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3D particle transport 
in multichannel microfluidic 
networks with rough surfaces
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Qinjun Kang2, James H. Werner1 & Hari S. Viswanathan3*

The transport of particles and fluids through multichannel microfluidic networks is influenced by 
details of the channels. Because channels have micro-scale textures and macro-scale geometries, this 
transport can differ from the case of ideally smooth channels. Surfaces of real channels have irregular 
boundary conditions to which streamlines adapt and with which particle interact. In low-Reynolds 
number flows, particles may experience inertial forces that result in trans-streamline movement 
and the reorganization of particle distributions. Such transport is intrinsically 3D and an accurate 
measurement must capture movement in all directions. To measure the effects of non-ideal surface 
textures on particle transport through complex networks, we developed an extended field-of-view 
3D macroscope for high-resolution tracking across large volumes ( 25mm× 25mm× 2mm ) and 
investigated a model multichannel microfluidic network. A topographical profile of the microfluidic 
surfaces provided lattice Boltzmann simulations with a detailed feature map to precisely reconstruct 
the experimental environment. Particle distributions from simulations closely reproduced those 
observed experimentally and both measurements were sensitive to the effects of surface roughness. 
Under the conditions studied, inertial focusing organized large particles into an annular distribution 
that limited their transport throughout the network while small particles were transported uniformly 
to all regions.

Particles flowing through channels can be transported across streamlines due to inertial and collisional forces1. 
When particle size is comparable to the dimensions of a channel (within a couple orders of magnitude), move-
ment can be strongly influenced by properties of and interactions with the local fluid flow as well as the topog-
raphy of the channel surfaces. Many naturally occurring and artificial particle–fluid-surface systems operate at 
such size scales, and some applications even leverage these interactions to produce specific behavior. For example, 
flow cytometry can use specialized flow-cells to exploit inertial effects for passively sorting particles by size2. 
However, at such close proximity to channel walls, particle trajectories will also be impacted by the contours of 
those surfaces. In hydraulic fracturing for hydrocarbon extraction, proppants must be efficiently transported 
deep within fracture networks. Rough surfaces and complex fracture networks can restrict movement of these 
particles. Thus, developing comprehensive understanding of particle–fluid-surface interactions in this size regime 
is necessary for many fields.

Particle flow through channels has seen a great deal of interest in the microfluidics community as applica-
tions promise rapid and high-throughput particle processing1–9. For example, inertial focusing moves different 
sized particles to unique equilibrium positions within a stream and separation can be done by segmenting the 
fluid into bins by splitting the single channel among multiple outlets according to the equilibrium locations1. 
The majority of studies and applications focus on transport in 2D: networks confined within a single plane 
where channel depths are small compared to the other dimensions4,5,10. Multichannel separation only slices the 
stream along a single axis despite particles also distributing within the squeezed dimension. Particle tracking 
experiments to study these mechanisms of transport have largely been in 2D, which is experimentally simple to 
implement, requiring only imaging in 2D. However, such 2D treatment of a channel system is intrinsically not 
sensitive to surface roughness effects.

Although generally treated as ideal monolithic features, channels in real microfluidic devices have rough-
ness from the manufacturing process. Similar surface roughness features occur in natural systems such as rock 
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fractures. Microfluidics present an opportunity to create such systems in the laboratory. Near-surface effects due 
to roughness and shear flow near a boundary have been studied in flow-cells using nano-particle image velocity 
(nPIV) techniques11–13. These experiments demonstrate high-resolution 3D tracking but are limited in depth to 
sub micron-thick regions near channel surfaces where the imaging method is sensitive. Furthermore, to satisfy 
the total internal reflection angle condition for nPIV experiments, there are limits to the degree of roughness 
that can be explored.

Other 3D microscopy methods14–21 have been used to track particles within larger regions than are accessible 
with nPIV methods. Silva et al. used micro-PIV (fundamentally a different method than nPIV) to study the fluid 
velocity profile in a single microchannel with irregular walls to show deviation from the the theoretical parabolic 
flow velocity profile. However, this study did not interrogate the particle–fluid-surface interactions that mutually 
impact one another when particle size is large compared to the channel dimensions. A recent 3D tracking study 
using point spread engineering by Wang and Zhao examined the flow of moderate sized particles over a textured 
microcube array in a microchannel and found that particles did not follow steady state streamlines despite the 
constant flow rate20. While demonstrating the impact of particle–fluid-surface interactions on transport, the 
work relied on a periodic array that was imaged over a small field-of-view (FOV) to reduce the impact of edge 
effects due to texture changes. Examining large FOVs, such as an entire microfluidic device, in 3D with high 
enough resolution to be sensitive of subtle surface roughness has been difficult, in part because conventional 
microscopy tools are designed to reduce imaging distortions for smaller length scales and are not optimized for 
larger length scales. There is currently a measurement capabilities gap for 3D tracking at the larger length scales 
relevant to microfluidics ( 10−2 to 101 mm ) and new imaging techniques are necessary.

Despite advances in experimental techniques, exploring microfluidic devices with different patterns or under 
different flow conditions can still be challenging and time consuming. Some flow information such as the local 
pressure field cannot be easily determined from experiments. Numerical simulations, on the other hand, can 
provide detailed flow information and be rapidly adapted to different geometries and flow conditions. For high-
fidelity results, simulations also require complementary experimental data to evaluate the validity or accuracy 
of such simulations. When particle size is comparable with the dimensions of a channel, the particles can no 
longer be treated as a point-like objects. Particle-resolved simulations are required in cases where the interactions 
between the solid surface of a moving particle and the surrounding fluid have to be modeled directly. The tradi-
tional finite element method22 can model the particle–fluid interactions with high accuracy but is very complex 
and computationally expensive due to the continuous regeneration of the body-fitting mesh. The immersed 
boundary method23 and the lattice Boltzmann method (LBM) with a particle-suspension model24 are among 
the most popular methods for simulations with fixed meshes. LBM is particularly suitable for low-Reynolds 
number flow in complex geometries, such as flow in porous media or flow in microfluidic devices with surface 
roughness, due to the efficient bounce-back non-slip boundary condition and high parallel performance on 
modern processors or accelerators25–27. In this work, we used an in-house developed LBM code28,29, which has 
been successfully employed in a similar microfluidic study2, to simulate the flow.

We present a 3D tracking macroscope to image extended FOVs compared to traditional 3D methods, and 
report on particle transport characteristics in a multichannel microfluidic network that exhibited particle–fluid-
surface interactions. Channel surfaces were mapped with high-resolution profilometry to provide spatial context 
of experimental results and demonstrated the sensitivity of tracking measurements to roughness features. The 
surface profiles were also used in LBM simulation to build a precise model of the flow-cell network which led 
to high-fidelity matching of numerical and experimental results in a 3D environment. Exploring two particle 
sizes, we found inertial focusing organized larger particles into a distribution that did not propagate through all 
channels of the multichannel flow-cell while the smaller particles uniformly distributed into all of the channels. 
The organization and distribution behavior has acute implications for the effectiveness of particle sorting in flow 
cytometry and other microfluidic applications.

Results
A microfluidic flow-cell was used as a model multichannel network. Fluorescent polystyrene beads were used 
as tracking particles. Figure 1a shows the network layout: a single channel with multiple splits into channels of 
dissimilar dimensions. Cross-sectional particle distributions were measured at the locations labeled initial, split 
#1, and split #2. A fully assembled flow-cell is shown in Fig. 1b. We note that creating a channel network with 
multiple dissimilar sized channels was motivated by the solution of Wang et al. to use asymmetrical channels for 
improving cell sorting in flow cytometry5. Such network configurations are finding applications in microfluidic 
devices. The surface profile map of the network is shown in Fig. S2. To track particles moving through the net-
work, an astigmatic macroscope, Fig. 1c, was designed to image the large FOV of the flow-cell (see “Methods”). 
Briefly, the imaging field of a standard, low-magnification microscopy objective was extended by pairing the 
objective with large aperture corrective optics. This configuration was necessary to eliminate aberrations pro-
duced in the large FOV (see Supplementary Fig. S1). To our knowledge, this is the first demonstration of such a 
corrective imaging system for particle tracking in this size regime. A cylindrical lens encoded the axial position 
(z) of the particles by introducing astigmatism into the image formation. An astigmatic image formation produces 
an elliptical spot that is oriented in one of two orthogonal directions depending on the location of the object 
above or below the focal plane. While this imaging configuration can track particles across the entire flow-cell, 
only particle distributions at the cross-sections indicated in Fig. 1a are presented in later discussion sections.

Initial particle distributions.  Figure 1d shows particle distributions measured in the region of the flow-
cell, at the position labeled initial, immediately before the first channel split. The z-axis corresponds to the axial 
direction of the macroscope (the encoded third dimension). Particles measured in this region have settled into 
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equilibrium positions following their entrance into the flow-cell. Upstream measurements indicated similar dis-
tributions for both particle sizes. At this point in the network, the 10µm particles are distributed uniformly 
within the single channel. Roughness on the bottom surface produced during the flow-cell etching was mirrored 
in the distribution of the particles as an uneven, wave-like pattern in lower boundary. In contrast to the uniform 
distribution of the smaller particles, the larger 45µm particles have formed a ring-like annular distribution by 
this position in the flow-cell. Furthermore, the edges of the distribution are smooth and do not reflect the surface 
profile of the flow-cell. Both particles sizes exhibit an asymmetric velocity profile in this region. The top surface 
of the flow-cell, where the velocities are slower, is a smooth glass surface while the bottom surface is the etched 
glass.

Small particle transport.  As particles flowed through the splitting segments and into the multichannel 
regions of the microfluidic device, the initial distributions in Fig. 1d were altered according to the layout of the 
network. Figure 2 shows the distributions of the 10µm particles after the first channel splits (Fig. 2a) and after 
the second channel splits (Fig. 2b). The top plot of each panel displays experimental tracking results and the 
bottom plot of each panel shows the same region from LBM simulations. Simulations for the 10µm particles 
were seeded by a uniform particle distribution because the initial distributions in Fig. 1d indicate such a distri-
bution accurately describes the initial condition. Experimentally observed distributions and results from LBM 
simulations are consistent with one another. Several key features are reproduced in simulations that are a direct 
result of implementing the detailed surface profile of the flow-cell. The contours of the rough bottom surfaces 
are reflected in the cross-sections: the particle distribution envelopes show the same asymmetric profiles as 
the channels. For example, the right-most channel in Fig. 2a has a deeper distal region and a shallower medial 
region, which is reflected in the ballooning of the particles into the deeper segment of the channel in both experi-
ment and simulation. The same sort of distribution reshaping to match channel cross-sections appears in the 
other channels as well. In contrast to the distributions across the rough lower surfaces, the upper edge of the par-
ticle distributions were flat, mirroring the smooth surface that forms the upper boundary (unetched glass slide).

In addition to matching particle density distributions, the simulations also well-match the measured parti-
cle velocity profiles. The only free parameter for the simulations was the flow-rate into the flow-cell (set by the 
programmable syringe pump). While the velocity distributions generally resemble the flow profile of a Poiseuille 
flow, due to the irregular surfaces and the uneven volume distribution of the fluid into multiple channels, par-
ticle velocities deviate from the theoretical flow profile. For example, the variable channel depths of the right-
most channel in Fig. 2a produced a region of higher particle velocity that is asymmetrically positioned within 
the channel. Because the central channel is undisturbed by additional channel splits, particle velocities in this 
channel remain unchanged between the two measurement locations. However, the divisions of outer channels 
into multiple channels between Fig. 2a and b reduced particle velocities. LBM simulations captured the correct 
redistribution of fluid mass among the channels and resulted in reproducing the same velocity profiles as were 
experimentally observed.

Figure 1.   (a) Layout of the fracture network in the flow-cell. All channels were etched to a depth of ∼ 200µm , 
but have different widths. The initial segment of the flow cell was 1000µm wide. At the location labeled split #1, 
the channels were 500µm , 1000µm , and 750µm wide (left to right). The final channels, in the split #2 region, 
were 250µm , 500µm , 1000µm , 500µm , and 750µm wide (left to right). (b) Fully assembled flow-cell with 
inlet and outlet ports. The top surface in this photograph was the illuminated side and the bottom was the 
surface through which the flow-cell was imaged. The etched channels and inlet/outlet ports were components 
of the top plate while the bottom plate was a clean and smooth glass slide. (c) Schematic of the astigmatic 
macroscope used for 3D particle tracking. Fluorescent particles in the flow-cell are excited with a 470 nm LED 
fitted with a 477/60 nm emission filter. A microscope objective ( 1.25× or 2× Plan Apo, Olympus) serves as the 
first element of a tandem lens pair with a 135 mm camera lens (Canon) serving as the second element of the 
pair and the corrective optics. A 488 nm dichroic beamsplitter in the infinity space between the pair is used to 
isolate the emission from the excitation. Astigmatism is introduced with a 400 mm focal length cylindrical lens 
before the camera. (d) 10µm diameter (top) and 45µm diameter (bottom) particle distributions measured at 
the position labeled initial in (a). Both distributions were measured at a volumetric flow rate of 25 µL/min . The 
smaller particles are uniformly distributed within the channel at this point while the larger particles have formed 
an annulus.
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Large particle transport.  When the initial particle distribution in a network is not uniform, such as the 
annular distribution formed by 45µm particles in Fig. 1d, the subsequent distributions after channel division 
further accentuate the heterogeneity. Figure 3 shows the experimental and simulation tracking results of the 
larger particles through the same network segments as discussed above. To inform the LBM model of the non-
uniform initial particle distribution, the experimentally measured distribution in Fig. 1d was used to seed the 
simulations.

The initial annular distribution of the 45µm particles is segmented by the channel divisions as the particles 
moved through the multichannel network. No significant reorganization occurred, although the annulus was 
deformed according to the irregular channel depths and roughly adopted the contours of the channels. As a con-
sequence of the particle distribution occupying a smaller cross-sectional area of the initial channel, the extents 
of the 45µm particle distribution were smaller. In Fig. 3b, only half of the right-most channel carries particles 
and the left-most channel contains none. This feature demonstrates a mechanism by which particle transport 
efficiency is reduced: not all channels within a network may be accessible due to non-uniform particle distribu-
tions. It is this feature by which flow cytometry separates particles. However, this also demonstrates how such 
sorting is prone to mixing. While all particles of a single experiment were the same size, segmenting by channels 
results in capturing a fraction of the same particle size in each channel.

Figure 2.   Cross sections of the particle distributions for 10µm beads at a volumetric flow rate of 25 µL/min . 
(a) Experimentally measured cross sections (top) and LBM simulations (bottom) after the first set of channel 
splits. (b) Experiment/simulation cross section pair after the second set of channel splits. The channel profiles 
within the region that the cross-section was measured (1 mm slice) are plotted as multiple overlapping semi-
transparent black lines to indicate the local boundaries. Particle velocities are indicated by color. In both regions, 
the distribution edges follow the smooth top surface and irregular bottom surfaces of the flow-cell and were 
uniformly distributed within the channels. Consistent with Poiseuille (pressure-induced) flow, the highest 
particle velocities occurred in the center of the channels. The velocities decreased as the outer two channels split 
and the same volume of fluid expanded to fill the larger cross-sectional areas, unlike the center channel that did 
not split and had the same profile in both regions.

Figure 3.   Cross sections of the particle distributions for 45µm beads measured at a volumetric flow rate of 
75 µL/min . The upper plot of (a) shows the experimentally measured cross sections after the first set of channel 
splits and the lower plot shows the results from simulation. Similarly, the upper and lower plots in (b) show 
the experimental and simulation results, respectively, after the second set of channel splits. The distributions of 
45µm particles within the channels are not uniform: an annulus with no particles flowing through the centers 
of the channels. None of the 45µm particles were transported into the smallest (bottom left) channel.
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Discussion
Particle transport through the multichannel network was largely determined by the initial particle distributions. 
Channel splitting, surface roughness, and the flow parameters of this particular network did not produce condi-
tions that could significantly disturb the initial distributions for either particle size. This behavior is characteristic 
of low-Reynolds number laminar flows where particle transport will primarily follow fluid streamlines. The 
Reynolds number for a particle in a channel is defined as3

where Um is the maximum velocity in the channel, ν is the kinematic viscosity of the fluid (the ratio of its 
dynamic viscosity, µ , to its density, ρ ), a is the diameter of the particle, and Dh is the hydraulic diameter of the 
channel. For a rectangular cross-section channel of width w and height h, the hydraulic diameter is given by 
Dh = 2wh/(w + h) . In this study, we determined dynamic viscosity of the brine to be µ = 1.14× 10−3 Ns/m2 
and the density to be ρ = 1.05× 103 kg/m3 based on measured salt and water weights of the brine. This results 
in Reynolds numbers of Re10µm = 0.002 and Re45µm = 0.035 for the 10µm and 45µm particles, respectively, 
and both particle species were within the laminar flow regime ( Re ≪ 1).

LBM simulations captured the evolution of the initial particle distributions though the flow-cell, matching 
experimental tracking measurements well. However, two discrepancies arose that were rooted in the degree of 
knowledge we have about the initial particle distributions within the channel. The first, illustrated in Fig. 2, is 
that experimental measurements do not show the 10µm particle distributions extending completely to the outer 
edges of the most distal channels whereas simulations do. This is due to a uniform distribution being used for 
simulation whereas the true distribution was not exactly uniform. The initial distribution of the 10µm particles, 
Fig. 1d, did not occupy the entire channel. While seeding simulations with an experimentally determined near-
uniform distribution would correct this discrepancy, as was necessary for the 45µm simulations, this solution 
also presents difficulties related to the second discrepancy: determining the exact location of the initial distribu-
tion. Figure 3a illustrates how the incorrect placement of an initial distribution due to incomplete information 
can result in differences between simulation and experiment. When the distribution is correctly positioned, such 
as Fig. 3b, the agreement is improved. However, repeated trials have shown experimental conditions can change 
in minor ways between measurements, for example air bubbles altering streamlines, and establishing the exact 
location of a distribution can be challenging.

The relative number of particles distributed into each channel provides a quantitative comparison of simula-
tions and experiments. Figure 4 shows the ratios of particles that pass into each of the channels. After the first 
channel splitting, Fig. 4a, the ratios of both 10µm and 45µm particles are similar between the simulations and 
the experimental results. Due to the issue of precisely locating the center of the 45µm particle initial distribution 
for seeding the simulations, there is a difference among the numbers of particles between the outer channels. The 
uniform initial distribution of the 10µm particles resulted in nearly equivalent ratios. This close matching among 
the results extends to ratios determined after the second channel split, Fig. 4b. However, the ratios of 45µm 
particles in this region differ more substantially. Most notably, the number of 45µm particles flowing through 
the center channel (non-hatched segment) is smaller than were passing through the same channel after the first 
split. This is unexpected as no changes to the center channel occur after the first split (see the layout in Fig. 1a). 

(1)Re =
Uma

2

νDh

Figure 4.   Ratios of particles distributed into each channel. (a) The relative numbers of particles distributed 
into each of the three channels after the first branching section of the flow-cell. The upper pair depicts the 
distributions for the 10µm particles and the lower pair depicts the distributions for the 45µm particles. 
Experimentally observed distributions are indicated in blue and the corresponding LBM simulations in 
orange. The central channel corresponds to the non-hatched segment while the outer channels are depicted 
with hatched bars. Uncertainty bars for the ratios correspond to 3σ of a multinomial distribution based on the 
number of particles in the ratio calculation. (b) The relative numbers of particles distributed into each of the 
five channels after the second branching section of the flow-cell. The outer-most channels are depicted with spot 
filling. Because none of the 45µm particles entered the left-most channel, this segment does not appear in the 
lower pair. In all but the case of 45µm particles after the second branching, the experimental and simulation 
results showed similar distributions.
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Because the experimental measurements of each channel were separate experiments (imaged sequentially rather 
than simultaneously) it is possible that resetting and refilling of the syringe pump with the brine altered the flow. 
For example, the introduction of an air bubble could have been undetectable and pushed particles away from 
the center of the distribution.

To investigate the mechanism that produced the different distributions between the two particle sizes, we 
examined the distributions upstream of the flow-cell. The distributions are already established before the ini-
tial segment of the network. Because of the construction of the microfluidic flow-cell, fluid and particles enter 
through an inlet region that is composed of a feed tube and an antechamber that accommodates the coupling of 
the feed tube into the initial channel. In this region, the flow takes a 90◦ turn, expanding into the larger volume 
of the antechamber before being compressing into the smaller cross-sectional area of the initial channel. Figure 5 
show trajectories of 45µm particles entering this region where the streamlines undergo this complex reshaping. 
As previous works have shown, eddies can form under such conditions30. There is evidence, most notably in the 
xz-projection, that particle movement here is effected by such streamlines. However, eddies do not appear to 
substantially disrupt the larger non-uniform particle distribution entering the flow-cell. In Fig. 5a, the size of 
the 250µm diameter feed tube is outlined in red. The magnified insert (upper right) shows particles exiting the 
feed tube in an annular distribution with a diameter that is 54 % of the feed tube’s diameter. 10µm particles exit 
the feed tube in a uniform distribution. Thus, before the larger particles have reached the flow-cell, they have 
been sorted into a non-uniform distribution. The 90◦ direction change does not substantially disrupt this initial 
distribution within the low-Reynolds number regime and the same annular shape appears in at the end of the 
initial single channel before the splitting has occurred.

The role of the feed tube in producing different distributions for the 10µm and 45µm particles can be 
explored using LBM simulations of particles moving through an ideal circular tube. Figure 5b shows the migra-
tion of tracer particles from various radially distributed starting locations. After 30mm the 45µm particles 
have coalesced to the same radial position within the circular tube while the 10µm particles have not migrated 
any significant distance from their initial radial positions. Furthermore, the equilibrium location of the larger 
particles matches the diameter of the annular distribution experimentally observed in Fig. 5a. This migration of 
the tracer particles is due to inertial focusing transporting particles across streamlines1,4,5,31–33. In flows with a 
velocity gradient, such as in Poiseuille flow, the different fluid velocities on opposite surfaces of a particle produce 
a net force that moves the particle until an equilibrium position is obtained2. Large particles experience greater 
fluid velocity differentials across their diameters than smaller particles.

Figure 5.   Inertial focusing of 45µm particles from the feed tube. Orthogonal projections of the flow-cell 
inlet region at a volumetric flow rate of 25 µL/min are shown in (a) with a 1.25× objective for extended depth 
imaging. Color scales of each plot indicate distance along the flattened axis of each projection. The size and 
approximate position of the feed tube is indicated in red (hatched boxes and dashed circle). The distribution of 
the particles exiting the feed tube was an annulus smaller than the diameter of the feed tube. Expansion into the 
inlet region and compression into the rectangular cross-section of the initial channel is depicted in this figure. 
LBM simulations of the inertial focusing as the particles travel through the feed tube, (b), indicate the 10µm 
particles did not migrate significantly while the 45µm particles found an equilibrium at the same radial distance 
as the experimentally observed annulus. Tracks of several tracer particles starting at various radial distances 
from the center of the feed tube are shown. The length of feed tube of the experiment was 100mm.
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Conclusions
We demonstrated a 3D tracking macroscopy method that images particle transport across large FOVs. This 
approach is particularly useful for microfluidic applications where typical flow-cell dimensions can be difficult 
to image with traditional methods. Interactions among particles, fluid, and their microchannel environment, 
such as the rough contours of channel surfaces, were investigated using a 3D macroscopy approach. We observed 
small 10µm particles in low-Reynolds number flows transported through a multichannel flow-cell in a uniform 
distribution and their spatial distributions reflected the rough contours of the channel walls. Such close tracking 
of these particles with the channel surfaces indicate they would be ideal for infiltrating small features in complex 
networks because of their proximity to branching points. However, larger 45µm particles experienced inertial 
focusing before entering the flow-cell. In the main cavity of the flow-cell, changes to these distributions were 
dominated by channel splitting. As a result of the non-uniform initial distribution, the larger particles were not 
transported into all channels. These experiments demonstrated why the purity of size sorting in microfluidics 
is limited. Particles are distributed within the cross-sectional areas of the channels and segmentation along a 
single direction will combine particles across different depths. 3D imaging demonstrates this behavior that is 
not evident in 2D experiments.

Direct comparison of fluid dynamic experiments with simulations often requires simplifying model com-
plexity and can produce mixed results. Reducing the treatment of a system to 2D or ignoring detailed boundary 
conditions from textured surfaces has limited the convergence of these approaches. However, we have shown that 
particle transport can be accurately modeled using LBM and that results closely match experimentally observed 
behavior. Demonstrated on a simplified microfluidic system, such an approach as presented here can be expanded 
to more complex systems. For example, particle transport in random fracture patterns with extreme surface tex-
tures—more closely resembling naturally occurring systems—could be explored using this microfluidic approach.

Methods
3D astigmatic macroscope.  The axial position (depth) of a single particle is encoded into the shape of the 
image it produces in astigmatic imaging. Typical high-magnification microscopes can image a particle within 
only a small volume, otherwise strong aberrations (such as vignetting and image distortion) occur that defeat 
the shape encoding used to determine the axial position. To track particles in 3D over extended fields of view, we 
introduce the astigmatic macroscope, which utilizes a set of corrective optical elements in a tandem lens configu-
ration to reduce these aberrations. Measurements with the macroscope were made with a 2× Plan Apo objective 
lens (Olympus) as the first element of the tandem pair and a 135 mm telephoto lens (Canon), focused at infinity, 
as the second element. A 400 mm focal length cylindrical lens between the telephoto lens and the sCMOS cam-
era generated the astigmatism to encode axial positions. The resulting magnification of the system was 1.48×.

10µm and 45µm diameter Fluoresbrite YG microspheres (Polysciences, Inc.) were used as tracking particles. 
The microspheres were excited in a trans-illumination configuration with a 470 nm light emitting diode (LED). 
A 447/60 nm excitation filter (Semrock FF02-447/60) was used to clean up the LED spectral profile. Emission 
from the microspheres is peaked at 486 nm and a 488 nm dichroic beamsplitter (Semrock Di02-R488) located 
within the infinity space of the tandem pair isolated the microsphere emission from the excitation light.

Given the imaging conditions in this work, the axial uncertainties were 16.5µm and 4.4µm for the 10µm and 
45µm microspheres, respectively. The corresponding lateral uncertainties were 530 nm and 100 nm. The differ-
ence between the uncertainties is primarily due to the fact that the larger beads contain more dye and are brighter.

Microfluidic flow‑cell.  The multichannel network was comprised of a single 1000µm× 200µm initial 
channel that splits into three channels, followed by a second set of channel splits that result in five channels at 
the end of the flow-cell (see Fig. 1a). Each branching segment splits the set of channels into additional channels 
of dissimilar widths. This network was etched into a 3 mm quartz slide using a programmable CO2 laser (Gra-
vograph LS100)34,35. Power fluctuations during the etching and overlap of the raster pattern produced uneven 
and rough etched surfaces. The surface profile of the flow-cell (see Supplementary Fig. S2) was mapped with an 
optical-interference profilometer (Keyence VK-X100). This profile was used to define the channel boundaries 
for simulations and provides a feature overlay of experimental results.

The flow-cell was enclosed by adhering an unetched glass slide to the fracture slide using a low viscosity UV-
curing glue (Norland NOA133). Because of the low viscosity, the glue wicked between the surfaces where the 
slides made direct contact but did not expand into the etched channels, eliminating potential gaps that could 
form and would have produced additional, unintended paths for fluid flow. Inlet and outlet ports were drilled 
perpendicular to the fracture flow direction, creating 90◦ direction changes as the fluid and particles entered and 
exited the flow-cell. The fully assembled flow-cell with inlet/outlet ports is shown in Fig. 1b.

Measurement and analysis.  The enclosed flow-cell was connected to a syringe pump and a brine solution 
containing the fluorescent particles was pumped through the flow-cell at a constant volumetric flow-rate. To 
negate the effects of gravity, the water density was increased to match that of the polystyrene beads, requiring 8 % 
w/w NaCl in H2O . The brine also contained 0.025 % Tween 20, a surfactant, to reduce particle adhesion to the 
to the flow-cell surfaces. Either 10µm beads or 45µm beads were diluted into a brine solution from their stock 
solutions to obtain low particle concentrations appropriate for singe-particle imaging ( ∼ 103 particles/µL).

For cross-sectional distributions of particles within the individual channels, only segments of the entire FOV 
needed to be imaged. Imaging 275µm long slices along the direction of flow provided multiple localizations 
of individual particles, from which velocity measurements could be extracted, while also reducing the overall 
storage space and processing time required for a measurement. The reduced data footprint allowed for longer 
measurements to be easily taken that produced more complete distribution data. To prevent blurring as the 
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particles moved, images were taken with 5 ms exposures at 50 ms intervals. Two flow rates were used: 25 µL/min 
for the 10µm particles and 75 µL/min for the 45µm particles. We found that, within this range, the flow-rates 
did not noticeably affect the distributions of either particle size.

Particle positions were determined from the raw images using ThunderSTORM, an analysis package for 
single-molecule localization microscopy36. Determining particle trajectories (and velocities) requires linking 
localizations across frames. We implemented a simple tracking algorithm that correlates particle localizations 
using a probability cost-matrix based on the assumption of linear flow and additional constraints specific to the 
experimental configuration. For additional details, see the Supplementary Information.

LBM simulations.  We used an LBM code developed in-house that has been successfully employed to simu-
late particle inertial focusing in microfluidic devices2. The main variable in LBM is the discretized particle distri-
bution function fi , and the governing equations with the popular BGK collision model37,38 are,

where fi is the particle distribution function associated with the i-th discrete velocity direction ei , f
eq
i  is the cor-

responding equilibrium distribution function, δt is the time increment, and τ is the relaxation time. The relaxation 
time relates to the kinematic viscosity by

where cs is the speed of sound. We employed the three-dimensional and nineteen-speed D3Q19 lattice model37 
to simulate 3D flow.

Applying non-slip boundary conditions on complex geometries is challenging for traditional computational 
fluid dynamics, such as the case of flow in porous media or microfluidic devices with roughness. One of the 
main advantages of LBM is the bounce-back nonslip boundary scheme25 where the nonslip condition can be 
completed by reversing the directions of the distribution functions on the solid boundary nodes. Here, we 
applied the bounce-back scheme on the rough channel walls. For the moving particles with limited grid resolu-
tion, we employed a curved boundary condition39 to the solid surfaces of the particles to model particle–fluid 
interactions with sub-grid resolution. We adopted the corrected momentum-exchange method28 to evaluate 
the hydrodynamics forces exerted on the particles. This method ensures relatively smooth force transitions as 
particles move across lattice nodes and avoids complex and inefficient schemes such as the stress-integration 
method40. The motion of a particle is then obtained by solving Newton’s equations41:

and

where M, I , U  , and � are the mass, rotational inertia, velocity, and angular velocity of the particle, respectively; F 
and T are the force and torque exerted on the particle, respectively. A more detailed description of the numerical 
methods can be found in our previous works28,29.

Simulations involving the entire microfluidic device used a grid resolution of 7.5µm , balancing computation 
time with simulation resolution, which results in a 932× 29× 2592 computational grid. The mapped regions of 
the flow-cell did not include the inlet or outlet regions. Simulations directly resolving particle–fluid interactions 
were done for the 45µm particles. Because the large particles established a non-uniform distribution before 
the initial single-channel segment of the flow-cell, experimentally obtained distributions were used to seed the 
simulations. The evolution of the distribution as the particles moved through the network was captured with 
this approach.

Modifications to the computation scheme were necessary for the 10µm particles. Because the smaller particles 
were approximately the same size as the grid, particle-resolved simulations were too coarse to directly incorporate 
their interactions with the fluid using the momentum-exchange method. LBM simulations of inertial focusing 
in the feed tube for both particles sizes were possible because of the reduced complexity of the boundaries and 
smaller computational demands, and one can significantly increases the grid resolution to study 10µm particle 
transport in the feed tube. As demonstrated by these simulations, shown in Fig. 5b, 10µm particles do not show 
significant inertial migration at these flow rates and channel dimensions because the ratio between the diameter 
of the particle and the aperture of the channels is relatively large. As a result, a point-particle tracking method 
with one-way coupling could be employed for full chip simulations of the 10µm particles. In such an approach, 
the particles are treated as volumeless objects that do not affect the flow field, and only the Stokes’ drag Fd , com-
puted from the relative velocity of the particles and surrounding fluid, is considered to update particle positions. 
In this case, the drag force has the form

where µ is the dynamic viscosity of the fluid, r is the particle radius, and V relative is the relative velocity between 
the particle and surrounding fluid.

(2)fi(x + eiδt, t + δt) = fi(x, t)−
fi(x, t)− f

eq
i (x, t)

τ
,

(3)ν = (τ − 1/2)c2s δt,

(4)M
dU(t)

dt
= F

(5)I ·
d�(t)

dt
+�(t)× [I ·�(t)] = T ,

(6)Fd = 6πµrV relative ,
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