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Abstract

In recent years it became clear that in eukaryotic genome evolution gene loss is prevalent

over gene gain. However, the absence of genes in an annotated genome is not always

equivalent to the loss of genes. Due to sequencing issues, or incorrect gene prediction,

genes can be falsely inferred as absent. This implies that loss estimates are overestimated

and, more generally, that falsely inferred absences impact genomic comparative studies.

However, reliable estimates of how prevalent this issue is are lacking. Here we quantified

the impact of gene prediction on gene loss estimates in eukaryotes by analysing 209 phylo-

genetically diverse eukaryotic organisms and comparing their predicted proteomes to that of

their respective six-frame translated genomes. We observe that 4.61% of domains per spe-

cies were falsely inferred to be absent for Pfam domains predicted to have been present in

the last eukaryotic common ancestor. Between phylogenetically different categories this

estimate varies substantially: for clade-specific loss (ancestral loss) we found 1.30% and for

species-specific loss 16.88% to be falsely inferred as absent. For BUSCO 1-to-1 ortholo-

gous families, 18.30% were falsely inferred to be absent. Finally, we showed that falsely

inferred absences indeed impact loss estimates, with the number of losses decreasing by

11.78%. Our work strengthens the increasing number of studies showing that gene loss is

an important factor in eukaryotic genome evolution. However, while we demonstrate that on

average inferring gene absences from predicted proteomes is reliable, caution is warranted

when inferring species-specific absences.

Author summary

To understand the evolution of eukaryotic species, we can look at the differences and sim-

ilarities in their genomes. Since the first genomes were sequenced, scientists have, among

other things, been studying these differences and similarities by evaluating the presences

and absences of genes, and they have been trying to understand how these patterns

explain the evolution of different eukaryotic species from their last common ancestor. It is

now known that the evolution from the last eukaryotic common ancestor was dominated
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by gene loss and duplications. Here we want to take the presence and absences patterns of

genes in 209 diverse eukaryotic species as a guideline to estimate the loss of genes in these

different species after they evolved from their common ancestor. Following this, we want

to quantify how this loss estimate and the inferred absences of genes are influenced by

faulty gene predictions by comparing absences of predicted proteins and absences of

genes in genomes. A difference in these absences will indicate that some of them are not

absent at all. It is important to quantify how many genes are falsely inferred as absent due

to prediction problems and if this can be estimated from certain suspicious patterns in

absences. Our results show that overall gene absences are inferred reliably. However, sus-

picious absences in a species, i.e. absences that are species specific and not supported by

absences in other closely related species, have a higher chance of being falsely inferred.

Introduction

During the evolution of eukaryotic genomes, the number of gene loss events is estimated to be

higher than gene gains [1–4] and this high loss gives rise to patchy phylogenetic patterns of

gene occurrence. A high level of gene loss suggests a gene rich ancestor of eukaryotes. Alterna-

tively, patchy phylogenetic patterns of genes could also be indicative of horizontal gene trans-

fer (HGT) from prokaryotes to eukaryotes or from eukaryotes to eukaryotes [3]. Nevertheless,

studies showed that generally these patchy patterns are better explained by differential gene

loss and gene presence in the Last Eukaryotic Common Ancestor (LECA) [1,3] and not by

HGT. It has been proposed that in evolution new genes and functional repertoires originate in

rapid genome expansions, followed by adaptive genome streamlining, or gene loss, giving rise

to divergent species [5,6].

A small number of highly debated reports on gene losses [7,8] turned out to have incor-

rectly inferred genes as lost [9–11]. In fact, there are many reasons to presume that not all

inferences of gene loss are equally trustworthy. The number of genomes published that do not

exceed draft quality is increasing, resulting in annotation errors and errors in the number of

genes found in the genome [12]. This suggests that the reported high number of loss events to

some extent could result from genes whose absences have been falsely inferred. Genes can be

inferred as absent for multiple reasons: due to technical difficulties in genome sequencing

[10], due to misassembly of draft genomes, due to faulty protein prediction [12], due to insen-

sitivity/bias in sequence similarity detection [13], or they are a bona fide loss. Recently, partial

Pfam domain hits were in part attributed to incomplete gene models, yet another type of gene

prediction and annotation problem [14].

Measuring the absences of genes that are expected to be universally conserved in organisms

is a popular measure of genome annotation quality and completeness. The CEGMA pipeline

[15] and later the BUSCO tool [16] successfully implemented this principle using near-univer-

sal single-copy orthologs. Absences of these single-copy orthologs are considered to be suspect

and are widely used to quantitatively assess annotation quality and genome completeness.

While analysing the kinetochore protein complex and the absences of its subunits in

eukaryotes, we recently showed that 10.9% of these absences could be found in six-frame trans-

lated DNA [17]. These falsely inferred absences in the kinetochore included important sub-

complexes that would have otherwise been assumed to be absent in multiple species. One

example was KNL1, a two sub-unit complex consisting of Knl1 and Zwint1, which plays a cru-

cial role in microtubule attachment to the centromeres during mitosis. The KNL1 complex

was wrongly inferred as completely or partially absent in 19 out of 109 species due to
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prediction problems. For 3 out of 19 species the complete complex was incorrectly inferred as

absent, for 5 species the subunit Knl1 was falsely inferred as absent, and for 11 species the sub-

unit Zwint1 was falsely inferred as absent. The study also showed that absences have a higher

chance of being falsely inferred when they were species-specific absences or made little biologi-

cal sense due to e.g. functional restrictions in protein complexes [17].

There is ample anecdotal evidence that poor gene annotation will influence gene loss analy-

ses [7,17]. However, we here aim to systematically quantify the impact of gene prediction on

the estimated gene loss by reanalysing absences inferred from predicted proteomes by analys-

ing six-frame translated DNA. In particular, we hypothesize that absences that are not sup-

ported by absence in sister taxa are more likely to be false. Therefore, additional to the overall

analysis of absences, we test the hypothesis that species-specific absences will be more likely

falsely inferred as absent. We find that gene prediction in general is trustworthy and that loss

remains an evolutionary important factor in eukaryotic genome evolution, with the caveat that

suspicious, or species-specific, absences have a substantially higher chance of being falsely

inferred.

Results

Loss of inferred ancestral Pfams

To measure the impact of gene prediction on apparent gene loss in eukaryotes, we first

inferred a list of proteins that indicate loss of these proteins in present-day species. For this we

first estimated their presence in the Last Eukaryotic Common ancestor (LECA). Instead of uti-

lizing orthologous relations, we used the Pfam domain family database [13] to detect homolo-

gous protein domains in the predicted proteomes of present-day species. Pfam domains have

the advantage that they are clearly defined units for detecting protein homology, whereas

other databases would make it necessary to differentiate between paralogs and orthologs of

partial hits in the DNA or make it necessary to call fusion and fission relationships of genes,

which is easily subject to error and remains one of the largest problems within bioinformatics

[18]. Another advantage of using Pfam is that it allows us to compare our loss and LECA esti-

mates to previous work that analysed eukaryotic genome evolution on the scale of protein

domains [1].

We analysed the presence of Pfam domains in 209 proteomes from a diverse set of eukary-

otic species that can be divided into six supergroups: Amoebozoa, Archeaplastida, Crypto-

phyta/Haptophycea, Excavata, Opisthokonta and SAR (consensus species tree shown in S1 Fig

and species summarized in S1 Table). We then inferred potential LECA domain presences

using the Dollo parsimony method and consequently inferred losses. In this method, domains

can only be gained once and domain losses are minimised. The resulting LECA domain con-

tent consists of 5479 Pfams (Table 1, Proteome data), which is comparable to the LECA con-

tent of Pfam domains as previously estimated by [1] using a similar method. Our estimate of

LECA content is higher than the previously estimated LECA content (5479 versus 4431) as we

use more species, as well as more evolutionary distant species.

The LECA gene content inferred from naïve Dollo parsimony is very sensitive to horizontal

gene transfers (HGT). If there were independent HGT events from bacteria to multiple line-

ages at both sides of the root in the eukaryotic tree, the Dollo parsimony method would incor-

rectly infer presence of that domain in LECA and thus infer many incorrect loss events.

Therefore, we subsequently removed Pfam domains that were likely HGTs from bacteria to

increase the reliability of our LECA estimate. These possible HGT Pfams were inferred based

on a phylogenetic position of eukaryotic sequences among prokaryotic sequences or on being

present in a small subset of eukaryotic species. Upon removal of these Pfams, the LECA
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content decreased to 4182 Pfams (Table 1, Proteome data. Pfams shown in S2 Table). The

4182 LECA domains were inferred to be lost 111320 times, with a median of 26 losses per

domain in our set of 209 species (Table 1). Our results are in line with previous reports, which

also find a large number of gene loss [1–3].

Quantifying falsely inferred absences and possible differences between

clade- and species-specific absences

An absence might be falsely inferred as a loss due to sequencing issues, genome assembly issues

or incorrect gene prediction. While we are unable to correct for the sequencing and assembly

issues, we are able to identify possible falsely inferred absences. We performed a hmmsearch of

LECA Pfam domains against six-frame translated genomes of the proteomes that were initially

analysed. Two examples of falsely inferred absences are schematically shown in S2 Fig. Not all

Pfam hits were expected to be true presences, since the residual homology of pseudogenes can

also lead to the detection of a Pfam. Therefore, we excluded hits containing stop codons in the

alignments as they are likely pseudogenes and instead inferred an absence. Following this, our

pipeline retrieved hits for 6.24% of all previously inferred Pfam absences (17412), which thus

represent potentially falsely inferred absences (Table 1), with a median of 4.61% over all our

199 six-frame translated genomes (“Pfam total” in Fig 1B). This estimate provides an upper

Table 1. Summary of data and results from the proteome and six-frame translated genomes.

Proteome data (N = 209)

BUSCOs Pfams

Non-strict LECAa Strict LECAb

LECA domains 303 5479 4182

Total count domains 47874 1145111 874038

Species-specific absences 5791 97655 71559

Clade-specific absences n/a 419323 218203

Absences 6055 516978 289762

Loss - 162671 111320

Median loss 30 26

Six-frame translated genome data

BUSCOs (N = 158)c Pfams (N = 199)c

Found species-specific absences 1093 - 13111

% found species-specific absences 18.87% 18.95%

Median % found species-specific absences 18.30% - 16.88%

Found clade-specific absences n/a - 4301

% found clade-specific absences n/a - 2.05%

Median % found clade-specific absences n/a - 1.30%

Found total absences 1093 - 17412

% found total absences 18.87% 6.24%

Median % found total absences 18.30% 4.61%

Loss n/a - 98209

Median loss n/a 23

(a) LECA inferred with non-strict Dollo parsimony criteria, similar as [1].
(b) LECA inferred with stricter Dollo parsimony criteria that includes removed horizontal gene transfers.
(c) Only genomes with more than 5 BUSCO absences were added for further calculations, leaving 158 genomes. Due

to unforeseen tool crashes during six-frame translation, 199 genomes were left for analysis with the Pfam set.

https://doi.org/10.1371/journal.pcbi.1007301.t001
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estimate for this problem and as shown below is largely driven by a specific subset of false

absences.

Previous analyses suggested that not all absences were equally likely to be correct [17].

Absences that made little biological sense, i.e. were suspicious, tend to have a higher chance of

being falsely inferred as absent. Often a suspicious loss was an observed single absence in a sin-

gle species amidst a larger clade. To explore if there is a difference in detecting falsely inferred

absences between suspicious and non-suspicious absences, we defined two categories of

absences: clade-specific and species-specific (Fig 1A). Clade-specific absences are supported by

an ancestral loss, meaning they are supported by absences in one or more directly related spe-

cies with independently sequenced and annotated genomes. Species-specific absences are not

supported by losses in directly related species. Absences in the BUSCO domain set (see Intro-

duction) can be classified as suspicious absences as well, since all eukaryotes are assumed to

have these single-copy orthologs. BUSCO therefore functions as an additional independently

derived measurement of species-specific absences. We quantified to what extent these two

types of absences are falsely inferred.

We found significant differences between species-specific and clade-specific absences in

terms of their likelihood to be found in six-frame translated DNA. We found hits for 18.95%

of the species-specific absences (Table 1), with a median of 16.88% per genome (Fig 1B). We

found hits for 18.87% of the BUSCO absences, with a median of 18.30% per genome (Table 1

and Fig 1B). The median of falsely inferred species-specific absences in the Pfam set is

Fig 1. False inference of different absences. (A) Graphical representation of two different types of absences and loss. Clade-specific absences are

phylogenetically supported by an ancestral loss. Neighbouring species, i.e. the clade, have the same absence. Species-specific absences are not

phylogenetically supported by an ancestral loss, or in other words it is a single loss. A loss is independent of previous losses, in other words the first time

a gene is lost. (B) Percentages of falsely inferred absences in different absence groups across genomes. From top to bottom the violin plots show: the

percentages of falsely inferred absences in the total Pfam set absences, clade-specific absences and species-specific absences, and the BUSCO set

absences. Since the BUSCO set contains a small number of domains (303), only the genomes with more than five absences (N = 158) were added to this

figure. Note that the Pfam results are based on 199 species (N = 199) due unforeseen tool crashes during the analysis (see Materials and methods and S1

Table). Significance levels of pairwise comparisons between groups are given with black asterisks and comparisons between total absences and the rest

of the groups in grey. Significance levels are ��� for p� 0.001 and � for p� 0.05 (Wilcoxon signed rank test). Data is summarized in Table 1. Violin

plots are scaled to have the same maximum width.

https://doi.org/10.1371/journal.pcbi.1007301.g001
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surprisingly similar to that of the BUSCO absences, despite a weak positive correlation

between these two sets (S3 Fig). In contrast, we found substantially (and significantly) lower

hit percentages for clade-specific absences, with only 2.05% found for the clade-specific

absences, with a median of 1.30% per genome. This 10-fold difference between found clade-

and species-specific absences demonstrates that a species-specific absence has a higher chance

to be a false absence than an absence that is supported by sister lineages. Moreover, it is this

high rate of falsely inferred species-specific absences which significantly raises the overall rate

of found absences to 6.24%.

Additionally, we focussed more on the phylum taxonomic level to see if there is a change in

falsely inferred absences when looking at different phyla (S4 Fig). We observe the same trend

as that on the level of LECA, with species-specific and BUSCO absences being more falsely

inferred as absent than clade-specific absences. There seems to be no specific trends in the

individual phyla. However, it clearly shows that certain phyla are overrepresented. These

results provide a straightforward, but effective way of guiding the detection of possible falsely

inferred absences in both large- and small-scale evolutionary analyses.

From Fig 1B it is also clear that several species have a higher percentage of falsely inferred

absences, shown by the outliers (black points). For these species, this could signify that they

have either lesser quality genomes or predicted proteomes. In Fig 2 this is highlighted by high

instances of red in a particular genome, which indicates a high number of found species-spe-

cific absences, or dark green, which indicates a high number of found clade-specific absences.

This is also highlighted by the number of BUSCO absences found for the same genome (bar

chart Fig 2). The genome specific values depicted in Fig 2 can be found in S1 Table.

We also took a subset of genomes, that can be considered model organisms for evolution-

ary studies, to analyse if any methodological differences between model and non-model

organisms have an effect on falsely inferred absences (S5 Fig). For this subset of model

organisms (N = 35), we can observe the same trend as that of the whole dataset, with species-

specific absences being more falsely inferred as absent. Surprisingly, for the BUSCO set

(N = 21) the median of falsely inferred absences per genome lies higher in the model organ-

ism subset, 34.29% compared to 18.30%. Additionally, looking at N50 values of all the

genomes, a proxy for genome assembly quality, we can see no significant link between falsely

inferred absences and N50 values (S6 Fig). Therefore, rather unexpectedly, it appears that

completeness of sequencing or assembly problems are not an indication for higher expected

false absences.

Another effect did become apparent during the analysis: short Pfam domains have a higher

chance to be falsely inferred as absent. S7 Fig shows Pfam lengths of the top 100 highest num-

bers of falsely inferred Pfam absences, showing a significant difference (almost twice as much)

between the median of the Pfam lengths of the 100 most found Pfam absences versus the rest.

This trend is potentially explained by short single domain proteins that fall just below the com-

monly used cut-off length of 100 amino acids in genome annotation pipelines for proteins

with only in silico evidence [19,20].

Impact of incorrect gene prediction on gene loss estimates in eukaryotes

To answer the question whether incorrect gene prediction could influence genome evolution

inferences, we re-analysed the loss events and corrected our initial estimated domains loss by

including the hits we found in six-frame translated DNA. Fig 3 shows the loss corrected with

the Pfam domains found in six-frame translated genomes (coloured bars) and the uncorrected

loss according to proteomes (white bars). The number of times a LECA Pfam is lost in general

shifts to lower values (Fig 3 inset). The number of Pfams with many loss events decreased.
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Fig 2. Presences and absences of all LECA Pfams in all 199 species. The barchart (top) shows the BUSCO absences and found BUSCO absences.

The large matrix shows presences and all types of absences as shown in the coloured legend. Species are clustered according to the species tree (S1

Fig) shown by the dendrogram. Pfams are clustered with hierarchical (complete-linkage) clustering. Pfam labels are left out for clarity.

https://doi.org/10.1371/journal.pcbi.1007301.g002
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Notably, the Pfam domains that were conserved in all species, i.e. lost zero times, showed the

largest increase, from 138 to 186 domains.

The found hits decrease the amount of loss by 11.78%, from 111320 to 98209, reducing the

median loss per Pfam from 26 to 23 (p-value < 2.2�10−16 Wilcoxon signed rank test) (Table 1

and Fig 3 vertical lines in histogram). The reason for this relatively higher impact on loss esti-

mates, despite the smaller percentage of 6.24% falsely inferred absences, is that every species-

specific loss is counted equally as a clade-specific loss (Fig 1A). Since species-specific absences

are much more likely to be falsely inferred as absent than clade-specific absences, they have rel-

atively more impact on the amount of loss. Thus, species-specific loss and their higher likeli-

hood for being falsely inferred as absent is a significant issue in comparative genomics studies

on gene loss.

Discussion

Eukaryotic genome evolution is dominated by gene duplication and gene loss [1–4,6]. How-

ever, absences of genes in predicted proteomes do not always indicate that these genes are

truly lost. During the past few years high profile reports of specific cases of gene loss (peptide

hormone ghrelin in soft-shell and sea turtle [7] and multiple genes in birds [8]) were disproven

[9–11]. Falsely inferred absences could greatly influence conclusions drawn when analysing

Fig 3. Distribution of the estimated loss of LECA Pfam domains in proteomes shown by white bars, with the median loss given by the black

vertical line. The Dollo parsimony approach places 4182 Pfams in LECA. These LECA Pfams have been lost independently 111320 times. A large

number of Pfams are conserved in all current day species (never lost). Distributions of the corrected loss of LECA Pfam domains from six-frame

translated genomes are shown by orange coloured bars, with the corrected median loss given by the red vertical line. The inset shows the difference in

distributions of the six-frame translated genomes minus the proteomes.

https://doi.org/10.1371/journal.pcbi.1007301.g003

Measuring the impact of gene prediction on gene loss estimates in Eukaryotes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007301 August 28, 2019 8 / 15

https://doi.org/10.1371/journal.pcbi.1007301.g003
https://doi.org/10.1371/journal.pcbi.1007301


genome evolution, the evolutionary trajectory of proteins or protein complexes and adaptation

of organisms. In our study, we showed that per genome 4.61% of absences are falsely inferred

to be absent. Additionally, we showed that for the two different types of absences these per-

centages differ significantly: clade-specific absences are only falsely inferred as absent 1.30%

of the time, but species-specific are falsely inferred as absent 16.88% (Pfam) and 18.30%

(BUSCO) of the time.

Our estimates rely on the specific design of our analysis, such as the use of Pfam HMMs

and the Dollo parsimony approach. The Dollo parsimony approach is a simplified way of

describing eukaryotic genome evolution: only one domain gain is allowed and the number of

losses is minimized, effectively ignoring HGT events. The importance of HGT in eukaryotes

remains controversial and is still an active area of study [21, 22]. Nevertheless, the usage of

Dollo parsimony allows direct comparisons with a similar approach previously described in

Zmasek & Godzik [1], as well as give a straightforward way of defining LECA for identifying

patterns in absences and identifying clade- and species-specific absences. Even though we are

not trying to infer the gene content of LECA, we want to estimate the LECA Pfam content as

accurate as possible because otherwise we cannot reliably interpret absences in terms of loss.

Therefore, we additionally added a stricter criterion for accepting Pfams as LECA Pfams and

removed possible HGT using a phylogenomics approach.

Our combined Dollo parsimony and phylogenetic HGT filtering approach, yields a LECA

size in terms of Pfam domains comparable to that of Zmasek & Godzik [1] and in terms of

genes to that of Wolf & Koonin et al. [6]. It would be expected that the increased sampling in

our work of more diverse genomes, such as free-living heterotrophs and poorly sampled taxa,

would increase the number of inferred LECA Pfams compared to these earlier studies. At the

same time, the phylogenetic approach for removing suspected HGT families, decreases the

number of inferred LECA Pfams.

The number of losses might be influenced by uncertainties in the tree of life and its topol-

ogy: a clade-specific absence might become a species-specific absence and vice versa due to

minor rearrangements in the used tree topology. However, we expect that this will not signifi-

cantly influence the results, since in general the leaves of the tree are confidently assigned and

the uncertainties often lie in the specific hierarchy in higher-level taxonomy, such as the loca-

tion of the root of the eukaryotic tree of life [23–25].

It is important to note that over the years improvements in species sampling and sensitivity

in homology detection have led to drastically expand the gene content of LECA and in turn

increase in loss events to the high numbers now reported [1–4,6]. However, the gene predic-

tion problem is not the only technical issue influencing gene loss estimates. Other (technical)

issues could also artificially increase gene loss estimates. For example, domain profiles

(HMMs) can be insufficiently sensitive due to biased/limited sequence sampling or due to

strict bit score cut-offs chosen [13] due to an (understandable) focus on avoiding false posi-

tives. Especially in lineages with rapidly evolving genes, unrecognized homologs can be the

cause of falsely inferred absences and consequently higher loss estimates. Improving the sensi-

tivity of HMMs of protein domains has anecdotally been shown to improve domain detection

[17]. Another issue is incomplete genome assemblies, which preclude genes from being found.

For instance, many gene absences in bird genomes were shown to stem from genome assem-

blies with stretches of strongly decreased coverage due to GC-rich regions [10]. Genes that are

falsely inferred as absent due to incomplete sequencing of certain genomes can also not be

found by simply searching the DNA sequence for homologs, as is done here. The combined

effect of all these issues in addition to gene prediction is not known yet, but could further

lower gene loss estimates.
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With this study, we want to provide some guiding estimates of the extent of one particular

technical problem, i.e. unpredicted genes present in genome sequences. This problem is in

practice known, but to our knowledge has never been systematically quantified. Our results

show that in general gene prediction is of good quality and inferred absences are likely not

false. However, there is more than a 10-fold difference between the number of falsely inferred

clade-specific absences (1.30%) versus species-specific absences (16.88% for Pfam and 18.30%

for BUSCO). This is directly in line with the observation that ghrelin was already reported in

the red-eared slider turtles and later indeed correctly inferred to be present (and not absent) in

the genome of soft-shell and sea turtle [9]. The importance of gene loss for eukaryotic molecu-

lar evolution is fundamentally not impacted by falsely inferred absences and remains a domi-

nant factor in shaping eukaryotic gene repertoires. Still, loss decreases by 11.78% due to falsely

inferred absences that can be found in six-frame translated DNA and our study clearly demon-

strates that biologically suspicious absences should invite additional technical scrutiny.

Conclusion

The results of our study show that when absences are surprising and/or suspicious they have a

higher chance of being falsely inferred as absent. This result is especially important for the evo-

lutionary analyses of proteins and their domains and estimating their loss. It provides a cau-

tionary tale that if an absence appears suspicious there is a good reason to investigate this

further and conclusions should not only rely on automated gene prediction alone.

Our findings agree with existing notions of gene prediction problems, but no study as of yet

has quantified to what extent gene prediction influence gene loss estimates. Our simple but

effective approach described in this study provides a straightforward way to analyse gene

absences and quickly assess their reliability in large- and small-scale evolutionary analyses.

Materials and methods

To measure the impact of gene prediction on gene loss estimates we first needed to establish

gene content in the last eukaryotic common ancestor (LECA) to infer loss patterns from

LECA to current day species. We did this by analysing the presences and absences of protein

domains in current day species, and then inferring LECA content using these presence/

absences profiles. With this LECA content we inferred the loss of LECA domains in current

day species. Following this, we looked at protein domains that are not found in the proteomes

to see if they were encoded in the genomes of the respective species. S8 Fig schematically

shows the procedures and the following sections describe these procedures in more detail.

Compiling the database

To study the presences and absences of genes across the eukaryotic tree of life we used pre-

dicted proteomes and genomes of 209 phylogenetically diverse eukaryotic organisms from

multiple supergroups: 122 Opisthokonta, 6 Amoebozoa, 23 Archaeplastida, 3 Crypto-/Hapto-

phyceae, 13 Excavata, 41 SAR, and 1 unidentified (species summarized in S1 Table). We chose

these species to represent a broad eukaryotic diversity. The predicted proteomes and genomes

were obtained from a variety of sources (S1 Table).

To examine if absences in the proteomes could still be found in the genomes of their respec-

tive species, we used the tool Transeq (Translate nucleic acid sequences) from EMBOSS [26]

to translate the genomes in six open reading frames to protein sequences with the default

codon table. For ciliate species, we used the ciliate codon table (translation table 6). We suc-

cessfully analysed 199 of the 209 genomes (S1 Fig). One genome (human) could not be trans-

lated due to its large size and transeq crashing as a consequence, two species did not have
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available genomes and seven translated genomes could not be analysed due to an unknown

error in the hmmsearch tool (S1 Table).

Protein domain content in proteomes and translated genomes

The protein domain repertoire was determined with the hmmsearch alignment tool from the

HMMER package 3.1b2 (dated February 2015) [27] using sequence profiles, HMMs (Hidden

Markov Models), from the Pfam 31.0 database [28] and the BUSCO eukaryota database (odb9)

[29]. We took HMM specific quality scores for Pfam (gathering cut-offs) and BUSCO domains

to validate the hits in the alignments.

Some Pfam domains could be absent from predicted proteomes because they are (part of) a

non-functional gene, i.e. a pseudogene. We therefore removed pseudogenes from our hits in

six-frame translated genomes with a custom-built script that removed hits with stop-codons in

their sequences. Best scoring non-overlapping hits were considered for further analysis in

presence/absence profiles.

Approximating domain content of the last eukaryotic common ancestor

with Dollo parsimony

We used the Dollo parsimony approach for the ancestral state reconstruction, i.e. the domain

content of LECA, using presence/absence profiles of Pfam domains in the predicted proteomes

and projecting them on a bifurcating species tree. The species tree is a consensus tree com-

bined from literature, which is summarized in S1 File and the species tree shown in S1 Fig).

The Dollo parsimony code was updated and translated to python from [30]. This approach

allows for a gene/domain to be gained only once through a phylogenetic tree, which may

require an arbitrary number of subsequent losses, and traces presences/absences back to the

root (LECA) of the tree. We added additional criteria to increase the accuracy of our LECA

estimate by only considering Pfam domains that are present in at least 3 supergroups and are

left and right of the root (S1 Fig).

To remove Pfams that are in LECA due to possible horizontal gene transfer (HGT), we

used a phylogenomics based approach. We inferred and analysed phylogenetic trees based

on Pfam sequences containing sufficient phylogenetic signal from a diverse set of prokaryotes

and eukaryote to identify possible HGT Pfams as follows. The eukaryotic database described

above was supplemented with the prokaryotic proteomes in eggNOG4.5 [31] and the Asgard

archaeal predicted proteomes from [32]. Pfam domains were detected with hmmsearch as

described above. Reduction of the number of sequences was necessary to make it computa-

tionally feasible to apply sequence alignment and phylogenetic reconstruction. To reduce the

number of sequences to be used in phylogenetic inference, kClust 1.0 [33] (clustering thresh-

old 2.93) was performed on the eggNOG prokaryotic sequences and a ScrollSaw-like method

[2] was applied to the eukaryotic sequences. The sequences in bidirectional best BLAST 2.6.0+

[34] hits (BBHs) between sequences from different sides of the eukaryotic root were selected.

For each Pfam the selected prokaryotic and eukaryotic sequences were aligned (mafft v7.310

[35] auto option); these alignments were trimmed (trimAl v1.4.rev15 [36] gap threshold 10%).

Phylogenetic trees were inferred with IQ-TREE 1.6.4 [37] (LG4X model, 1000 ultrafast boot-

straps [38]). The resulting trees were analysed using the ETE3 toolkit [39].

For each monophyletic eukaryotic clade in a tree, it was first checked if there were species

from both sides of the eukaryotic root present in that clade. If at least one such potential LECA

clade was present in the tree, the information from the eukaryotic sequences not in the BBHs,

and therefore not in the tree, was incorporated. By assigning these sequences to their best rep-

resenting hit in the tree, the percentage of species in which a homolog from that clade was
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present was calculated for five supergroups: Excavata, SAR + Haptista, Archaeplastida + Cryp-

tista, Amoebozoa and Opisthokonta + Apusozoa. If the mean of these percentages was at least

15%, the clade was annotated as a LECA clade. If there was at least one LECA clade in a tree,

the Pfam was annotated as present in LECA. Having a set of trusted LECA Pfams allowed us to

remove the non LECA Pfams resulting from horizontal gene transfer, contamination or the

chloroplast endosymbiosis from our LECA set.

We also defined two different groups of absences, clade- and species-specific. Clade-specific

absences are supported by an ancestral loss of a domain, while species-specific absences are

not (see Fig 1). We analysed events in the leaves of Pfam domain trees generated by Dollo par-

simony. Leaves with ancestral losses (Pfam loss in parent node) are defined as clade-specific

absences. Leaves with single (independent) losses (Pfam present in parent node) are defined as

species-specific losses.

Supporting information

S1 Fig. Species tree. A phylogenetic tree of the species used in this analysis. Supergroups are

given indicated the legend and the full names that belong to the abbreviations can be found in

S1 Table. Species with asterisks were used to estimate the LECA Pfam content with Dollo par-

simony, but for multiple reasons (e.g. no genome available) they could not be used to quantify

falsely inferred absences (see Results, Materials & methods and S1 Table).

(PDF)

S2 Fig. Example of two hits falsely inferred absences in Aureococcus anophagefference. Two

Pfam domains previously inferred as absent are found in six frame translated DNA. Shown are

the HMM overlapping with the scaffolds (x-axis) together with the bitscore. The hmmsearch

tool “sequence output” is shown between the HMM and scaffold.

(PDF)

S3 Fig. Percentages of found species-specific Pfam absences vs. BUSCO absences per

genome. We fitted a linear model (black line), shown in the graph with a 95% confidence

interval (shaded area).

(PDF)

S4 Fig. Percentages falsely inferred absences found per genome, grouped per phylum. For

all the genomes containing a phylum taxonomic annotation (N = 152), the genomes were

grouped per phylum in a bar chart, showing percentages falsely inferred absences coloured by

four absence groups. Median values are given by the red points (unless there is only one

genome the red point is equal to the result) and for clarity grey dotted lines show 50% falsely

inferred values. Individual phyla can highly differ in the number of genomes sampled, with

Arthropoda having the highest number.

(PDF)

S5 Fig. Percentages falsely inferred absences found in model organisms. Percentages of

falsely inferred absences in different absence groups in a subset of genomes representing

model organisms (N = 35). The BUSCO set contains a small number of domains (303), only

the genomes with more than five absences (N = 21) were added to this figure. Significance lev-

els of pairwise comparisons between groups are given with black asterisks Significance levels

are ��� for p� 0.001 and � for p� 0.05 (Wilcoxon signed rank test).

(PDF)

S6 Fig. Comparing found falsely inferred absences with genome assembly quality (N50).

The different panels show the different absence groups versus log(N50) values. In the upper
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left corner of every panel the correlation coefficient τ is shown and corresponding p-value

(Kendall rank correlation). There is little association found between the two values in either of

the categories of falsely inferred absences.

(PDF)

S7 Fig. Pfam hmm lengths of found absences. Hmm lengths are compared in three different

absence groups: all, clade- and species-specific, for the 100 highest numbers of absences vs. the

rest. Medians are shown at the top of the graph and significance (Wilcoxon rank sum test) is

shown above the comparisons.

(PDF)

S8 Fig. The workflow for quantifying falsely inferred absences. The BUSCO data is given in

yellow, the Pfam data is given in green and processes are given in blue.

(PDF)

S1 Table. Per species data. Information on the species used in this study, including taxonomic

information of each species, counts of absences and found absences, and download locations

of genomes/proteomes.

(XLSX)

S2 Table. Per Pfam data. Information on the inferred LECA Pfams, including lengths and

counts of absences and found absences.

(XLSX)

S1 File. Species tree resources. The file contains a list of resources used for the reconstruction

of the species tree (see S1 Fig). The tree is used in this analysis to project presences (and

absences) in the Dollo parsimony approach.

(PDF)

Acknowledgments

We thank Jolien van Hooff for collecting and compiling the species tree and the Theoretical

Biology and Bioinformatics group for commenting on and discussing the manuscript. We

want to thank Eelco Tromer for the extensive initial analysis of the kinetochore proteins. We

would also like to thank Amir Masoud Abdol for revising and discussing the manuscript and

improving the design of the figures.

Author Contributions

Conceptualization: Berend Snel.

Data curation: Teunis J. P. van Dam.

Formal analysis: Eva S. Deutekom, Julian Vosseberg.

Funding acquisition: Berend Snel.

Investigation: Eva S. Deutekom, Julian Vosseberg.

Software: Teunis J. P. van Dam.

Supervision: Teunis J. P. van Dam, Berend Snel.

Visualization: Eva S. Deutekom.

Writing – original draft: Eva S. Deutekom.

Measuring the impact of gene prediction on gene loss estimates in Eukaryotes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007301 August 28, 2019 13 / 15

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007301.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007301.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007301.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007301.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007301.s011
https://doi.org/10.1371/journal.pcbi.1007301


Writing – review & editing: Eva S. Deutekom, Julian Vosseberg, Teunis J. P. van Dam, Berend

Snel.

References
1. Zmasek CM, Godzik A. Strong functional patterns in the evolution of eukaryotic genomes revealed by

the reconstruction of ancestral protein domain repertoires. Genome Biol. 2011; 12: R4. https://doi.org/

10.1186/gb-2011-12-1-r4 PMID: 21241503

2. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system

in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012; 125: 2500–2508. https://

doi.org/10.1242/jcs.101378 PMID: 22366452

3. Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, et al. Endosymbiotic origin and dif-

ferential loss of eukaryotic genes. Nature. 2015; 524: 427–432. https://doi.org/10.1038/nature14963

PMID: 26287458

4. Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016; 17: 379–391. https://doi.org/10.

1038/nrg.2016.39 PMID: 27087500

5. Cuypers TD, Hogeweg P. Virtual genomes in flux: an interplay of neutrality and adaptability explains

genome expansion and streamlining. Genome Biol Evol. 2012; 4: 212–229. https://doi.org/10.1093/

gbe/evr141 PMID: 22234601

6. Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution. Bioessays. 2013; 35: 829–

837. https://doi.org/10.1002/bies.201300037 PMID: 23801028

7. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. The draft genomes of soft-shell

turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body

plan. Nat Genet. Nature Publishing Group; 2013; 45: 701. https://doi.org/10.1038/ng.2615 PMID:

23624526

8. Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, et al. Conserved syntenic clusters of

protein coding genes are missing in birds. Genome Biol. BioMed Central; 2014; 15: 565. https://doi.org/

10.1186/s13059-014-0565-1 PMID: 25518852

9. Larhammar D, Lagman D. Turtle ghrelin. Nat Genet. 2014; 46: 524–525. https://doi.org/10.1038/ng.

2960 PMID: 24866184

10. Hron T, Pajer P, Pačes J, Bartůněk P, Elleder D. Hidden genes in birds. Genome Biol. 2015; 16: 164.

https://doi.org/10.1186/s13059-015-0724-z PMID: 26283656

11. Botero-Castro F, Figuet E, Tilak M-K, Nabholz B, Galtier N. Avian Genomes Revisited: Hidden Genes

Uncovered and the Rates versus Traits Paradox in Birds. Mol Biol Evol. 2017; 34: 3123–3131. https://

doi.org/10.1093/molbev/msx236 PMID: 28962031

12. Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the

number of genes inferred from draft genome assemblies. PLoS Comput Biol. 2014; 10: e1003998.

https://doi.org/10.1371/journal.pcbi.1003998 PMID: 25474019

13. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families data-

base. Nucleic Acids Res. 2012; 40: D290–D301. https://doi.org/10.1093/nar/gkr1065 PMID: 22127870

14. Triant DA, Pearson WR. Most partial domains in proteins are alignment and annotation artifacts.

Genome Biol. 2015; 16: 99. https://doi.org/10.1186/s13059-015-0656-7 PMID: 25976240

15. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic

genomes. Bioinformatics. 2007; 23: 1061–1067. https://doi.org/10.1093/bioinformatics/btm071 PMID:

17332020

16. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome

assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015; 31: 3210–

3212. https://doi.org/10.1093/bioinformatics/btv351 PMID: 26059717

17. Tromer E. Evolution of the kinetochore network in eukaryotes [Internet]. Kops GJPL, Berend S, editors.

Utrecht University. 2017. https://dspace.library.uu.nl/bitstream/handle/1874/356941/Tromer.pdf?

sequence=1.

18. Forslund K, Pereira C, Capella-Gutierrez S, Sousa da Silva A, Altenhoff A, Huerta-Cepas J, et al. Gear-

ing up to handle the mosaic nature of life in the quest for orthologs. Bioinformatics. 2018; 34: 323–329.

https://doi.org/10.1093/bioinformatics/btx542 PMID: 28968857

19. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, et al. The genome sequence of

Schizosaccharomyces pombe. Nature. Nature Publishing Group; 2002; 415: 871–880. https://doi.org/

10.1038/nature724 PMID: 11859360

Measuring the impact of gene prediction on gene loss estimates in Eukaryotes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007301 August 28, 2019 14 / 15

https://doi.org/10.1186/gb-2011-12-1-r4
https://doi.org/10.1186/gb-2011-12-1-r4
http://www.ncbi.nlm.nih.gov/pubmed/21241503
https://doi.org/10.1242/jcs.101378
https://doi.org/10.1242/jcs.101378
http://www.ncbi.nlm.nih.gov/pubmed/22366452
https://doi.org/10.1038/nature14963
http://www.ncbi.nlm.nih.gov/pubmed/26287458
https://doi.org/10.1038/nrg.2016.39
https://doi.org/10.1038/nrg.2016.39
http://www.ncbi.nlm.nih.gov/pubmed/27087500
https://doi.org/10.1093/gbe/evr141
https://doi.org/10.1093/gbe/evr141
http://www.ncbi.nlm.nih.gov/pubmed/22234601
https://doi.org/10.1002/bies.201300037
http://www.ncbi.nlm.nih.gov/pubmed/23801028
https://doi.org/10.1038/ng.2615
http://www.ncbi.nlm.nih.gov/pubmed/23624526
https://doi.org/10.1186/s13059-014-0565-1
https://doi.org/10.1186/s13059-014-0565-1
http://www.ncbi.nlm.nih.gov/pubmed/25518852
https://doi.org/10.1038/ng.2960
https://doi.org/10.1038/ng.2960
http://www.ncbi.nlm.nih.gov/pubmed/24866184
https://doi.org/10.1186/s13059-015-0724-z
http://www.ncbi.nlm.nih.gov/pubmed/26283656
https://doi.org/10.1093/molbev/msx236
https://doi.org/10.1093/molbev/msx236
http://www.ncbi.nlm.nih.gov/pubmed/28962031
https://doi.org/10.1371/journal.pcbi.1003998
http://www.ncbi.nlm.nih.gov/pubmed/25474019
https://doi.org/10.1093/nar/gkr1065
http://www.ncbi.nlm.nih.gov/pubmed/22127870
https://doi.org/10.1186/s13059-015-0656-7
http://www.ncbi.nlm.nih.gov/pubmed/25976240
https://doi.org/10.1093/bioinformatics/btm071
http://www.ncbi.nlm.nih.gov/pubmed/17332020
https://doi.org/10.1093/bioinformatics/btv351
http://www.ncbi.nlm.nih.gov/pubmed/26059717
https://dspace.library.uu.nl/bitstream/handle/1874/356941/Tromer.pdf?sequence=1
https://dspace.library.uu.nl/bitstream/handle/1874/356941/Tromer.pdf?sequence=1
https://doi.org/10.1093/bioinformatics/btx542
http://www.ncbi.nlm.nih.gov/pubmed/28968857
https://doi.org/10.1038/nature724
https://doi.org/10.1038/nature724
http://www.ncbi.nlm.nih.gov/pubmed/11859360
https://doi.org/10.1371/journal.pcbi.1007301


20. Bitton DA, Wood V, Scutt PJ, Grallert A, Yates T, Smith DL, et al. Augmented annotation of the Schizo-

saccharomyces pombe genome reveals additional genes required for growth and viability. Genetics.

2011; 187: 1207–1217. https://doi.org/10.1534/genetics.110.123497 PMID: 21270388

21. Martin WF. Too much Eukaryotic LGT. Bioessays. 2017; 39: 1700115. https://doi.org/10.1002/bies.

201700115

22. Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to

Martin 2017 10.1002/bies.201700115). Bioessays. 2018; 40: e1700242. https://doi.org/10.1002/bies.

201700242 PMID: 29543982

23. Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol

Lett. 2010; 6: 342–345. https://doi.org/10.1098/rsbl.2009.0948 PMID: 20031978

24. Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: gene tree parsimony

roots the eukaryotic tree of life. Syst Biol. 2012; 61: 653–660. https://doi.org/10.1093/sysbio/sys026

PMID: 22334342

25. He D, Fiz-Palacois O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL. An Alternative Root for the Eukaryote

Tree of Life. Curr Biol. Cell Press. 2014; 24: 465–470. https://doi.org/10.1016/j.cub.2014.01.036 PMID:

24508168

26. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends

Genet. 2000; 16: 276–277. Available: https://www.ncbi.nlm.nih.gov/pubmed/10827456. PMID:

10827456

27. HMMER [Internet]. [cited 23 Mar 2018]. http://hmmer.org/.

28. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families data-

base: towards a more sustainable future. Nucleic Acids Res. 2015; 44: D279–D285. https://doi.org/10.

1093/nar/gkv1344 PMID: 26673716

29. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applica-

tions from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017; 35: 543–

548. https://doi.org/10.1093/molbev/msx319 PMID: 29220515

30. Kensche PR, van Noort V, Dutilh BE, Huynen MA. Practical and theoretical advances in predicting the

function of a protein by its phylogenetic distribution. J R Soc Interface. 2008; 5: 151–170. https://doi.org/

10.1098/rsif.2007.1047 PMID: 17535793

31. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierar-

chical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral

sequences. Nucleic Acids Res. 2016; 44: D286–D293. https://doi.org/10.1093/nar/gkv1248 PMID:

26582926
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