bird flocks, fish schools and animal herds, midge swarms main-

tain cohesion but do not possess global order. High-speed imaging techniques

are now revealing that these swarms have surprising properties. Here, I show

that simple models found on the Langevin equation are consistent with this

wealth of recent observations. The models predict correctly that large accelera-

tions, exceeding 10 g, will be common and they predict correctly the

coexistence of core condensed phases surrounded by dilute vapour phases.

The models also provide new insights into the influence of environmental

conditions on swarm dynamics. They predict that correlations between

midges increase the strength of the effective force binding the swarm together.

This may explain why such correlations are absent in laboratory swarms but

present in natural swarms which contend with the wind and other disturb-

ances. Finally, the models predict that swarms have fluid-like macroscopic

mechanical properties and will slosh rather than slide back and forth after

being abruptly displaced. This prediction offers a promising avenue for

future experimentation that goes beyond current quasi-static testing which

has revealed solid-like responses.
1. Introduction
Aerial mating swarms of male midges and male mosquitoes form at dawn or dusk

often over prominent landmarks (hereafter called ‘swarm markers’). These

swarms can contain a few hundreds, or even thousands of individuals and form

to attract females from the surrounding vegetation. Females fly into these

mating arenas and copulation occurs on the wing. In contrast with bird flocks,

fish schools, animal herds and some other insect swarms (e.g. marching locusts),

these cohesive swarms do not display coordinated motion. This has prompted

the search for more nuanced ways to characterize collective motions in animal

aggregates that go beyond the identification of global ordering or patterning.

Okubo [1] was the first to report on and attempt to characterize the three-

dimensional flight patterns of swarming insects (the midge Anarete pritchardi).
Analysis of stereoscopic photographic recordings revealed that motion inside

the swarm looks more or less random in both velocity and acceleration, but

each midge is, nonetheless, subject to an inward acceleration the magnitude of

which increases with distance from the swarm centre. This prompted Okubo [1]

to propose that midge swarms are analogous to self-gravitating systems and, as

a consequence, the motion of midges within a swarm can be modelled by the

Langevin equation. Ouellette and co-workers [2–8] have built on Okubo’s [1]

ground-breaking experiments and, in doing so, have uncovered a wealth of

detailed information about the behaviours of midge (Chironomus riparius)
swarms, resulting in the quantification of velocity and acceleration statistics, the

identification of surprising macroscopic properties, including a finite Young’s

modulus and yield strength, and most recently reporting on the coexistence of a

core condensed phase surrounded by a dilute vapour phase. In parallel with
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these experiments, Reynolds and co-workers [9,10] have been

refining Okubo’s model [1] and, in doing so, predicted that

the effective attractive force towards the centre of the swarm

increases both with distance from the swarm centre and with

an individual’s flight speed. Clear evidence of such an attrac-

tive force was subsequently found in experimental data [10].

This success suggests that generalizations of the Langevin

equation may encapsulate the key dynamics of insect swarms

and hence facilitate a better understanding of their collective

behaviours, helping to reconcile conflicting observations

made in the laboratory and in natural environments, and offer-

ing new challenges for experimentalists. Here, I show that this

is indeed the case by demonstrating that the models: capture

the plethora of recent observations [2–8]; predict, in accordance

with observations, that correlations will be absent in laboratory

swarms but present in natural swarms [3,11–13]; and predict

that going beyond current quasi-static testing [4] will uncover

emergent fluid-like behaviours. This is timely because the

exploration of swarm ‘thermodynamics’ and the characteriz-

ation of swarms in terms of state variables and constitutive

laws lies at the cutting edge of swarm research [3,8]. Tradition-

ally, models of collective motion have been validated by

studying the group morphology they produce. But it is now

recognized that morphology alone is not a good indicator of

model correctness as different kinds of model can produce

nearly identical group morphologies [7]. Models must now

be able to capture both the intricate dynamics of swarms and

the emergent ‘material’ properties of swarms.
2. Methods
2.1. Modelling of midge swarms
Laboratory midge (Chironomus riparius) swarms do not show the

choreographed movements of fish schools or bird flocks, but

their members do occupy just a small portion of the space available

to them [2–8]. The midges appear somewhat paradoxically to be

tightly bound to the swarm centre while at the same time behaving

as nearly free particles inside it [7]. Here, following Okubo [1] I

assume that the positions, x, and velocities, u, of such midges

within laboratory swarms can be described by the stochastic

differential equations

dx ¼ udt
du ¼ aðu, x, tÞdtþ bðu, x, tÞdWðtÞ,

)
ð2:1Þ

where dw(t) is an incremental Wiener process with correlation

property dWðtÞdWðtþ tÞ ¼ dðtÞdt. Equation (2.1) is effectively a

first-order autoregressive stochastic process in which position

and velocity are modelled as a joint Markovian process.

At second order, position, velocity and acceleration would be mod-

elled collectively as a Markovian process. Physically, this hierarchy

of models corresponds to the inclusion of a velocity autocorrelation

timescale, at first order, and to the addition of an acceleration auto-

correlation timescale, at second order, and so on [14]. Here, the

deterministic term, a(u, x, t), is determined by the requirement

that the statistical properties of the simulated trajectories be con-

sistent with the observations of Kelley & Ouellette [2]. Kelley &

Ouellette [2] showed that: (i) the spatial distribution individuals

from the swarm centre is approximately Gaussian in all three

dimensions and weakly axisymmetric; (ii) and that, in sufficiently

large swarms, individual velocity distributions have long, nearly

exponential tails.

Mathematically, these consistency conditions require that the

joint distribution of velocity and position P(u, x, t) be a solution
of the Fokker–Planck equation [15]

@P
@t
þ u

@P
@x
¼ � @

@u
ðaPÞ þ b2

2

@2P
@u2

: ð2:2Þ

Here, in broad agreement with the observations of Kelley &

Ouellette [2], I assume that positions and velocities can be

separated and are distributed according to

Pðu, x, tÞ ¼ 1

2
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where xc is the location of the swarm centre, sx is the root-mean-

square position and su is the root-mean-square speed. Equation

(2.2) implies that

aP ¼ b2

2

@P
@u
þ fðx, u, tÞ,

where, for statistically stationary swarms having @P/@t ¼ 0,

@f

@u
¼ �u

@P
@x

, i:e: f ¼ � @

@x

ðu

�1

uP du: ð2:4Þ

It follows from equations (2.2), (2.3) and (2.4) that

du ¼ �sgnðuÞsu

T
dt� s2

u

s2
x

1þ juj
su

� �
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when, without loss of generality, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

u=T
p

, where T is a

velocity autocorrelation timescale. The first term is a ‘memory

term’ which causes velocity fluctuations to relax to their mean

value. The second term is the ‘conditional mean acceleration’,

and the third term is the stochastic driving noise. In accordance

with observations, the mean acceleration increases linearly with

distance from the swarm centre and with speed relative to the

swarm centre [2,10]. Note, however, that in small swarms (less

than 10 individuals) velocities are observed to be Gaussian

rather than exponentially distributed [1,2], and in this case a

directly analogous calculation gives

du ¼ � u
T

dt� s2
u

s2
x

(x� xc)dtþ

ffiffiffiffiffiffiffiffi
2s2

u

T

s
dW : ð2:6Þ

This model is identical to the model posited by Okubo [1]. The

linear increases in mean acceleration (force) with distance from

the swarm centre in the two models, equations (2.5) and (2.6),

are consistent with midge swarms behaving as self-gravitating sys-

tems [1]. This is consistent with midges interacting primarily via

long-range acoustic stimuli and with ‘adapting’ their response to

the overall sound level so that acoustic sensitivity drops when

there is a strong background noise [16]. Adaptivity is a common

feature of biological sensory systems. Gorbonos & Gov [17]

showed that adaptivity also prevents collapse of the swarm and

therefore confers on the swarm a natural stability mechanism.

This is related to Jeans instability, which in stellar physics causes

the collapse of interstellar gas clouds and hence star formation

when the internal gas pressure cannot prevent gravitational implo-

sion. Two- and three-dimensional models can be formulated in a

directly analogous way [10] but, in contrast to one-dimensional

models, they are not uniquely determined by prescribed distri-

butions of position and velocity. Models differ in the propensity

to which simulated trajectories tend to orbit around the swarm

centre. Models of midge swarms producing orbiting trajecto-

ries can currently be discounted because there are no reported

observations of such behaviours.

In contrast to laboratory swarms, the velocities of midges

within natural swarms are correlated [11,12], i.e. the midges are

effectively interacting by velocity matching. Later I suggest that

the correlations are induced by environmental disturbances. The

modelling framework can be extended to take explicit account of

such interactions between individuals, following the approach

of Thomson [18], who devised a stochastic model for the motion
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Figure 1. Individual midge accelerations. Standardized acceleration prob-
ability density functions. Model predictions for speed-dependent forces are
shown (solid line) together with observations (black filled circle, median
recording; red filled circle, maximum recording; blue filled circle, minimum
recording) of horizontal accelerations [2]. There are no adjustable parameters
in the predicted standardized pdf. Models with speed-independent forces
predict that accelerations are Gaussian distributed.
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of particle pairs in turbulence. One of the simplest such models is

given by

dui ¼ �
b2

2
t�1

ij ujdt�
tij

s2
x
ðxi � xcÞdtþ 1

2
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dt

þ 1
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dxi ¼ uidt,

9>>>>>>=
>>>>>>;

ð2:7Þ

where the subscripts denote different individuals, t is the velocity

correlation matrix with components tij ¼ kuiujl, t�1
ij denotes com-

ponents of t21 and where dW(t) is an incremental Wiener

process with correlation property dWiðtÞdWðtþ tÞj ¼ dðtÞdijdt.
Modelled velocities are Gaussian with mean zero (and close neigh-

bours will have similar velocities by virtue of the correlations). The

first term describes how an individual velocity relaxes to a

weighted sum of the velocities of its neighbours. The second

term is an attractive force that binds individuals to the swarm

centre. The third and fourth terms ensure that the spatial distri-

bution of individuals is uniform on average. Without these

terms, individuals would tend to drift apart because relative

velocities tend to decrease as individuals come together and

increase as they move apart, leading to a net outward drift; a pro-

cess akin to turbophoresis. The third and fourth terms counter this

drift which, on average, is given by�@tij=@xj. They are, in effect, a

velocity-dependent mean acceleration. The model, equation (2.7),

reduces to the phenomenological model of midge swarms pro-

posed by Passino [19] when the fourth term is averaged over

velocity, i.e. when ð1=2Þt�1
lj ð@til=@xkÞujuk is approximated by

ð1=2Þð@tij=@xjÞ. Passino [19] noted that such a term represents a

short-range ‘repulsive’ interaction when velocity correlations are

positive. When a pair of simulated midges are much closer than

the correlation length scale, the acceleration between them

becomes strongly repelling. This is consistent with the obser-

vations of Puckett et al. [7] who reported that accelerations

become strongly repelling when the separation between a pair of

midges is less than 12 mm (about two body lengths), a separation

comparable to the correlation length scale, 26 mm [3].
3. Results
3.1. Ramifications of speed-dependent effective forces:

biological insights
Reynolds & Ouellette [9] recognized that Lévy flight patterns

can result from speed-dependent effective forces and they

found some support for such flight patterns in laboratory

swarms of the midge Chironomus riparius. The occurrence of

Lévy flight patterns may be accidental but they may have bio-

logical significance. Lévy flight patterns could provide males

with a highly effective searching strategy for locating females

that have flown into the swarm [9]. This may be biologically

significant because competition within the swarm appears to

be a scramble to be the first to locate a female which may

actively attempt to avoid capture [20]. The identification of

speed-dependent effective forces may also lead to a more

detailed understanding of the origins of interactions between

midges which probably arise from acoustic sensing [10].
3.2. Ramifications of speed-dependent effective forces:
large accelerations

Another ramification of speed-dependent forces, the occur-

rence of very heavy tailed distributions of unconditional

accelerations (resulting in accelerations exceeding 10 g),
has been hiding in plain sight [1,2]. The distribution of

unconditional accelerations is determined by

pðAÞ ¼
ð1

�1

ð1

�1

P0ðAju, xÞPðu, xÞdudx, ð3:1Þ

where P0ðAju,xÞ is the conditional distribution of accelerations.

It is seemingly natural to suppose that conditional accelerations

are Gaussian distributed with mean kAju, xl and variance s2
A.

Mean accelerations are observed to increase linearly with

distance from the swarm centre, and swarm profiles are, to

good approximation, Gaussian [2]. It follows from these

observations and from equation (3.1) that the distribution

of unconditional accelerations will also be Gaussian if mean

accelerations are independent of velocity. Such distributions

of acceleration are not observed. Heavy-tailed distributions of

unconditional accelerations can only arise when the mean

accelerations depend on both position and speed. For example,

for the model given in equation (2.5), evaluation of equation

(3.1) in the saddle point approximation gives a stretched

exponential distribution,

p(A) � exp � 3

2

sxA
s 2

u

� �2=3
 !

=A1=3 ð3:2Þ

(‘�’ means distributed as). This prediction compares favoura-

bly with the observations of Kelley & Ouellette [2] (figure 1).

This shows that for the observed distributions of velocity and

observed speed–position-dependent mean accelerations to be

consistent with the observed unconditional distribution of

acceleration, the distribution of conditional accelerations

must (to good approximation) be Gaussian. In other words,

the heavy tails of the unconditional distribution of acceleration

are not indicative of new dynamics beyond those characterized

by the velocity distribution and the mean acceleration statistics.

This finding mirrors that of tracer-particle accelerations in

high Reynolds-number turbulence which also have stretched-

exponential distributions [21] and which have been interpreted

within the context of ‘superstatistics’ where one has a super-

position of Gaussians whose variance fluctuates over a wide

spatial–temporal range [22,23].
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3.3. Emergence of fluid-like macroscopic mechanical
properties

The coordinated movements of individuals within strongly cor-

related aggregations such as bird flocks is visually striking and,

as a result, much research has been directed at characterizing

the conditions under which ordering will emerge. But insect

swarms can behave collectively without ever exhibiting long-

scale order, prompting the search for different descriptions.

Ni et al. [4] have suggested that the dynamics of insect

swarms may be characterized in terms of macroscopic state

variables and constitutive laws instead of low-level interactions.

Ni & Ouellette [3] subsequently showed that single laboratory

swarms can be pulled apart into multiple daughter swarms

and that when this done quasi-statistically, swarms appear to

be more solid-like rather than liquid- or gas-like, in that they

have a finite Young’s modulus and yield strength but do not

flow like viscous fluids. Nonetheless, model predictions suggest

that fluid-like properties will emerge in dynamic tests as a con-

sequence of speed-dependent restoring forces. Simulations with

speed-independent forces (equation (2.6)) predict that after

being suddenly displaced from its marker, a swarm will even-

tually return to its equilibrium position after ‘sliding’ back

and forth past the marker while maintaining its equilibrium

density profile (figure 2a). Simulations with speed-dependent

forces (equation (2.5)), on the other hand, predict a fluid-like

response, as the swarm ‘sloshes’ back and forth past the

marker before returning to equilibrium (figure 2a). These pre-

dictions do, however, presuppose that the non-equilibrium

dynamics do not differ from the equilibrium dynamics as

encoded in the model and which are derived from equilibrium

statistics. The distinction between speed-independent and

speed-dependent forces is, however, predicted to be of impor-

tance only after relatively large, sudden perturbations and

will not manifest itself in quasi-stationary tests. Natural

swarms are also predicted to have fluid-like properties because

accounting for correlations leads to speed-dependent restora-

tive forces (equation (2.7)) (figure 2b). If correlations were

not accompanied by speed-dependent restorative forces,

then they might be expected to endow swarms with solid-like

macroscopic properties.
3.4. Phase coexistence
Midges in laboratory swarms are very weakly correlated,

with correlation lengths of only a few body lengths. These

swarms are, nonetheless, behaving collectively. A recent

study showed that laboratory swarms consist of a core ‘con-

densed’ phase surrounded by a dilute ‘vapour’ phase [8].

These two phases maintain distinct macroscopic properties

even though individual insects pass freely between them.

The emergence of such phases is predicted by three-

dimensional models of uncorrelated swarms with and without

speed-dependent forces [10] (figure 3). In this modelling,

midges are collisionless and their dynamics are not governed

by interactions between midges, but instead are governed by

the overall forces which binds the swarm to its centre. In

accordance with observations [8], the model predicts that (at

least approximately) the average pressure of the condensed

phase increases linearly with density so that kjpjl/ n (i.e. it’s

thermal). The average pressure of the vapour phase is observed

and predicted to increase sublinearly with density so that

kjpjl � n1=2. From a thermodynamic perspective this is strange
because the scaling exponent, g, is expected to be the ratio of

heat capacities, cp/cv and thus greater than unity because, at

constant pressure, specific heat is always greater than that at

constant volume. Moreover, for an ideal gas g ¼ 1 þ 2/N
where N is number of the degrees of freedom of a molecule.

3.5. Velocity correlations in laboratory and natural
swarms

Natural swarms of the midges Cladotanytarsus atridorsum,

Chironomidae and Ceratopogonidae, and of the mosquitoes

Anopheles gambiae and Anopheles coluzzii display strong cor-

relations that are totally incompatible with models of

non-interacting midges [11–13]. The correlation scale increases

with the swarm size, and this was interpreted by Attansasi et al.
[12] under the guise of criticality. This is markedly different

from laboratory swarms which are uncorrelated. Ni &

Ouellette [3] suggested that a likely explanation for this differ-

ence is the influence of external environmental factors.

Laboratory swarms are very well controlled, with no tempera-

ture gradients, air flows or other dynamic disturbances. In

natural swarms, all of these influences are unavoidably pre-

sent. The onset of correlated movements may therefore be

triggered by the presence of external perturbations, as seems

to happen in laboratory swarms whose centre of mass traces

out elliptical, oscillatory trajectories when the swarm is dis-

turbed by periodically modulated sound recordings of male

midges [5]. This possibility finds support in the results of

numerical simulations for correlated swarms obtained using

equation (2.7) (figure 4). Correlations are seen to enhance the

strength of the effective force that binds the swarm to its

centre, and this effect is seen to be maximal when the corre-

lation scale is comparable with the swarm size. This can also

be seen analytically by integrating the conditional mean accel-

eration (equation (2.7)) for one individual, over the positions

and velocities of all other individuals. Correlations may there-

fore help to maintain the coherence of the swarm and hence be

selected for, as swarm coherence may promote the collective

signalling to females [13]. In accordance with observations, cor-

relations are also predicted to result in coherent ‘dancing’ of the

swarm [11], and ‘milling’ of the centre of mass [5] (figure 5).

The ‘dancing’ seen in natural swarms [11] may, in fact, be

‘sloshing’ because such swarms are predicted to have fluid-

like properties. Correlations are also predicted to enhance the

dispersal (normal diffusion) of swarm centroids after swarms

break free from their nucleation markers (results not shown).

Conversely, anti-correlations (episodes of antiparallel

flight) reduce the strength of the effective force that binds

swarms to their centres. Puckett et al. [24] reported that

midges spend about 15% of their time engaged in nearly har-

monic oscillations conducted in synchrony with other

midges, and that these pairwise interactions do not typically

occur between midges that are nearest neighbours. The

predicted incumbent weakening of the effective binding

force may be an accidental (mathematical) consequence

of these pairwise interactions, which nonetheless could be

crucial if laboratory swarms are to break free from their mar-

kers and hence crucial for the emergence of true swarming

behaviour. In any case, the weakening due to anti-correlations

cannot be as pronounced as the strengthening due to corre-

lations, as any number of midges can be correlated but

only pairs of midges can be maximally anti-correlated. Anti-

correlations have, in fact, only been observed between pairs
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lines), t ¼ 6T (yellow lines) and t ¼ 8T (blue lines) after at swarm at equilibrium and centred on x ¼ 0 is suddenly displaced to x ¼ 5. Predictions for speed-
dependent forces (lower panel) and speed-independent forces were obtained using equations (2.5) and (2.6). A fluid-like ‘sloshing’ behaviour is predicted to arise
when forces are speed-dependent, and a solid-like ‘sliding’ behaviour is predicted to arise when forces are speed-independent. Predictions were obtained for sx¼ 1,
su¼ 1 and T ¼ 1 a.u. (b) Predicted emergence of solid-like and fluid-like behaviours. Distributions of positions, Px, and velocities, Pu, at times t ¼ 2T (red lines),
t ¼ 4T (green lines), t ¼ 6T (yellow lines) and t ¼ 8T (blue lines) after a swarm at equilibrium and centred on x ¼ 0 is suddenly displaced to x ¼ 5. A fluid-
like ‘sloshing’ behaviour is predicted to occur as the swarm returns to equilibrium. Predictions were obtained using equation (2.7) for a swarm containing
10 midges with a Gaussian density profile and exponential velocity correlations, R ¼ 0:95s2

u expð�jxi � xjj=scÞ, and characterized by sx¼ 1, su¼ 1,
sc¼ 1 and b ¼ 1 a.u. Fluid-like behaviours are also predicted to emerge when correlations are weaker, i.e. when R ¼ 0:2s2
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shown for a swarm with N ¼ 3 insects having sx ¼ 1, su ¼ 1, sc ¼ 1 and b ¼ 1. This enhancement with N (N ¼ 5, red open circle; N ¼ 10, green
open circle).
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of individuals in laboratory swarms [24], whereas correlations

(parallel flights) are present in pairs and within larger

subgroups [11–13].

3.6. Ground effects
In contrast with wild swarms and bird flocks, laboratory

swarms are only weakly axisymmetric. Large swarms are long-

est in the vertical dimension, whereas small swarms are

elongated in a horizontal direction [2]. Kelley & Ouellette [2]

speculated that this might be because individuals join the

swarm by flying in from above, thereby extending the large

swarm in the vertical direction. This was later corroborated

by Ni & Ouellette [4] who reported that above the swarm

there are diffuse trajectories, as individuals entering and leav-

ing the swarm tend to do so from above. The results of

numerical simulations (figure 6) suggest that this is not a

novel dynamic, different from the swarm dynamics encoded

in the model, but may just be a consequence of the ground inhi-

biting downward movement of the swarm. In the modelling,

such an impermeable barrier to movement was implemented
through the imposition of a simple reflective boundary con-

dition which is seen to distort the swarm profile in the

vertical direction but not in the horizontal directions

(figure 6). At the boundary, the vertical component of velocity

changes sign. Further analysis is presented in appendix A.
4. Discussion
Midge swarms behave collectively without displaying coordi-

nated motion of the kind seen in bird flocks, animal herds and

fish schools [2], and in the laboratory are only weakly corre-

lated [5]. This has prompted the search for more general

indicators of the collective nature of swarming. In a pioneering

suite of studies, Ouellette and co-workers [2–8] have revealed

that insect swarms have surprising macroscopic mechanical

properties that can be characterized in terms of macroscopic

state variables and by constitutive laws instead of low-level

interactions. Here, I showed that many of these surprising

properties along with other facets of insect swarms are pre-

dicted by simple models based on the Langevin equation;
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models that are close relatives of Okubo’s [1] original model of

midge swarms.

The models are easy to formulate, computationally inex-

pensive and can be studied analytically. They were shown to

predict correctly many recent and intriguing observations

including: the occurrence of anomalously large accelerations

[2]; the presence of a condensed core surrounded by a dilute

vapour that does not have a straightforward thermodynamic

counterpart [8]; and emergent macroscopic mechanical solid-

like properties [4]. The models also predict the occurrence of

fluid-like behaviours which await experimental verification

and thereby provide new lines of enquiry beyond the static

[8] and quasi-static tests [4] which have revealed emergent

macroscopic mechanical properties similar to solids that do

not flow like viscous fluids.

The models may also help to reconcile seemingly conflict-

ing reports about the importance of correlations, hinting at

the potential importance of environmental conditions on col-

lective behaviours [11–13]; and conversely, provide new

insights into the practical implications of the occurrence of

anti-correlated pairs in laboratory swarms. It has been hypoth-

esized that correlations (i.e. parallel flights) allow for mate
recognition via wingbeat frequency matching [25], and that

observed interactions represent a means of obtaining infor-

mation on what may be occurring in a part of the swarm

outside an individual’s perceptive range [13,26]. It has even

been suggested that the males are competing for space with

the swarm, so that the parallel flights are a form of ritualized

aggression in males [27]. But none of these hypotheses are con-

sistent with the presence of correlations of natural swarms, and

their absence (or replacement by anti-correlations) in labora-

tory swarms [3,24]. Here it was suggested that by increasing

the strength of the effective force that binds midges to the

swarm centre, correlations help natural swarms to counter dis-

turbances due to environmental perturbations; and conversely,

that anti-correlations might help laboratory swarms to break

free from their swarm markers. This hypothesis could be

tested in the laboratory.
Data accessibility. Computer codes can be obtained from the author.
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Appendix A
A.1. Stochastic modelling of the swarms’ exterior
Mean accelerations (restoring forces) are observed to increase

linearly with distance from the swarm centre [1,2], and hence

midge swarms are behaving like self-gravitating systems [1].

This is not unexpected as midges are thought to interact pri-

marily via long-range acoustic sensing and because acoustic

and gravitational sources decay in a similar way [16]. Outside

of the swarm, mean accelerations are therefore to be expected

to decrease linearly with the square of the distance from the

swarm centre [28]. Okubo’s [1] model for within-swarm

trajectories, equation (2.6), ðjxj � LsxÞ can therefore be

supplemented by an additional model

du ¼ � u
T

dt� L3s2
usx

sgnðx� xcÞ
ðx� xcÞ2

dtþ

ffiffiffiffiffiffiffiffi
2s2

u

T

s
dW ðA 1Þ

for outside-swarm trajectories. Within-swarm positions and

velocities remain Gaussian. Outside the swarm, velocities
are also Gaussian, but the background equilibrium distri-

bution of midges is given by

rðxÞ ¼ r0 exp
L3sx

jx� xcj

 !
: ðA 2Þ

If r0 ¼ exp (�ð3=2ÞL2), then the density profile is continuous

across the edge of the swarmðjxj ¼ LsxÞ, and individuals can

move freely in and out of the swarm, as is observed to occur at

the top of large swarms [2,4]. Other choices for the far

field midge concentration, r0, result in discontinuous density pro-

files and confinement as mean accelerations are determined by

ð1=rÞð@r=@xÞ (see equation (2.4)). The extension to non-Gaussian

velocity statistics is straightforward and as before leads to

velocity-dependent mean accelerations that have similitude

with Gerber’s [29] long-forgotten controversial theory of

speed-dependent gravity. Intriguingly, by reconciling an

inverse-square restoring force with homogeneous velocity statis-

tics, the new model, equation (A 1), has resonance with modified

Newtonian dynamics [30], a contemporary but controversial

theory of gravity. Modified Newtonian dynamics may therefore

govern the transfer of midges into and out of the swarm, while

Gerber’s gravity governs what happens inside the swarm.
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