
Systems biology

PyPanda: a Python package for gene regulatory

network reconstruction

David G.P. van IJzendoorn1, Kimberly Glass2, John Quackenbush3,4,5

and Marieke L. Kuijjer3,4,*

1Department of Pathology, Leiden University Medical Center, 2300RC Leiden, The Netherlands, 2Channing Division

of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,

MA 02215, USA, 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston,

MA 02215, USA, 4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA

and 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on May 3, 2016; revised on June 13, 2016; accepted on June 27, 2016

Abstract

Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regula-

tory network inference method that uses message-passing to integrate multiple sources of ‘omics

data. PANDA was originally coded in Cþþ. In this application note we describe PyPanda, the

Python version of PANDA. PyPanda runs considerably faster than the Cþþ version and includes

additional features for network analysis.

Availability and implementation: The open source PyPanda Python package is freely available at

http://github.com/davidvi/pypanda.

Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl

1 Introduction

Accurately inferring gene regulatory networks is one of the most im-

portant challenges in the analysis of gene expression data. Although

many methods have been proposed (Altay et al., 2011; Ernst et al.,

2008; Faith et al., 2007; Lemmens et al., 2006), computation time

has been a significant limiting factor in their widespread use.

PANDA (Passing Attributes between Networks for Data

Assimilation) is a gene regulatory network inference method that

uses message passing between multiple ‘omics data types to infer the

network of interactions most consistent with the underlying data

(Glass et al., 2013). PANDA has been applied to understand tran-

scriptional programs in a variety of systems (Glass et al., 2014,

2015b; Lao et al., 2015).

Here we introduce PyPanda, a Python implementation of the

PANDA algorithm, following the approach taken in Glass et al.

(2015a) and optimized for matrix operations using NumPy (van

der Walt et al., 2011). This approach enables the use of fast matrix

multiplications using the BLAS and LAPACK functions, thereby

significantly decreasing run-time for network prediction compared

with the original implementation of PANDA, which was coded in

Cþþ and used for-loops (Glass et al., 2015a). We observe further

speed increase over the Cþþ-code because PyPanda automatically

uses multiple processor-cores through the NumPy library. We have

also expanded PyPanda to include common downstream analyses

of PANDA networks, including the calculation of network in- and

out-degrees and the estimation of single-sample networks using the

recently developed LIONESS algorithm (Kuijjer et al., 2015).

2 Approach

2.1 Comparing PANDA C 11-code to Python-code
We compared the Cþþ-code and Python-code versions of PANDA

using several metrics. First, we assessed the two implementations by

comparing the number of lines of code. Using the cloc utility we

counted the number of lines of Cþþ-code and Python-code. The

Cþþ-code counted 1132 lines of code. The Python-code counted

258 lines of code, significantly shorter (4.4 times) than the

Cþþ-code. The Python-code also includes features such as the

VC The Author 2016. Published by Oxford University Press. 3363
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(21), 2016, 3363–3365

doi: 10.1093/bioinformatics/btw422

Advance Access Publication Date: 10 July 2016

Applications Note

http://github.com/davidvi/pypanda
Deleted Text: ; Ernst <italic>et<?A3B2 show $146#?>al.</italic>, 2008
Deleted Text: to
http://www.oxfordjournals.org/

LIONESS equation and in- and out-degree calculation. Without

these features the Python-code is only 155 lines of code. Because the

Python implementation is much more concise than the Cþþ-code it

is easier to interpret and modify.

Next we performed a speed comparison test between the Cþþ-

code and the Python-code. We used built-in timing functions for

both languages, directly before and after the message passing part of

the code as this is the step that consumes the most time (Glass et al.,

2015a). For the Cþþ-code, we used gettimeofday() to record time

in milliseconds before and after the message passing algorithm. For

the Python code we implemented the time.time() function around

the message passing algorithm. The Cþþ-code was compiled using

the clang compiler (version 3.8.0) with speed optimization flag -O3.

Python (version 2.7.10) was used with NumPy (version 1.10.1)

using the BLAS and LAPACK algebraic functions. All analyses were

run on a server running �86_64 GNU/Linux.

The speed of the network prediction was tested using simulated

networks of Ne¼Na dimensions, where Ne is the number of effector

nodes and Na is the number of affected nodes. For each of several dif-

ferent network sizes (Ne ¼ Na ¼ 125 to Ne ¼ Na ¼ 2000 nodes, in

steps of 125) we generated ten random ‘motif data’ networks accord-

ing to the method described in Glass et al. (2015a). We then ran the

Python and Cþþ versions of PANDA using these simulated motif

data together with identity matrices for the protein-protein interaction

and co-expression information. For runs on the same initial ‘motif

data’ networks, we verified that the Cþþ-code and Python-code re-

turned exactly the same output network, as expected due to the deter-

ministic nature of PANDA.

The Cþþ-code only uses one CPU core. In comparing the Cþþ-

code with the Python-code using a single core, we found a 2.07-fold

speed-up relative to the Cþþ-code for the smallest network

(Ne ¼ Na ¼ 125) tested. The speed increase of the Python-code

over the Cþþ-code became larger as the network size increased.

For example, the Python-code performed 12.31 times faster for the

largest network (Ne ¼ Na ¼ 2000) (Fig. 1A). Recorded run times

across the ten random networks had a standard deviation of 0.04s

and 2.59 s for the smallest (Ne ¼ Na ¼ 125) and largest

(Ne ¼ Na ¼ 2000) networks, respectively using the Cþþ code.

Using the Python code these were reduced to 0.03s and 0.099 s.

Given the abundance of multicore computing resources currently

available, we also tested the speed increase when running the

Python-code on multiple cores compared with running the Python-

code on a single core. We found that for the smallest network the

speed was 1.45 times faster when using 6 cores compared with using

only a single core; for the largest network the speed increase was

3.7-fold (Fig. 1B).

This increase in speed enables reconstruction of networks with

larger numbers of regulators and target genes. For example, using

the Python-code significantly decreases the time required to infer a

human gene regulatory network (Ne¼1000, Na¼20 000), from

�18 h with the Cþþ-code to only about 2 h with the Python-code.

This speed-up is especially important as transcription factor motif

databases are frequently updated to include more motifs. Further,

the decreased running time helps to enable the estimation of net-

work significance by making the use of bootstrapping/jackknifing

methods much more feasible.

2.2 Additional features
In addition to reconstructing one regulatory network based on a

data set consisting of multiple samples, PyPanda can also recon-

struct single-sample networks using the LIONESS algorithm (Kuijjer

et al., 2015). In PyPanda, the LIONESS method uses PANDA to

infer an ‘aggregate’ network representing a set of N input samples,

infers a network for N – 1 samples, and then applies a linear equa-

tion to estimate the network for the sample that had been removed.

The process is then repeated for each sample in the original set, pro-

ducing N single-sample networks. PyPanda can also use LIONESS

to reconstruct single-sample networks based on Pearson correlation.

PyPanda also includes functions to calculate in-degrees (the sum

of edge weights targeting a specific gene) and out-degrees (the sum

of edge weights pointing out from a regulator to its target genes).

These summary metrics can be used for downstream network ana-

lysis (Glass et al., 2014).

3 Conclusion

PANDA is a proven method for gene regulatory network inference

but, like most sophisticated network inference methods, its runtime

has limited its utility. The Python implementation of PANDA uses

matrix operations and incorporates the NumPy libraries, resulting

in a significant simplification of the code and a dramatic increase in

computing speed, even on a single processor. When applied to a test

data set and run on multiple processing cores, this increase in speed

was even greater, decreasing processing times by a factor of 46 rela-

tive to the original Cþþ-code. This creates opportunities to greatly

expand the use of PANDA and to implement additional measures of

network significance based on bootstrapping/jackknifing. PyPanda

also includes the LIONESS method, which allows inference of

single-sample networks, as well as a number of other useful network

metric measures. The open source PyPanda package is freely avail-

able at http://github.com/davidvi/pypanda.

Acknowledgements

The authors would like to thank Judith V.M.G. Bovée, MD, PhD and Karoly

Szuhai, MD, PhD for thoughtful discussions and Cho-Yi Chen, PhD for test-

ing PyPanda.

Funding

This work has been supported by the National Institutes of Health (R01

HL111759 to J.Q., K.G., P01 HL105339 to J.Q., K.G., M.L.K.) and Leiden

University Fund (5259/4-6-2015/Gg to D.G.P.IJ).

Conflict of Interest: none declared.

Fig. 1. Speed comparison for network reconstruction on networks of different

sizes using (A) the Cþþ-code and the Python-code, (B) the Python-code run-

ning on a single CPU compared with multicore (6 CPU cores)

3364 D.G.P.van IJzendoorn et al.

Deleted Text: x
Deleted Text: standard deviation
Deleted Text: econds
Deleted Text: econds
Deleted Text: to
Deleted Text: to
Deleted Text: approximately
Deleted Text: ours
Deleted Text: ours
Deleted Text: F
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://github.com/davidvi/pypanda

References

Altay,G. et al. (2011) Differential c3net reveals disease networks of direct

physical interactions. BMC Bioinformatics, 12, 296.

Ernst,J. et al. (2008) A semi-supervised method for predicting transcription

factor–gene interactions in escherichia coli. PLOS Comput. Biol., 4,

e1000044.

Faith,J.J. et al. (2007) Large-scale mapping and validation of escherichia coli

transcriptional regulation from a compendium of expression profiles. PLOS

Biol., 5, e8.

Glass,K. et al. (2013) Passing messages between biological networks to refine

predicted interactions. Plos One, 8, e64832.

Glass,K. et al. (2014) Sexually-dimorphic targeting of functionally-related

genes in copd. BMC Syst. Biol., 8, 118.

Glass,K. et al. (2015a). High performance computing of gene regulatory net-

works using a message-passing model. High Performance Extreme

Computing Conference (HPEC), 2015 IEEE, 1–6.

Glass,K. et al. (2015b) A network model for angiogenesis in ovarian cancer.

BMC Bioinformatics, 16, 115.

Kuijjer,M.L. et al. (2015) Estimating sample-specific regulatory networks.

arXiv, preprint 1505.06440.

Lao,T. et al. (2015) Haploinsufficiency of hedgehog interacting protein causes

increased emphysema induced by cigarette smoke through network rewir-

ing. Genome Med., 7, 12.

Lemmens,K. et al. (2006) Inferring transcriptional modules from chip-chip,

motif and microarray data. Genome Biol., 7, R37.

van der Walt,S. et al. (2011) The numpy array: a structure for efficient numer-

ical computation. Comput. Sci. Eng., 13, 22–30.

Pypanda: a package for regulatory network reconstruction 3365

