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Aberrantly reduced expression of miR-342-5p contributes to
CCND1-associated chronic myeloid leukemia progression and
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Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with the Philadelphia chromosome, and the current
standard of care is the use of tyrosine kinase inhibitors (TKI). However, some patients will not achieve a molecular response and
may progress to blast crisis, and the underlying mechanisms remain to be clarified. In this study, next-generation sequencing
was used to explore endogenous miRNAs in CML patients versus healthy volunteers, and miR-342-5p was identified as the
primary target. We found that miR-342-5p was downregulated in CML patients and had a significant inhibitory effect on cell
proliferation in CML. Through a luciferase reporter system, miR-342-5p was reported to target the 3’-UTR domain of CCND1 and
downregulated its expression. Furthermore, overexpression of miR-342-5p enhanced imatinib-induced DNA double-strand
breaks and apoptosis. Finally, by analyzing clinical databases, we further confirmed that miR-342-5p was associated with
predicted molecular responses in CML patients. In conclusion, we found that both in vivo and in vitro experiments and database
cohorts showed that miR-342-5p plays a key role in CML patients, indicating that miR-342-5p may be a potential target for future

CML treatment or prognostic evaluation.
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INTRODUCTION

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease
with an incidence of 1-2 cases per 100,000 adults [1]. Current research
suggests that the predominant cause of most CML occurrences is a
long-arm translocation between chromosomes 9 and 22, also known
as the Philadelphia chromosome [2]. Primarily, BCR-ABL fusion
proteins act as active tyrosine kinases that promote cell growth or
prevent apoptosis by perturbing downstream pathways [3]. Given the
enormous impact of BCR-ABL in causing CML, the treatment of this
disease has shifted from conventional therapy to targeting this fused
tyrosine kinase, such as the significant clinical breakthroughs achieved
with imatinib [4]. However, not every patient achieves an optimal
response after tyrosine kinase inhibitor (TKI) treatment.

Mature microRNAs consist of short non-coding RNA molecules (20-
22 nucleotides) that can affect the stability of target gene mRNAs by
binding to miRNA binding sites in plants and animals [5]. MicroRNAs
are involved in hematopoiesis through complete genetic modifica-
tions. For example, specific miRNAs regulate mandatory genes in
hematopoiesis [6]. Furthermore, each hematopoietic lineage may be
held by miRNA clusters, such that erythropoiesis is promoted by miR-
16, miR-144, and miR-451 and downregulated by miR-150, miR-155,
miR-221, and miR-222 [7]. It has even been reported that
hematopoietic stem cells (HSCs) are maintained by miR-126 and

miR-142, while abnormal expression of miR-29a can promote the
proliferation of HSCs [8]. In addition, the expression of some
microRNAs is associated with leukemogenesis and they behave like
oncogenes or tumor suppressors, such as miR-125a/b and miR-193a
[9]. Specific microRNAs may function to regulate BCR-ABL expression
in CML patients and influence resistance to tyrosine kinase inhibitors,
further affecting the prognosis or pathogenesis of CML patients [10].

To investigate the potential association between CML and
unidentified miRNAs, we examined peripheral blood mononuclear
cells (PBMC) from CML patients and healthy donors. Several
miRNAs were found to be significantly differentially expressed, in
particular, miR-342-5p was significantly downregulated in CML
patients. MiR-342-5p is an intrinsic microRNA found in the host
gene Ena-vasodilation-stimulating phosphoprotein (EVL) and has
been reported as a possible tumor suppressor gene [11].
Overexpression of miR-342-5p in leukemia cells significantly
suppressed BCR-ABL expression and cell viability. Further analysis
revealed that Cyclin D1 (CCND1) was one of the target genes
directly repressed by miR-342-5p. Expression of miR-342-5p may
inhibit CCND1 expression and reduce the proliferation and DNA
repair of leukemic cells, further sensitizing them to imatinib. This
phenomenon was further validated in an in vivo model. Further
association of miR-342-5p upregulated gene-set with disease
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progression was observed in the clinical CML database. In
conclusion, our findings support the potential role of miR-342-
5p in predicting response to TKI therapy.

METHODS

Cultures of CML cell lines

Human CML cell lines K562, MEGO1, and KU812 were obtained from
the Bioresource Collection and Research Center (BCRC, Hsin-chu,
Taiwan). Cells were cultured in RPMI-1640 medium supplemented
with 10% heat-inactivated fetal bovine serum (2 mM glutamine, 1%
penicillin, and streptomycin), and cultured at 37°C in a humidified
incubator with 5% CO,.

Total and MicroRNA extraction and quantification

Total RNA was isolated from CML cell lines and lysis by TRIzol reagent
(Thermo-Fisher Scientific Inc., Waltham, MA) according to the protocol of
the manufacturer. MicroRNA extraction was performed according to the
miRNeasy Mini Kit (Qiagen, Hilden, Germany). Complementary DNA was
synthesized from 1 g of total isolated RNA using the miScript Il RT Kit
(Qiagen). Real-time PCR was performed using the SYBR Green system with
the ABI 48-well Step-One TM Real-Time System (Applied Biosystems, Foster
City, CA), and CT values of each sample were determined. U6 spliceosomal
RNA was used for miRNA normalization.

Preparation of peripheral blood samples from CML patients
and small RNA sequencing

This study was approved by the Institutional Review Board of Tri-Service
General Hospital (1-105-05-052). A total of 20 CML patients and 13 healthy
controls were included, and peripheral blood samples (6-8 ml) were drawn
after written informed consent was obtained. The clinical parameters
related to CML patients are shown in supplemental table 1. The monocyte
fraction was isolated by Ficoll-paque plus (Sigma-Aldrich, Munich,
Germany), and total RNA was extracted. Next-generation sequencing
library preparations were constructed according to the manufacturer’s
protocol. The sequences were processed and analyzed by GENEWIZ (South
Plainfield, NJ, USA).

MTAM-based CML xenograft animal model

The MTAM system was prepared as previously described [12, 13]. All
animal experiments are conducted following the guidelines of the
Laboratory Animal Center in National Defense Medical Center. MTAM
was implanted in the back of a 7-week-old C57BL/6JNarl mouse (five per
experimental group), and the wound was sealed with surgical sutures.
Mice implanted with MTAM were randomly divided into two groups, and
oral administration of imatinib (100 mg/kg, BID) or vehicle of the same
volume was started two days after implantation. On the 15th day, mice
were sacrificed, and the subcutaneously implanted MTAM was accessed by
cutting skin from the abdomen to the back. The formations of blood
vessels on the MTAM were photographed. The MTAM was then partitioned
into three aliquots, cut up and soaked in 0.5% MTT (Sigma-Aldrich) solution
for 2-4 h. After dissolving the crystals by DMSO (Sigma-Aldrich), samples
were analyzed by an ELISA reader (SpectraMax iD3, Molecular Devices, CA).

Western blot analysis and phosphorylation array

Sample preparation as previously described [14]. The primary antibodies at
the indicated dilutions: c-Abl (K12; Santa-Cruz Cat#sc-131), B-actin (Sigma-
Aldrich Cat#A5441), phospho-ATR-5428 (ABclonal Inc., USA; Cat#AP0676),
phospho-chk1-S345 (ABclonal Cat#AP0578), phospho-ATM-51981 (ABclo-
nal Cat#AP0008), phospho-chk2-Thr68 (Cell Signaling Technology [CST]
Cat#2197), GAPDH (CST Cat#5174), CCND1 (A12; Santa-Cruz Cat#sc-8396),
CCNE (C19; Santa-Cruz Cati#sc-198), E2F1 (C20; Santa-Cruz Cat#sc-193), p27
[Kip1] (BD Cat#610242), RB (IF8; Santa-Cruz Cat#fsc-102), PARP (CST
Cat#9542), Bcl-xL(H-5) (H5; Santa-Cruz Cat#SC-8392). About the phosphor-
ylation array, the Proteome Profiler Human Phospho-MAPK Array Kit
(ARY002B; R&D Systems, Minneapolis, MN) was used according to the
manufacturer’s instructions.

Transfection for miRNA, CCND1, and miRNA inhibitor

For transfection, K562 cells were seeded in 6 well culture plates in RPMI
medium containing 10% FBS. Mimics miR-342-5p, miR-NEG control (up to
20 nM), miR-342-5p inhibitor (50 nM) as well as CCND1/pCDNA3.1(+) plasmid
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(3 pug) were transfected using the lipofectamine 3000 reagent kit (L3000015,
Thermo-Fisher Scientific) according to the manufacturer’s instructions.

Cell viability assay, soft agar colony assay, and NC-3000 for
cell proliferation and cell cycle

Cell viability assay was studied through XTT assay (Sigma-Aldrich) and trypan
blue dye (Sigma-Aldrich) exclusion assay, where the cells that took up trypan
blue were counted as dead. Cells stained with trypan blue and evaluated
under a microscope using a hemocytometer. Soft agar colony formation was
performed according to the previously described with minor modifications
[15]. NucleoCounter’ NC-3000 (Chemometec, Denmark) was utilized for cell
cycle analysis following the manufacturer’s instructions.

Assessment of apoptosis by Annexin-V/PI staining

Cells were stained with annexin-V-FITC/PI kit following the manufacturer’s
instruction (BD). Stained cells were analyzed on a FACScalibur with
CellQuest software (BD).

Luciferase assay for detect miRNA-binding sites in the 3’-UTR
For luciferase reporter assays, K562 cells were transfected in 96-well plates
with 20 nM miRNA duplex or miRNA hairpin precursors (Thermo-Fisher
Scientific), 0.4ug 3’UTR-luciferase vector (Origene, Rockville, MD), and
0.01 ug Renilla vector (pRL-TK) using Lipofectamine 3000. Forty-eight hours
after transfection, luciferase activity was measured using the Dual-Glo
Luciferase Assay (Promega, WI).

Identification of the impacted DEGs by miR-342-5p expression
Microarray analysis was performed using Phalanx Human OneArray®
service (data available in supplemental table 2 or accessing GEO
accession number: GSE171659). The ClueGO app in Cytoscape was
applied to build a differentially expressed gene ontology biological
process (GOBP) terminology network [16, 17]. The difference between
miR-NEG or miR-342-5p expression with and without imatinib treatment
was further analyzed by GSEA with default settings [18]. The gene sets
with separated GOBP enrichment trends were visualized by Enrichment
map and clustered and auto-annotated by the degree of overlapping
among gene sets [19].

Gene expression profiling and GSVA scoring

Gene expression profile data were publicly accessible from the NCBI
website with accession numbers GSE4170 (119 patients), GSE13204 (96
patients), GSE130404 (76 CML patients), and GSE144119 (97 samples)
[20-24]. In addition, Single-cell gene expression matrix data of
GSE76312 were directly downloaded from the NCBI GEO website [25].
The clinical staging or phenotype classification of CML patients was
obtained from the authors’ data. The GSVA (Gene Set Variance Analysis)
package in R was used to score individual CML clinical samples with
default settings [26].

RESULTS

A comprehensive evaluation of miRNAs expressed aberrantly
in the blood samples of CML patients

To evaluate the aberrant expression of miRNAs in blood samples
from CML patients, we initially collected RNA samples from five
chronic phase CML patients and healthy donors, respectively, for
miRNA sequencing. Further LIMMA analysis of the differentially
expressed miRNAs narrowed the results to 18 miRNAs, with
15 significantly reduced and three significantly increased in CML
patients. (Fig. 1A). Most of them have been reported to be associated
with tumorigenesis, such as miR-342-3p, miR-150-5p, miR-151-3p,
miR-151-5p, miR-584-5p, miR-485-3p, and miR-495-3p have been
evaluated for their potential targets and mechanisms in solid tumors
[27-34]. The miR-139-3p, miR-31-5p, MiR-150-3p, MiR-146a-5p, miR-
4433-3p, miR-3154, miR-503-5p and miR-223-5p have been studied
for their tumor-suppressive role in hematological cancers [35-42].
The miR-342-5p, miR-6852-5p, and miR-543 have not been
confirmed to be associated with hematological cancers (Fig. 1B).
Further analysis by gPCR of blood samples from 20 CML patients
(including the 5 cases mentioned above) and 13 healthy donors
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Fig. 1 Comprehensive analysis of miRNAs with abnormal expression in CML patients using miRNA sequencing. A Schematic diagram of
the screening process for miRNAs with significant differential expression using microRNA sequencing data; (B) Heat map of miRNA expression
of 18 miRNAs with significant differences of 4-fold or more. The red text indicates that the candidate miRNA has not been discussed for its
potential mechanism or role in leukemia. Green text means that the miRNA has been confirmed in several papers for its role in leukemia.
C The expression of candidate miRNAs in PBMC of CML patients and healthy donors was confirmed by qPCR, and U6 was used as an internal
control. Each data represents mean+SD from independent experiments performed in triplicate. Statistical significance analysis was

performed with Student’s t-test. *P < 0.05; **P < 0.01.

showed that the expression of these four miRNAs (miR-139-3p as
positive control) was significantly reduced in CML patients (Fig. 1C).

MiR-342-5p shows the most potent inhibitory effect on CML
proliferation

Aberrantly elevated expression of BCR-ABL is thought to have the
most significant impact on CML proliferation and imatinib
resistance [43]. We, therefore, evaluated the effects of expressing
miR-139-3p, miR-342-5p, miR-543, and miR-6852 on BCR-ABL
expression in the K562 CML cell line. Results showed that when
cells expressed miR-342-5p, mRNA and protein expression of BCR-
ABL decreased with increasing doses of imatinib treatment (Fig.
2A, B). In the cell viability assay, although all of these four miRNAs
significantly inhibited the viability of multiple CML cell lines (K562,
KU812, and MEGO1), miR-342-5p showed comparable inhibition to
miR139-3p (Fig. 2C). Furthermore, it increased subG1 the most in
cells subjected to 0.5 pM Imatinib (Fig. 2D), suggesting that miR-
342-5p can affect CML cell survival and tolerance to imatinib by
inhibiting the expression of BCR-ABL.

MiR-342-5p targeted the 3’'UTR domain of CCND1 mRNA to
downregulate its expression

To resolve the effect of miR-342-5p in CML, we performed
microarray analysis and distinguished differentially expressed
genes into down- and upregulated groups. Genes significantly
downregulated under miR-342-5p expression were CCND1,
ANKRD37, EGR1, UTP20, JADE2, PFKP, IFNB1, RAPGEF5, and CLCN6
(Fig. 3A). On the other hand, more genes may be upregulated by
the indirect effects of miR-342-5p, defined as “miR-342-5p
upregulated gene signature” (Fig. 3B). For the nine downregulated
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genes, further cross-comparison of two miRNA target databases,
TargetScan 7.2 and miRTarBase 8.0, with Venn diagrams to find
potential targets for miR-342-5p revealed that only CCND1 was a
common target for all (Fig. 3C) [44, 45]. Furthermore, its inhibitory
effect on CCND1 was further bi-directionally verified by western
blot (Fig. 3D). Moreover, we used miRANDA to predict the
potential targets of miR-342-5p on CCND1 mRNA sequences and
found that the specific sequence at the 3'UTR of CCND1T mRNA
had the highest complementarity with miR-342-5p (Fig. 3E) [46].
The results showed that only the relative luciferase activity of
CCND1-WT-Luc was decreased after the addition of miR342-5p
rather than CCND1-MUT-Luc (Fig. 3E), demonstrating the inhibi-
tory role of miR-342-5p on CCND1 by targeting this sequence.

Genes upregulated by miR-342-5p were associated with
negative regulation of leukocyte proliferation
Visualized analysis of biological responses related to miR-342-5p
upregulated genes showed the highest percentage of “negative
regulation of leukocyte proliferation,” followed by “metabolic
processes of fat-soluble vitamins” and “regulation of blood
coagulation” (Fig. 4A). In addition, “regulation of the insulin-like
growth factor receptor signaling pathway” and “regulation of the
execution phase of apoptosis” were also associated with the miR-
342-5p upregulation-gene signature, suggesting a potential role
miR-342-5p in inhibiting cell proliferation and promoting apoptosis.
Analysis of the effects of miR-342-5p on multiple proliferative
signaling pathways by Phospho-MAPK arrays showed that
phosphorylation of components of the ERK signaling pathway
and PI3K-AKT pathway, which are essential for cell proliferation
and survival, was significantly reduced (Fig. 4B). In addition, the
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Fig.2 Assessment of the effect of four miRNAs on cell viability and BCR-ABL expression in the presence or absence of imatinib treatment
in various CML cell lines. Effect of imatinib on BCR-ABL expression by gPCR (A) and western blot (B) in the expression of four miRNAs. C The
effects of adding four miRNAs at 48 and 72 hours on CML proliferation were presented by XTT assay. A one-way ANOVA approach was used to
assess the significance of the effects of each miRNA compared with miR-NEG. Each data represents mean + SD from independent experiments
performed in triplicate. *P < 0.05; **P < 0.01; ***P < 0.001. D The effect of miR-NEG and four miRNAs on cell cycle distribution of K562 was
evaluated by NC-3000™ NucleoCounter’ (ChemoMetec, Denmark) with or without imatinib (0.5 M, 48 h) treatment, and the results
quantified for different phases are shown on the right.
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D Western blot to confirm the expression of CCND1 affected by miR-342-5p (20 nM) or miR-NEG (20 nM) transfection combined with CCND1/
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effects of miR-342-5p on cell viability and colony formation were
also analyzed, showing a significant inhibitory effect on the
proliferation of K562 (Fig. 4C and D).

Overexpression of miR-342-5p enhanced imatinib-induced
DNA double-strand break and apoptosis in CML

To evaluate the potential differences in response to imatinib
treatment in cells with or without miR-342-5p expression,
Enrichment maps in Cytoscape were utilized to visualize the
comparison of the clustering of nodes with significantly
divergent enrichment according to the flow chart [47]. In the
group of miR-342-5p overexpression, a significant enrichment
of DNA double-strand break repair-related clusters was
observed (Fig. 5A). Considering the multiple effects of miR-
342-5p on DNA repair ability, cell growth, and apoptosis, we
further confirmed the relevant biomarker changes in K562 and
MEGO1 by western blotting. First, the miR-342-5p significantly

Cell Death and Disease (2021)12:908

inhibited the expression of CCND1, CCNE, and E2F1 (Fig. 5B).
Correspondingly, miR-342-5p increased the expression of p27
and Rb (Fig. 5C). Second, evaluation of DNA repair ability using
ATR-chk1 and ATM-chk2 showed that imatinib in the presence
of miR-342-5p caused the repair mechanism to switch from
ATR-chk1l to ATM-chk2 in both K562 and MEGO1 (Fig. 5D).
Moreover, imatinib treatment under miR-342-5p expression
increased cleaved PARP-1 and reduced the anti-apoptotic
protein Bcl-xL expression (Fig. 5E), as well as the observation
presented in flow cytometry analysis (Fig. 5F), suggesting that
miR-342-5p can increase the extent of apoptosis caused by
imatinib in CML cells.

Confirmation of miR-342-5p to enhance the effect of imatinib
in vivo

We established an animal model based on subcutaneous
implantation of the MTAM system to compare the in vivo growth
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inhibition of miR-NEG or miR-342-5p-expressing K562 cells with
imatinib oral administration [12, 13]. Figure 6A describes the
details and procedures of the subcutaneous implantation MTAM
model. The maintenance expression of miR-342-5p was confirmed
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experimentally beforehand (data not shown), and the animals
were sacrificed on day 15 to obtain the implanted MTAM.
Interestingly, significant neovascularization around MTAM was
found in the side receiving imatinib with miR-NEG, while no
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Annexin V-FITC

Increased double-stranded DNA breakage response and apoptosis may be a potential mechanism for miR-342-5p inhibition of

CML. A The enrichment map presented divergent trends of GSEA enrichment with the treatment of 0.5 pM imatinib in miR-NEG or miR-342-5p
expression. The width of the edge connected between nodes represents the degree of overlap, and similar nodes are auto-annotated as
clusters. GSEA enrichment filtering criteria: P < 0.05, FDR < 0.25. B-E Western blot presents the expression of cell cycle components including
CCND1 (B), Cell cycle regulating proteins (C), DNA repair components including ATM-chk2 and ATR-chk1 axis (D), and apoptosis-associated
proteins (E) in K562 and MEGO01 subjected to imatinib under miR-NEG or miR-342-5p expression (20 nM). F Validation of the effect of miR-342-
5p on apoptosis in K562 caused by imatinib in the presence of miR-342-5p (20 nM) by Annexin-V/Pl method using flow cytometry. The bar
chart shows the difference in the percentage of cells at early apoptosis under duplication. The student’s t-test or One-way ANOVA approach

was used to assess the significance. *P < 0.05; **P < 0.01; ***P < 0.001.

observation was made in the miR-342-5p side in the same mice
(Fig. 6B). Paired comparison of CML cell viability in MTAM from
the same animal (left: miR-NEG, right: miR-342-5p) showed
lower viability of K562 with miR-342-5p expression and a
statistically significant difference in the group receiving imatinib
(Fig. 6C). Furthermore, in the combined comparison, the viability
of CML cells expressing miR-342-5p was significantly reduced
compared to miR-NEG (Fig. 6D, lane 1 vs. 2). This effect was not
significant compared to the group with imatinib treatment
alone (lane 2 vs. 3), suggesting that miR-342-5p expression
already exerted an inhibitory effect on K562. Expression of miR-
342-5p significantly increased the inhibitory effect of imatinib
on K562 compared to the group receiving concomitant imatinib
(lane 3 vs. 4). In addition, the group treated with miR-342-5p
and imatinib together significantly inhibited the growth of K562
compared to miR-NEG (lane 1 vs. 4). These results suggest that
loss of miR-342-5p affect the ability of imatinib to inhibit CML
proliferation in vivo.

Cell Death and Disease (2021)12:908

MiR-342-5p upregulated-gene signature in clinical samples
reflects prognosis in CML patients

To confirm the distribution of miR-342-5p expression relative to
CCND1 and BCR-ABL1 in clinical samples, and to further confirm
the correlation between miR-342-5p and cell proliferation,
apoptosis and DNA repair gene-set, we used GSE4170,
GSE13204, GSE130404, and GSE144119, which were downloaded
from the NCBI GEO database. The clinical samples of GSE130404
and GSE144119 were obtained from the PBMC of the patients’
blood samples, which were the same as our clinical samples.
GSE4170 was obtained from CD347" cells, and GSE13204 was
obtained from the bone marrow of CML patients. Firstly, we
confirmed the association between miR-342-5p expression and
CML progression in GSE144119, showing that miR-342-5p expres-
sion was significantly lower in PBMC from CML patients in the
chronic phase (Fig. 7A). Secondly, we confirmed the association of
miR-342-5p expression with CCND1, BCR and ABL1 expression.
Heat map showed that the distribution of miR-342-5p was
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In vivo animal models confirm the ability of miR-342-5p to inhibit CML and enhance the effects of imatinib. A Flow diagram of

MTAM-system based CML xenograft model. B Representative illustration of subcutaneous implantation of MTAM with K562 CML cells in
sacrificed mice. C Results of MTT assay under a paired analysis of K562 expressing miR-NEG or miR-342-5p. Statistical method: two-tailed
Paired t-test; ns: not significant difference; *P < 0.05. D One-way ANOVA analysis of the results of MTT assay on imatinib treatment with K562
expressing miR-NEG or miR-342-5p; n = 6 in each group, ns: not significant difference; *P < 0.05; **P < 0.01; ***P < 0.001. Data were in the form

of mean £ SD.

opposite to the other three, indicating that the negative
association of miR-342-5p with CCND1 in clinical samples (Fig. 7B).

Further evaluation of the GSVA score of miR-342-5p upregulated
gene signature (GSVA score of miR-342-5p) in relation to the
Hallmark gene-sets showed significant negative correlations with
proliferation and DNA repair in the four databases, and mostly
positive correlations with apoptosis (Fig. 7C). Similarly, the GSVA
score of miR-342-5p was negatively correlated with the expression
of BCR mRNA in most databases. We also observed a decrease in
BCR mRNA due to miR-342-5p in cellular experiments, suggesting
that miR-342-5p may have a role in inhibiting the transcriptional
activity of the BCR promoter (supplementary figure). In terms of CML
clinical staging and GSVA score of miR-342-5p, patients in the
chronic phase were significantly lower than those in healthy control
or remission (Fig. 7D, upper panel). GSE4170 provided three stages
of CML progression, showing that patients with more aggressive

SPRINGER NATURE

progression had significantly lower GSVA scores of miR-342-5p in
CD34" cells (Fig. 7D, middle panel). GSE130404 provided a BCR-ABL
expression examination of CML patients at the third month after
treatment, showing a significant decrease in GSVA score of miR-342-
5p in patients examined as BCR-ABL™ (Fig. 7D, lower panel).
Furthermore, we used the CML single-cell RNA sequencing
database of GSE76312 to perform pre- and post-treatment
differential analysis [25]. The results showed no difference in
GSVA scores for miR-342-5p upregulation-gene signature in CML
cells without BCR-ABL. Interestingly, there was a significant
decrease in the diagnostic group with BCR-ABL* and a rebound
in the remission group with BCR-ABL™, indicating that miR-342-5p
upregulated-gene expression was negatively associated with
disease status in patients with BCR-ABL™ (Fig. 8A). In addition,
proliferation-related biological responses and DNA repair were
significantly increased in the BCR-ABL™ diagnostic group, which
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was similar to the results of the bulk transcriptomic analysis.
Finally, single-cell sequencing analysis of several CML patients
showed that the miR-342-5p upregulation-gene signature of the
GSVA score was associated with disease progression. In patients
“CML1266" who were not in remission, GSVA scores at the time
point of the blast crisis were significantly lower compared to the
pre-blast crisis (Fig. 8B), echoing the results of Fig. 7D. Six CML
patients were in remission, and four of them had increased GSVA
scores after treatment (Fig. 8C), suggesting that detection of miR-
342-5p expression may be beneficial in predicting the TKI effect.

DISCUSSION

Previous studies have shown that miR-342-5p has similar antitumor
effects in breast cancer [48], and its downregulation is associated with
tamoxifen resistance in breast cancer cells [49, 50]. Our data show for
the first time that increasing miR-342-5p intrinsically reduces imatinib
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resistance in CMLMIiR-342-5p acts as a tumor suppressor in CML by
suppressing the expression of BCR-ABL and CCND1 (Figs. 2 and 3).
BCR-ABL is a crucial factor contributing to the development of CML
[51], and CCND1 overexpression in CML is an essential contributor to
cell cycle progression [52, 53]. Our results indicate that miR-342-5p
can directly interfere with the 3'UTR of CCND1 mRNA to cause a
decrease in CCND1 protein expression and may indirectly affect BCR-
ABL transcription to reduce its expression. This result suggests that
the clinically detected reduction of miR-342-5p may be one of the
factors contributing to the aberrant amplification in CCND1 and BCR-
ABL expression and further resistance to TKI therapy.

Bioinformatic analysis revealed that miR-342-5p upregulated
gene signature was associated with negative regulation of
leukocyte proliferation, which could be evidenced by reduced
phosphorylation of multiple signaling pathways and inhibition of
colony formation (Fig. 4B-D). Similarly, the negative association of
GSVA score of miR-342-5p upregulated gene signature with BCR
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Fig. 8

Investigation of GSVA scores of miR-342-5p upregulated-gene signature of single cells from same CML patients with or without

remission in GSE76312. A The Violin plot shows the distribution of GSVA scores of miR-342-5p upregulated-gene signature, cell proliferation-
related biological responses, DNA repair, and apoptosis in the single CML cells with or without BCR-ABL expression at diagnostic or remission
states in GSE76312. B, C GSVA scores of miR-342-5p upregulated-gene signature of single cells from same CML patients with or without
remission (Good or Poor). Data were in the form of mean + SD. One-way ANOVA or Mann-Whitney test were used to assess the significance of

statistical differences, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.

MRNA expression observed in clinical databases implies that miR-
342-5p may indirectly affect BCR promoter transcription (supple-
mentary figure), possibly by reducing myc transcriptional activity,
which in turn causes reduced BCR-ABL expression (Fig. 7C) [54-
56]. In addition, the LGAS9 family encodes a protein, galectin-9,
that is thought to cause apoptosis and overcome drug resistance
in CML, which may also be one of the mechanisms of drug
resistance in CML patients who lose miR-342-5p [57].

Increased double-strand breaks are the leading cause of cell cycle
arrest and apoptosis, and different DNA damage response pathways
may determine susceptibility to CML [58]. GSEA visualization analysis
showed a significant increase in the enrichment of double-stranded
DNA breakage regulation in the presence of miR-342-5p expression
(Fig. 5A), suggesting that miR-342-5p may affect the DNA repair
ability of CML during imatinib treatment, further leading to a
switch from the single-stranded repair-induced ATR-chk1 axis to the
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double-stranded breakage-associated ATM-chk2 axis [59-61]. Morii
et al. showed that imatinib inhibits DNA damage checkpoint arrest
recovery by inducing sustained activation of ATM/ATR signaling [62].
Skorta et al. reported that imatinib selectively abolished ATM
activation induced by drug treatment in BCR-ABL™ CML cells [63].
These observations imply that ectopic amplification of BCR-ABL
specifically causes selective inactivation of ATM by imatinib through
an unknown mechanism. Furthermore, CCND1 expression in the
absence of p53 contributes to promoting ATR-Chk1-induced DNA
repair, further protecting BCR-ABL" cells from death due to DNA
double-strand breaks [64-68]. Given that both K562 and MEGO1 are
TP53-deficient CML cell lines, inhibition of CCND1 expression by miR-
342-5p did lead to ATR-chk1 inhibition with ATM-chk2 activation and
subsequent cell apoptosis (Fig. 5D-F) [69, 70]. We suggest that miR-
342-5p expression directly or indirectly inhibits CCND1 and BCR-ABL
expression, thereby possibly increasing ATM activation by dispersing
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BCR-ABL-associated ATM repression and reducing CCND1-ATR-Chk1-
induced protection, as a result of ATM/ATR switching.

In vivo experiments demonstrated the effect of miR-342-5p in
increasing the sensitivity of imatinib to CML and observed the
inhibition of angiogenesis (Fig. 6). Considering the association of
BCR-ABL and CCND1 expression with the promotion of angio-
genesis, miR-342-5p may indirectly affect the ability of the CML
periphery to undergo angiogenesis through the inhibition of
these two targets [68-70]. Finally, analysis of the CML clinical
database revealed that the miR-342-5P upregulated gene
signature was negatively correlated with various proliferation-
related and DNA repair gene-sets and positively associated with
p53 and apoptosis (Fig. 7C). Furthermore, both bulk transcrip-
tome analysis and single-cell RNA sequencing showed that
miR-342-5p upregulated gene signature was inversely correlated
with the severity of CML and was significantly higher in
molecularly responsive patients (Figs. 7D and 8). In conclusion,
our findings suggest that measuring miR-342-5p expression has
the potential to assess clinical CML disease prognosis and
imatinib resistance.
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