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Abstract

Multiple Sequence Alignment (MSA) methods are typically benchmarked on sets of refer-
ence alignments. The quality of the alignment can then be represented by the sum-of-pairs
(SP) or column (CS) scores, which measure the agreement between a reference and corre-
sponding query alignment. Both the SP and CS scores treat mismatches between a query
and reference alignment as equally bad, and do not take the separation into account be-
tween two amino acids in the query alignment, that should have been matched according to
the reference alignment. This is significant since the magnitude of alignment shifts is often
of relevance in biological analyses, including homology modeling and MSA refinement/
manual alignment editing. In this study we develop a new alignment benchmark scoring
scheme, SPdist, that takes the degree of discordance of mismatches into account by mea-
suring the sequence distance between mismatched residue pairs in the query alignment.
Using this new score along with the standard SP score, we investigate the discriminatory
behavior of the new score by assessing how well six different MSA methods perform with re-
spect to BAIIBASE reference alignments. The SP score and the SPdist score yield very sim-
ilar outcomes when the reference and query alignments are close. However, for more
divergent reference alignments the SPdist score is able to distinguish between methods
that keep alignments approximately close to the reference and those exhibiting larger shifts.
We observed that by using SPdist together with SP scoring we were able to better delineate
the alignment quality difference between alternative MSA methods. With a case study we
exemplify why it is important, from a biological perspective, to consider the separation of
mismatches. The SPdist scoring scheme has been implemented in the VerAlign web server
(http://www.ibi.vu.nl/programs/veralignwww/). The code for calculating SPdist score is also
available upon request.
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Introduction

Since its inception in the 1970s—early 1980s [1, 2], Multiple Sequence Alignment (MSA) has
been one of the most prominent computational techniques in modern molecular biology, and
its significance and popularity has only increased since the advent of next-generation sequenc-
ing (NGS) techniques. MSA plays a crucial part in various types of biological analyses, e.g. in-
ference of phylogenetic relationships between organisms, conserved sequence elements,
functional regions, correlated mutations, and is a vital prerequisite for protein homology
modeling [3-9]. MSA methods are used to align multiple homologous sequences, i.e. sequences
that are assumed to share a common evolutionary origin; in the resulting alignment the
matched residues should indicate that they derive from a single residue in an ancestral se-
quence, implying that they are structurally superposable and/or involved in a common func-
tion [10].

There are two main approaches which are used to assess the quality of a MSA based on se-
quence information. One is a reference-independent alignment score, that can be calculated
solely from sequence information of a single MSA, which is very useful in case curated or struc-
tural information on proteins of interest is unavailable. An example of such a score is the sum-
of-pairs scoring scheme (which we will refer to as standalone_SP score)[11]. This score is cal-
culated for a stand-alone MSA by exploiting an evolutionary model from which probabilities
of pairwise residue conservations and mutations are derived [12, 13]. Such a score is typically
used as the objective score for MSA methods, but may also be used to judge the quality of a re-
sulting MSA. The standalone_SP score, calculated using general residue substitution matrices,
is rarely used to benchmark MSA methods as the more evolutionary divergent sequence sets
will attain lower standalone_SP scores than less divergent sets, making comparison and nor-
malization difficult. Furthermore, an alignment with a high standalone_SP score does not nec-
essarily correspond to a biologically correct alignment as this score does not take structural
similarity and conservation of functional residues into account. Therefore its use as benchmark
score is not insightful.

The most widely used approach to benchmark alignment quality is referred to as reference-
dependent benchmarking, which aims to compute the similarity between the MSA in question
with a gold standard reference alignment of the same sequence set. Here, there is no a-priori
tendency for more divergent alignments to score lower, although attaining high query-refer-
ence alignment similarity is known to be more difficult for evolutionary divergent cases [14].

To address these complications, more recent techniques for assessing alignment quality
abounded, which make use of additional information such as protein tertiary structure infor-
mation. However, since these methods do not rely on sets of reference alignments, they are re-
ferred to as reference-independent benchmark techniques [15]. Armougom et al. [16]
exploited the structural distance between pairs of residues to score pairwise sequence alignment
quality without the need for structural superpositioning of the associated tertiary structures.
This type of alignment assessment methods are especially useful in pairwise target-template
alignment quality assessment, for example in homology modelling and threading algorithms
[17,18].

The main goal of MSA benchmarking is to measure the ability of different MSA methods to
reproduce trusted reference alignments [19]. As already mentioned, these reference alignments
are normally obtained from a manually (or semi-automatically) curated alignment database,
such as BAIiBASE [20], OXBENCH [21], PREFAB [22], or SABmark [23]. It has been shown
that in addition to the divergence of the sequences, the performance of an MSA method de-
pends also on several other factors such as sequence lengths, the presence or absence of large
insertions and N/C terminal extensions, or over-representation of one or more protein
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subfamilies [14]. Therefore, a thorough comparative analysis of MSA methods requires accu-
rate reference alignments representing various alignment problems to objectively assess the
quality of MSA methods. The ultimate benefit of MSA benchmarking to the user is knowing
what is the best method for a specific alignment problem. Therefore, the availability of scoring
schemes that bring out different strengths and weaknesses of an alignment method

is important.

The similarity between a reference alignment and the corresponding query alignment is
commonly calculated using the column score (CS) and the sum-of-pairs (SP) score. The CS
score calculates the query-reference alignment similarity as the fraction of columns in the refer-
ence alignment that is exactly reproduced in the query alignment, meaning that a single mis-
take in a MSA column (i.e. a mismatch in a single sequence) will disqualify the entire column
(Fig 1A). The SP score determines the similarity by the fraction of aligned residue pairs in the
reference alignment that is correctly reproduced in the query alignment (Fig 1A), i.e. the pro-
portion of mistakes over all residue pairs in a column is reflected in the score. As a result, the
SP score is softer and less strict than the CS score. Note that this type of SP score is not the
same as the standalone_SP score as it takes the reference alignment and not the amino acid
substitution matrix into account.

Fig 1 illustrates the difference between CS and SP scores and their limitations. In the toy ex-
ample (Fig 1B) one can observe that the CS score plummets to 0 due to minute shifts in the se-
quences. This indicates that the CS score is highly influenced by the number of the sequences
and the gap locations compared to the SP score. The toy example also shows that query align-
ment A is more similar to the reference alignment than query alignment B, hence query align-
ment A should have a better score than query alignment B. However, this is not the case if the
similarity between the query and the reference alignments are to be measured with the CS and
SP score. Since both scoring schemes only take matches and mismatches into account, they are
not able to discriminate whether one mismatch, i.e. a misplaced residue, is more shifted than
the other.

Due to their nature, SP and CS scores may not be discriminative for MSAs that contain long
stretches of gaps. For example, one MSA method may detect a long insertion/deletion appro-
priately, but get the boundaries slightly wrong, resulting in a small shift, while another method
may miss the insertion/deletion altogether. The former case is arguably less incorrect, but may
yield similar SP and CS scores as the latter (see the case study in the “Results and Discussion”
section for a real-life example of a similar situation in MSA benchmark). The key problem is
that the SP and CS scores do not take the severity of displacement of mismatches into account.
In practice the length of misalignments often plays a major role in biological analyses where
the accuracy of an MSA is of paramount importance, for example in analyses where manual
alignment editing is required to achieve a biologically sound alignment. In such cases, mis-
alignment of (stretches of) identical or similar residue pairs with relatively small shifts will be
much easier detected by the human eye than misplaced residues positioned further away from
their correct position in the alignment.

The purpose of this study is to investigate whether one can obtain a more fine-grained indi-
cation of how much a query alignment actually differs from the reference by taking distances
between mismatched residue pairs into account in MSA comparison, which is particularly
meaningful in the case of alignments with long stretches of insertions/deletions. In order to do
this we developed a variant of the SP score, SPdist, which takes into account the distance of
mismatched residue pairs instead of the binary classification into match and mismatch state as
in the case of the standard SP score. Cline et al. (2001) devised a distance-based scoring scheme
for pairwise alignments called shift score which also aims to differentiate the treatment between
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Fig 1. (A): CS score compares columns in the reference to corresponding columns in the query; SP score
compares all aligned pairs in the reference to the corresponding pairs in the query. (B): Toy alignments to
illustrate the difference punishment for alignment shifts in CS, SP, and SPdist (Eq 8) scores. All sequences in
this contain a small sequence motif H-x-D-E which has to be aligned correctly. Both query A and B contain
the same number of mismatches (indicated by the same SP score for both queries), the sole difference
between these two queries is that sequence 2 in query B is shifted five positions further. In this situation one
might argue that although both alignment are wrong, i.e. the sequence motifs are not aligned properly, query
Alis a slightly better alignment than B as the motifs in query A is positioned closer to each other than in query
B.

doi:10.1371/journal.pone.0127431.g001
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major and minor shifts in alignment comparison [24]. In this study we will also compare the
behaviour of our SPdist score with the shift score.

Methods

MSA benchmark data set

BAIiBASE is one of the most widely used alignment database to assess the quality of MSA
methods. It contains various MSAs obtained from manually curated 3D structural superposi-
tions [20]. The alignments in BAIiBASE are organized in reference sets, each representing a
specific alignment problem: Reference 1 (RV11 and RV12) contains alignments of equidistant
sequences; Reference 2 (RV20) holds alignments of protein families with with one or more so-
called orphan sequences(< 25% identical); Reference 3 (RV30) comprises alignments of diver-
gent protein subfamilies with < 25% sequence similarity between subfamilies; Reference 4
(RV40) has alignments of sequences with large N/C terminal extensions; Reference 5 (RV50)
alignments with large internal insertions; while Reference 6-8 contain highly specialized align-
ment problems such as, transmembrane proteins, proteins with multiple repeats, and inverted
domains. Each reference set in BAIiBASE contains two types of alignments: a full-length align-
ment and a truncated one containing only highly conserved regions. We selected the full-length
alignments for this study as they are more akin to real alignment situations. Out of the above
eight reference sets in BAIiBASE, we only selected sets 1 to 5 for our analysis since the remain-
ing sets represent more specific alignment situations that are less amenable to the generic MSA
methods assessed in the current study. The five selected benchmark sets contain 218 reference
alignments in total. Although the aforementioned reference alignment databases PREFAB [22]
and SABmark [23] are much larger than BAIiBASE, both these datasets only provide pairwise
alignments and no true MSA as reference for each alignment case, which is undesirable for the
SPdist score introduced in this paper. Similarly, the smaller OXBENCH reference set [21] com-
prises multiple sequence alignments containing regions that are annotated as unreliably
aligned, which also makes this database less amenable to evaluating the SPdist score.

Generation of multiple sequence alignments

Various multiple sequence alignment programs were selected for this study, namely ClustalW2
(ver. 2.0.10) [25], Clustal Omega (ver. 1.2.0) [26], MAFFT (ver. 7.215) [27], Muscle (ver. 3.7)
[22], ProbCons (ver 1.12) [28], and Praline [29]. As the aim of this study is to analyse the be-
havior of the SP and SPdist scoring schemes, and not to select the best alignment program, we
made no attempt to optimize these alignments programs and ran them using their default set-
tings for all test sets. This holds particularly for the Praline method, where, out of a number of
different alignment strategies, the suboptimal standard progressive alignment technique was
used as a control. An exception was made for MAFFT, which was run using both the default
and optimized parameter settings.

SP and CS scoring schemes

The column score (CS) is calculated as the percentage of correctly aligned columns for a refer-
ence and query alignment, having M sequences and N columns in the reference alignment:

kz:;compare(k) )
N

CS =
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Reference «
sequence i

sequence |

Query : : YQ(ki)

sequence i —A

4
Q(k)-Q(k Qdk)
|Q(k)-Q(k)|

Fig 2. lllustration of the mapping of aligned residue pairs k; and k; in reference alignment onto the

corresponding pairs in the query alignment (Q(k;) and Q(k;)). The distance for residue pair k; and k; is
calculated as the absolute difference in alignment columns between Q(k;) and Q(k;).

doi:10.1371/journal.pone.0127431.g002

1 if Q(k,) =Q(ky) =... = Q(ky)
compare(k) = { (2)

0 otherwise

where Q(k;) is a lookup function that translates the column of a residue k; of sequence i in the
reference alignment into the corresponding column in the query alignment (Fig 2). The com-
pare function checks if the positions of the residues in a column k of the query alignment corre-
spond to a single column in the reference alignment. If all residues compared are in the same
column, the result is 1, and 0 otherwise. For all columns in the reference alignment the posi-
tions of the residues in the query alignment are compared. The outcomes over all columns are
then summed and divided by the total number of columns in the reference alignment. The
sum-of-pairs score (SP) is calculated by taking all aligned pairs of residues in the reference and
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the corresponding pairs in the query alignment into account:

N M M
ZZZmatch(ki, k;)
sp — k=1 i? j=it1 (3)
§NM(M -1)

match(k,, k,

i

1 if Q(k) = Q(kj)
) = { (4)

0 otherwise

Here, each aligned pair k; and k; in the reference alignment is compared to the corresponding
pair Q(k;) and Q(k;) in the query alignment. If the pair is indeed also aligned in the query align-
ment a 1 is added; a 0 otherwise. The total score over all pairwise comparisons is divided by the
total number of matched residue pairs : NM(M — 1) in the reference alignment.

Distance-based SP score (SPdist)

In this work we develop a new score, the SPdist score, that is similar to the SP score but incor-
porates distance information between misaligned residue pairs rather than a score of 1 for
matches and 0 for mismatches. For each aligned pair of residues in the reference alignment,
now the distance between the corresponding two residues in the query alignment is deter-
mined. As the final SPdist score, the average mismatch distance over all aligned pairs in the ref-
erence alignment is calculated.

The way mismatch distances are incorporated in the SPdist score is inspired by similar mea-
sures used in the field of structural alignment, such as the distance-based scoring scheme em-
ployed in the ProSup structural alignment method [30] and the Global distance test (GDT_TS)
score which is mainly employed in assessing structural similarity between alternative 3D struc-
tures of a single protein, where one structure represents the template and the other the model
[31]. The GDT_TS scoring scheme determines the number of template-model Ca atom pairs
(G(v)) that are within the range of a predetermined distance cut-off, v. The score is then calcu-
lated as the average percentage of residues whose template-model Ca atom pairs fit within four
predetermined distance cut-offs: 1, 2, 4, or 8 A [32]; as shown in the following formula:

GDT_TS(%) :i > W) 100 (5)

v=1.248

where t is number of all Cor atoms in the template structure. In SPdist we similarly employ bin-
ning as a pre-processing method to be able to weight the effects of various alignment shift dis-
tances; for example, large shifts would otherwise tend to dominate the final score. SPdist
scoring works as follows: First, we calculate the distance between all query residue pairs that
are matched in the reference alignment. Then, these residue pair distances are grouped into
separate bins, based on distance thresholds ¢, followed by SPdist(t) calculation over all the

PLOS ONE | DOI:10.1371/journal.pone.0127431 May 19,2015 7/19



el e
@ ' PLOS ‘ ONE Quantifying the Displacement of Mismatches in MSA Benchmarks

thresholds (Eqs 6 and 7)
N M M
spdist(t) = = .
S NM(M —1)
1 if |Q(k,) — Q(kj)\ _
D, (k;, k) = (7)
0 OtherWiSe

where D, is number of residue pairs whose distance is less than ¢. Note that within a bin, a mis-
match shift that is smaller than the threshold specified for that bin is counted positively, such
that a higher SPdist score for that particular bin implies less mismatch displacement and hence
higher similarity between reference and query. Since the scores are cumulative over the bins,
i.e. each next bin (for larger alignment shifts) will always contain the SPdist score of the preced-
ing bin, the bin scores grow uniformly. Both the SPdist score for the individual thresholds and
the overall average score are scaled between 0 and 1, and can thus be interpreted similarly to
the classical SP score.

A single weighted average of SPdist score over all selected distance thresholds can be calcu-
lated as follows:

W, x SPdist(t)

t=1,4,10,22,46 (8)

W

Where W, is the weight of threshold t. The SPdist scoring scheme allows the user to specify dif-
ferent weights for the different thresholds; for example, the weights of the distance thresholds
can be set based on expected frequencies gleaned from a specific collection of alignments. In
this study we employed five thresholds (t = 1, 4, 10, 22, 46) with equal weights (W, = 1) to cal-
culate the avg_SPdist score. The thresholds selected are loosely based upon the lengths of sec-
ondary and super-secondary structures [33-35], so that the severity of mismatch punishment
is calibrated according to misalignment of these structural features. Note that SPdist(1) = SP.

avg_SPdist =

Shift score

The shift score [24] is somewhat akin to the SPdist score as both aim to take the displacement
of mismatches into account in alignment comparison. However, these scoring schemes differ
greatly in the way the score is normalized. For a pair of sequences X and Y aligned in query
alignment Q and in reference alignment R, the shift score is calculated as follows:

Q]
;CSR(Q,‘) (9)

(O e —
(=g R
s(X;) +s(Y,) if residue pair X; and Y; are aligned in position Q

CS(Q) = { (10)

0 otherwise
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1+e
€ if shift(a;) is defined
S(ai) = 1+ ‘Shlﬁ(ai” (11)

0 otherwise

where |R| is number of aligned residue pairs in alignment R, CSz(Q;) is the score for position i
in alignment R, S(a;) is the score for residue a; with respect to the reference alignment, and shift
(a,) is the measure of how much residue g; is shifted. if residue a; is not aligned to another resi-
due in either query or reference alignment then shift(a;) is undefined.

The shift score ranges from —e to 1.0, where € is a small number (usually set by default to
0.2) used to differentiate minor shifts from major ones. If two alignments are completely iden-
tical, their shift score is 1.0. In this study we employed the shift score as it is implemented in
qscore package (http://www.drive5.com/qscore/), because the original web server for calculat-
ing the shift score is unfortunately no longer available.

Results and Discussion
The behaviour of SP and SPdist scores in MSA benchmark

In order to understand the effect of the severity of mismatch shifts on the alignment score, we
benchmarked six different MSA methods against BAIiBASE reference alignments using the
standard SP score, shift score and the new SPdist score. As our goal is solely to observe the be-
havior of SP, SPdist, and shift scores, all of the MSA methods that we used were ran using their
default settings.

We compiled the scores produced by the three scoring schemes to analyse whether the per-
formance rankings produced by these scoring schemes are similar to each other. We calculated
the SPdist score (Eq 6) for a large range of distance thresholds (i.e. 1-100), to probe the behav-
iour of alignment methods as the distance threshold is varied (Fig 3). From this figure it be-
comes apparent that the MSA methods which obtain the best SPdist scores over small
thresholds are not guaranteed to have the best SPdist scores over large thresholds. Hence it is
important to consider mismatches using different distance thresholds to evaluate the perfor-
mance of different MSA methods.

Fig 4 shows the distribution of the benchmark scores of the different alignment methods;
note that the SP score is identical to SPdist(1). The figure shows that the SP and shift scores
produce very similar rankings while the SPdist scoring scheme shows fluctuations in the rank-
ing of the MSA methods across different distance thresholds. The SPdist scores for the various
mismatch distance thresholds reveal that the different MSA methods differ in their tendency to
insert smaller or larger mismatch shifts.

For example, one can observe in Figs 3 and 4 that ProbCons alignments contain few small
mismatches as it has the best SP/SPdist(1) score; yet at higher distance thresholds the scores
drop relative to the other methods. The distribution of the number of gaps in the alignments
(Fig 5) shows clearly that overall less accurate methods (ClustalW2 and Praline) tend to gener-
ate alignments with longer mismatches.

Moreover, it is striking that for quite a large number of reference alignment sets the MSAs
produced by the methods never converge at large distances (Fig 4) which is apparent from the
spread of individual scores at larger distance thresholds. This shows that for all methods con-
sidered here, there is room for improvement by making these more accurate over
longer distances.

The MSA benchmark scores described in this study are not true metrics because they violate
the principle of symmetry as the similarity between the reference and query MSAs are based on
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the fraction of matched residues in the reference MSA that are correctly reproduced in the
query alignment; therefore d(a, b) # d(b, a). Consequently, the scores cannot be used to direct-
ly compare benchmark results obtained from different datasets [36].

Lastly, we wanted to analyse the relationship between SP and SPdist scoring schemes in rela-
tion to the difficulty reproducing the reference alignments. Here, we relate difficulty to the ex-
tent of gap insertion in the reference alignments, since alignments with many gaps will more
easily accommodate mismatches with larger shifts. We accordingly define “gapness” as a rela-
tive measure of the number of gaps in a MSA with respect to the minimum and maximum
number of possible gaps in the pairwise sequence alignments underlying the MSA (Eq 12). The
rationale behind the gapness measure is to normalize the severity of misplacement according
to what can be expected in each of the alignments. Gapness is defined as follows:

Z Xij — minij
crapmess” — o max; — min,.j (12)
8APRESS = M — 1)/2

where M is the number of sequences, Xij is the number of gaps observed in sequence i and j,
max;; is the maximum number of gaps possible in the pairwise alignment between sequence i
and j (max;; = length seq. i + length seq. j). While min,; is the minimum number of gaps possi-
ble in the pairwise alignment between sequence i and j (min;; = |length seq. i—length seq. j|).
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Fig 6. SPdist and SP versus the difficulty of the reference alignment which is expressed as “gapness” scores (g). Both SP and SPdist scores show
negative correlation with respect to the “gapness” score. The Spearman’s rhos are -0.69 for SP and -0.72 for SPdist. The Spearman’s rho of SP score and
“gapness” score for each method: ClustalOmega = -0.63, ClustalW2 = -0.76, MAFFT =-0.67, Muscle =-0.71, ProbCons = -0.65, and Praline = -0.78. The
Spearman’s rho of SPdist score and “gapness” score for each method: ClustalOmega = -0.64, ClustalW2 = -0.80, MAFFT = -0.73, Muscle = -0.75, ProbCons

=-0.68, and Praline =-0.78.
doi:10.1371/journal.pone.0127431.9g006

Fig 6 shows the comparison of SP and the avg_SPdist in terms of “gapness”. We analysed
the correlation between avg_SPdist and SP score with the “gapness” score of the reference
alignments by calculating the Spearman’s rank correlation. Both scoring schemes show nega-

tive correlation with respect to the “gapness” score, with the avg_SPdist score having a slightly

stronger (Spearman’s rho = -0.72) anti-correlation than the SP score (Spearman’s rho = -0.69).
Although the gapness score is not measuring amino acid relatedness, it is related to the difficul-
ty of reproducing reference alignments as reflected in the negative correlation with the SP

score. As expected, the SPdist scoring scheme is more sensitive to reference alignments con-
taining a larger proportion of gaps than the SP scoring scheme.

Web server

VerAlign is a web tool for calculating the similarity between two MSAs according to the SP,
CS, and SPdist scores. This web tool is accessible on the IBIVU website at VU University Am-
sterdam (http://www.ibi.vu.nl/programs/veralignwww/). VerAlign provides the user with a
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VerAlign multiple sequence alignment comparison

Paste In your reference alignment in MSF or FASTA format:  Paste In your test alignment in MSF or FASTA format:

Or Upload a test MSF or FASTA file
Browse... | No file selected.

compact and intuitive user interface. The alignments to be compared must be in fasta or MSF
format and can either be entered manually in the text boxes provided or uploaded as files

(Fig 7). The user can specify the number of thresholds as well as the associated threshold values
and weights via the user interface. Once a VerAlign job is submitted, the user is presented with
a holding page that refreshes automatically and displays the results page when the job is com-
pleted. The output page displays SP, CS and the SPdist scores of the query alignment. The
SPdist scores of the various distance thresholds are displayed alongside the avg_SPdist score.
This allows the user to tune an alignment method on the behaviour of mismatch shifts over
specified distance thresholds.

Fig 8 shows an example of the VerAlign result page, showing the reference and query align-
ments and their similarity scores. The columns in the reference alignment that are regarded as
highly conserved (i.e. containing 20% or less gaps) are highlighted using a rainbow colour
scheme. The colouring scheme of the reference alignment is mapped directly onto the query
alignment so that the user can easily track the difference between reference and
query alignments.

Case study

To illustrate the importance of aligning residues approximately correct in terms of misplace-
ment, as opposed to completely wrong, we show different alignments for reference set
BB30009 as a case study (Fig 9). In this figure one can observe that this set consists of related
protein subfamilies with well-defined core block regions, which are indicated by rainbow-
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Fig 8. The result page of the VerAlign web server.
doi:10.1371/journal.pone.0127431.9008

colored columns. Furthermore, the subfamilies in this set also appear to be quite different in
terms of sequence length.

In this case study we compared the query alignments generated by Clustal Omega and Pra-
line because these two methods generated alignments with the largest contrast in terms of SP
and SPdist scores for this set. Both query alignments obtained very similar SP scores: 0.48 for
Clustal Omega and 0.46 for Praline. However, the difference in terms of avg_SPdist score be-
tween these query alignments is much more discernible, namely 0.59 for Clustal Omega and
0.78 for Praline. This outcome is highly interesting since one would not expect SP and avg_SP-
dist scoring to produce such different benchmark rankings. It is fair to stress, however, that
this case study goes against the general trend in the observed benchmark tests, as Clustal
Omega is shown to be the overall best performing MSA method in our benchmark.

A closer examination of reference and query alignments (Fig 9) reveals that Clustal Omega
managed to get the intra-subfamilies alignment slightly better than Praline, but overall the Pra-
line alignment contains more but less displaced mismatches. Since the SP scoring scheme treats
every mismatch as equal, it is not surprising that the SP score for Clustal Omega alignment is
better than the SP score for Praline alignment. However we can also observe from Fig 9 that
Clustal Omega totally misaligns the subfamilies, whereas Praline aligns these more correctly.
The relatively long inter-subfamily mismatches in the Clustal Omega alignment are appropri-
ately punished in the SPdist scoring scheme resulting in the Praline alignment having a better
avg_SPdist score.

This case study exemplifies that even though SP and SPdist scores are conceptually similar,
the different treatment of mismatches may result in very different scores, which in turn may
lead to different rankings in MSA benchmarking. Therefore, by additionally taking SPdist into
account, one can get a more comprehensive assessment of the similarity between query and ref-
erence alignments. A thorough similarity comparison between two multiple sequence
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Fig 9. The BAIiBASE Reference alignment and query alignments by Clustal Omega and Praline of the sequence set BB30009. For the sake of
visibility only core blocks of the MSAs and their flanking regions are shown in this figure. The core blocks in the reference alignment are highlighted in rainbow
color scheme. The coloring scheme of the reference alignment are mapped directly onto the query alignments, so that shifts can be recognized easily. The
MSA generated by Clustal Omega yielded an SP score of 0.48, shift score of 0.28, and SPdist a score of 0.59, while the MSA generated by Praline obtained
an SP score of 0.46, shift score of 0.28, and SPdist a score of 0.78.

doi:10.1371/journal.pone.0127431.g009

alignments is not only crucial in an MSA benchmark, but also plays a role in, for example, pro-
tein homology modeling: If one were to use the alignments of this case study to make a homol-
ogy model, the Clustal Omega alignment would yield a considerably worse model as compared
to a model obtained from the Praline alignment, since the latter alignment positions most of
the conserved regions correctly or within relatively close proximity to each other.

Even though both the SPdist and shift scores take displacements of mismatches into ac-
count, the difference in the normalization procedures of these scores results in different
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1.00

behaviour between both scoring schemes. SPdist allows multiple mismatch shift thresholds,
whereas the shift score only has a single constant (e) which is used to differentiate between
minor and major shift errors. The multiple mismatch thresholds in SPdist allow the user to de-
termine the graveness of mismatch shifts in a more detailed way. S1 Fig shows that the SPdist
score appears more expressive in the case of alignments of distantly related proteins, while the
shift score shows more variance in the case of alignments of closely related sequences. In the
benchmark case study of BAIiBASE reference set BB30009 (Fig 9), where large mismatch shifts
occur, the shift score appears unable to distinguish between the query alignments generated by
Clustal Omega and Praline as both queries obtained shift score of 0.28.

SPdist analysis in alignment method optimization. We compared the benchmark results
of Clustal Omega and MAFFT, the latter of which was ran ran using its default (high-speed)
and high-accuracy settings in order to illustrate how the SPdist scoring scheme can be em-
ployed to analyse the influence of parameter selection on alignment behaviour. The default set-
ting of MAFFT is primarily aimed at aligning large datasets (where speed is often of the
essence), whereas the “auto” setting aims to improve the accuracy by selecting the appropriate
alignment optimization strategy which best suits the size of the input dataset. From Fig 10 one
can observe a marked improvement on the quality of MAFFT alignments generated using the
“auto” setting with respect to the alignments generated using the default setting. Interestingly,
although MAFFT “auto” performs better at short distance thresholds, the convergence to a
fully correct alignment at long distance thresholds appears to be slightly better for Clustal
Omega. However the difference in terms of standard error is not significant. This shows that
taking mismatch distance into account helps to obtain a richer performance comparison be-
tween the methods.
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Average SPdist score
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— MAFFT_auto
— ClustalOmega
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Fig 10. The average fraction of correctly aligned residues per alignment of all query alignments generated by Clustal Omega and MAFFT in the
default and the “auto” setting. The shaded areas represent standard error (SE = 7).

doi:10.1371/journal.pone.0127431.9g010
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Conclusion

Based on our observations, we argue that the severity of alignment shifts is often of relevance
in numerous biological analyses, e.g. in homology modeling and manual alignment editing. It
is therefore important to take the magnitude of mismatch displacement into account in MSA
benchmark scoring procedures. Furthermore we showed that by using the SP score together
with the SPdist score, one can discriminate the alignment quality better for alignments of dis-
tantly related sequences and/or difficult alignments (i.e. alignments that contains many gaps).
Whilst classical scoring schemes such as SP scoring are useful for determining the overall simi-
larity between reference and query alignments, scrutinizing the severity of mismatches as im-
plemented in the SPdist score may provide a more salient similarity measure between the
reference and the query alignments, particularly from the biological user perspective. The abili-
ty of observing detailed alignment quality is further enhanced by monitoring the behaviour of
mismatch shifts over different distance thresholds (Figs 3, 4, and 10). For example, if an align-
ment column shows conserved Cysteine residues, a shift of a few positions can readily be cor-
rected by a user, whereas longer shifts will lead the user to miss the overall conservation of the
Cysteine. Therefore we recommend to use SP together with SPdist scoring in order to be able
to measure to what extent a multiple sequence alignment actually is displaced with respect to
the corresponding reference alignment. Understanding the behaviour of individual MSA meth-
ods in this respect provides a step towards optimized manual or semi-automatic MSA correc-
tion. Since MSA methods typically contain many adjustable parameters [37], this work
provides a novel objective function that can be used when optimizing MSA methods on a refer-
ence alignment set.

Supporting Information

S1 Fig. Shift score and SPdist score compared to SP score. Here the reference sets 1-5 of the
BAIiBASE dataset are used to calculate the scores.
(EPS)

S1 Table. Average SP, SPdist, and shift scores. The highest score for each category is written
in bold. Notice that although SP and SPdist scores are conceptually similar to each other, they
may lead to different rankings in an MSA benchmark. By observing the difference in rankings
between bins with various cutoffs, one can see that some MSA methods are less prone to create
large misalignment shifts than the others.

(XLS)
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