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5,

Lina Broström1,4, Nelly Padilla1, Ulrika Ådén1,6

1 Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden, 2 Clinical

Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden,
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Abstract

Objectives

To investigate differences in brain volumes between children born extremely preterm and

term born controls at term age and at 10 years of age.

Study design

Children born extremely preterm (EPT), up to 26 weeks and 6 days gestational age, in

Stockholm between January 1 2004 to March 31 2007 were included in this population-

based cohort study. A total of 45 EPT infants were included at term age and 51 EPT children

were included at 10 years of age. There were 27 EPT children included at both time points.

Two different control groups were recruited; 15 control infants were included at term age

and 38 control children at 10 years of age. The primary outcomes were the grey and white

matter volumes. Linear regression, adjusted for intracranial volume and sex, was used.

Results

At term age, the extremely preterm infants had significantly smaller grey matter volume

compared to the control infants with an adjusted mean difference of 5.0 cm3 and a 95% con-

fidence interval of −8.4 to −1.5 (p = 0.004). At 10 years of age the extremely preterm children

had significantly smaller white matter volume compared to the control children with an

adjusted mean difference of 6.0 cm3 and a 95% confidence interval of −10.9 to −1.0 (p =

0.010).
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Conclusion

Extremely preterm birth was associated with reduced grey matter volume at term age and

reduced white matter volume at 10 years of age compared to term born controls.

Introduction

As neonatal care advances, more children who are born extremely preterm (EPT) survive [1,

2]. The Extremely preterm Infants in Sweden Study (EXPRESS) focuses on all children born

alive up to gestational age (GA) 26 weeks and 6 days in Sweden between April 1 2004 to March

31 2007, and has expanded our understanding of the challenges faced by this vulnerable group

[3]. Sweden has reported high survival rates for EPT children [4], and they have increased over

time with more proactive care [5].

Extremely preterm birth affects the brain in numerous and complex ways and the mecha-

nisms are yet to be fully elucidated [6]. In Sweden, one third of the EPT children included in

the EXPRESS study had moderate or major cognitive impairments at 6.5 years of age [7]. Cog-

nitive follow-up programs from other countries have reported similar risks of cognitive

impairments [8, 9]. Also one third of EPT children in EXPRESS who were without major

impairments had developmental coordination disorder at age 6.5 years [10].

Magnetic resonance imaging (MRI) has made it possible to further understand the brain

development of preterm children. The majority of previous studies have focused on very pre-

term infants, defined as GA up to 31 weeks and 6 days, and have reported smaller global and

regional brain volumes at term age compared to term born controls [11–13]. Cross-sectional

studies of very preterm children have demonstrated that the smaller global brain volumes

remain during childhood and adolescence [14, 15]. On a regional level, most brain regions in

very preterm children show smaller volumes than term born controls when they become ado-

lescents and young adults [16–19]. Some regions have been reported to be larger in the very

preterm born groups than in term born controls in adolescence and adulthood, especially in

higher order cognitive areas in the frontal and parieto-temporal cortex [17–19]. One previous

longitudinal study of very preterm children showed growth reductions mainly in grey matter

(GM) volume, from term age up to 7 years of age [20]. Studies that have compared preterm

and term born children have reported greater reductions in brain volumes with lower gesta-

tional ages at birth at various ages [11, 12, 21, 22]. Children born at the lowest gestational ages

are also more likely to have other morbidities and cognitive impairments [7, 9]. Few studies

investigated EPT children, and at term age smaller global and regional brain volumes for EPT

children than for term born controls have been reported, but our group also found that EPT

infants had some larger brain regions compared to term born controls, mainly in the regions

involved in visual processing [13, 22]. One study of only EPT children scanned with MRI at

age 18 also reported smaller global brain volumes than term born controls, however this

cohort was born in the early 1990s, and the caring of EPT children has since developed [23]. A

few studies have shown that smaller GM and white matter (WM) volumes correlated positively

with lower cognitive function [16, 20, 24–28].

However, the literature exploring global brain volume development of EPT children, born

at the border of viability, is scarce. Cohorts previously investigated include children with a

higher mean birth weight or include more sick children with a higher ratio of perinatal compli-

cation [12, 16, 20, 23]. We are not aware of other studies examining exclusively children born

before 26 weeks and 6 days of gestation with MRI scans at term age and at 10 years of age.
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Our aim in this study was to investigate the global brain volume development in a cohort

born before 26 weeks and 6 days, compared to term born controls at term age and at 10 years

of age.

Materials and methods

Study population

This population-based cohort study of EPT children is partly overlapping with the EXPRESS

study [3]. The definition of EPT was the same as in EXPRESS–birth up to GA 26 weeks and 6

days.

The study population is presented in Fig 1. We included all live born EPT children in Stock-

holm that were born between January 1 2004 to March 31 2007 (n = 191). There were 128

(67.0%) infants who survived to term age (GA 40 weeks and 0 days).

Fig 1. Flow chart for extremely preterm children. Extremely preterm children alive at birth, in Stockholm from

January 1 2004 to March 31 2007 who underwent magnetic resonance imaging (MRI) scans at term age and at 10 years

of age.

https://doi.org/10.1371/journal.pone.0259717.g001
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The exclusion criteria were lack of parental consent, severe medical conditions, major brain

lesions (cystic periventricular leukomalacia, intraventricular haemorrhage (IVH) grade 3 and 4

diagnosed with cranial ultrasound during the neonatal period, focal brain lesions, cysts and severe

white matter abnormalities on MRI, as defined by a previously published scoring system [29])

and low quality on MRI (defined as incomplete coverage of the brain, motion artifacts or blurring

of the gray and white matter interfaces). Six infants were excluded for severe medical conditions;

one with hemophagocytic lymphohistiocytosis, one too unstable to undergo MRI, three due to

congenital malformations and one due to chromosomal abnormalities (trisomy 21). After exclu-

sions, high quality MRI data (defined as images with complete coverage of the brain, free of

motion artifacts, well defined contrast between GM, WM and CSF (cerebrospinal fluid), as well as

legibility of anatomical structures) at term age (median age 40.7, range 39.1–45.3, weeks) were

available for 45 EPT infants. One mother had more than one child included at term age.

At approximately 10 years of age the EPT children were invited for a follow-up MRI scan.

The exclusion criteria were the same as at term age, but we did not exclude children who were

not scanned at term age. Thus, there were 51 EPT children included with high quality MRI

data at a median age of 10.3 years (range 9.0–11.8 years) (Fig 1). Three mothers had more than

one child included at 10 years of age. There were 27 EPT children with high quality MRI data

included at both term age and at 10 years of age. At 12 years of age the children had their

anthropometric measurements (height, weight and head circumference) taken, and 34 EPT

children had available anthropometric measurements at 12 years of age.

At term age 21 term born infants were recruited from the maternity ward as control infants.

They were all healthy and had been delivered by elective caesarean sections and underwent

MRI at a median age of 40.4 (39.9–41.9) gestational weeks according to the same protocol as

the EPT infants. There were 15 control infants included with high quality MRI data at term

age (S1 Fig).

At two years of age healthy, singleton full term children were randomly selected from the

Swedish Medical Birth Registry and matched to the EPT children for place of birth, sex, day of

birth and maternal country of birth. These children were used as control children at 10 years

of age and were not significantly different from the term age controls with regard to sex and

birth weight. The control children underwent MRI at a median age of 10.1 (range 8.3–11.6)

years. Twelve of the control children were excluded, leaving 38 control children included at 10

years of age (S1 Fig). The same control children were approached for anthropometric mea-

surements (height, weight and head circumference) at 12 years of age and 25 control children

were included. The Stockholm ethics review board approved the study, and written, informed

consent was obtained from the parents.

Baseline characteristics

Perinatal data were retrieved from medical records. The Z-scores for weight and height were

calculated from the reference material used in clinical practice in Sweden [30]. Sepsis was

defined as either a positive blood culture or clinical symptoms of sepsis in association with an

elevated C-reactive protein or leukocyte count. Small for gestational age was defined as a birth

weight of more than 2 standard deviations (SD) below the mean for GA. Necrotizing enteroco-

litis was defined according to the Bell criteria [31]. Bronchopulmonary dysplasia was defined

as the need for supplementary oxygen at 36 weeks of gestation.

MRI data acquisition

At term age, imaging was performed on a Philips Intera 1.5-T MRI system (Philips Interna-

tional, Amsterdam, The Netherlands) and details of the sequence parameters have previously
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been published [32]. During the early study period the infants were given a low dose of chloral

hydrate (30 mg/kg) given orally or rectally before the MRI examination, but during the last

year of the study, most infants were scanned during natural sleep [32]. During the last year of

the study infants were scanned during natural sleep. The imaging at 10 years of age, was per-

formed on a General Electric 3.0-T MRI system (GE Healthcare, Milwaukee, WI, USA) and all

the children underwent the MRI scan without sedation. The MRI protocol included a sagittal

3-dimension T1-weighted image with a BRAVO SPRGR sequence of 400 milliseconds, a field

of view of 240x 240 mm2, a flip angle of 12o, a voxel size of 1 x 0.938 x 0.938 mm3 and a slice

thickness of 1.0 mm. All the structural scans were assessed by a neuroradiologist.

Brain segmentation and brain volumetry

The imaging processing for volumetry at term age has been previously published [22]. Our

group has previously published brain volume measurements for cortical GM, cerebellum,

WM, deep GM, CSF and brainstem at term age for part of this cohort [22]. The preparation of

the 3-dimension MRI images at 10 years of age comprised of two stages. The first was reorien-

tation of the T1-weighted images in the plane of anterior posterior commissures. The second

was the removal of non-brain tissue components using the Brain Extraction Tool from the

FMRIB Software Libraries version 5.0.1 (FMRIB Laboratory, University of Oxford, England,

UK) [33] and manual editing when necessary. The prepared images were then automatically

segmented into tissue classes–total GM (cortical + subcortical), total WM and cerebrospinal

fluid (CSF) using unified segmentation [34] (Fig 2). This was carried out using SPM8 software

(Wellcome Department, University College, London, UK) running on MATLAB version 7.5

(MathWorks, Natrick, MA, USA). All tissue images were visually inspected for accuracy. The

template-O-Matic (TOM) toolbox was used to create custom probability maps [35]. This

approach uses the US National Institute of Health’s (NIH) MRI Study of Normal Brain Devel-

opment and general linear models to assess how demographic variables affect the brain struc-

tures of 404 children aged 5–18 [35]. Custom tissue probability maps can then be created by

matching these regression parameters to the demographics of a pediatric population of inter-

est, and demographic variables of our population (age, gender) were provided to accordingly

create a fitting average template from its database [35]. The segmented brain tissues were spa-

tially normalized by using DARTEL [36]. The images were then modulated and smoothed

with a 6 mm- Gaussian kernel at full with half maximum. The Easy_Volume toolbox was used

to calculate volumes in cm3 at 10 years of age for WM, GM, CSF, cerebral parenchyma

(CPAR)—defined as GM plus WM, and intracranial volume (ICV)—defined as GM plus WM

plus CSF [37].

Fig 2. Brain segmentation. Coronal view of T1 weighted image segmented into 1) grey matter, 2) white matter and 3)

cerebrospinal fluid.

https://doi.org/10.1371/journal.pone.0259717.g002
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Statistical analysis

All the data were tested for normality and homogeneity before the analyses. In order to com-

pare the EPT infants with the control infants and the EPT children with the control children

for unadjusted analyses we used the two-sample, between-subjects Student’s t-test for the nor-

mally distributed continuous variables and the Mann-Whitney U test for the non-normally

distributed continuous variables. Group differences for the categorical variables were exam-

ined with the Fisher’s exact test or the Pearson’s chi-squared test. For adjusted analyses the

brain volumes were compared using linear regression, fitted using generalized estimating

equation with robust estimation of standard errors to allow for any correlations for multiple

births within a family. Cross-sectional analyses with separate models for each brain tissue and

structure, and at each time point (term age and 10 years of age) were used. The analyses for the

brain tissues WM, GM and CSF were adjusted for sex and ICV, while CPAR and ICV were

adjusted for sex. Results are presented as means and mean differences of absolute brain vol-

umes in cubic centimetres (cm3) between preterm infants/children and control infants/chil-

dren. Statistical analyses were performed using SPSS, version 25 (IBM corp, Armonk, NY,

USA). Intracranial volume was added as a covariate when comparing brain volumes to adjust

for the scaling effect of the brain [38, 39]. Brain volumes are also presented as relative brain

volumes—GM or WM as percentages of ICV, adjusted for sex. To account for multiple com-

parisons, the Benjamini-Hochberg procedure [40] was used for analyses of brain volumes, Q
was set to 0.2, and m to the number of brain tissues. The effect sizes for the adjusted group dif-

ferences were calculated using Cohen d [41], where 0.2 was considered a small effect size, 0.5 a

medium effect size and 0.8 a large effect size [41].

A statistical significance level of p<0.05 was used in all analyses.

Results

Study population

The characteristics for the included EPT and control infants and children are summarized in

Table 1 and the perinatal characteristics for the included EPT infants and children are summa-

rized in S1 Table.

Table 1. Characteristics for included EPT and control infants and children.

EPT infants with MRI at term

age n = 45

Control infants with MRI at

term age n = 15

p-value

Gestational age, median (range)

weeks

25.6 (23.3–26.6) 38.9 (38.4–39.9) b<0.001

Birth weight, mean (SD) 829 (160) 3713 (303) a<0.001

Gestational age at MRI, median

(range) weeks

40.7 (39.1–45.3) 40.4 (39.9–41.9) b0.24

Sex male n (%) 25 (56) 7 (47) 0.55

EPT children with MRI at 10

years n = 51

Control children with MRI at 10

years n = 38

p-value

Gestational age, median (range)

weeks

25.6 (23.6–26.6) 40.1 (37.3–41.6) b<0.001

Birth weight, mean (SD) 846 (148) 3739 (454) a<0.001

Age at MRI, median (range) years 10.3 (9.0–11.8) 10.1 (8.3–11.6) b0.45

Sex male n (%) 24 (47) 19 (50) 0.78

MRI = magnetic resonance imaging, SD = standard deviation.
aStudent’s t test
bMann-Whitney U.

https://doi.org/10.1371/journal.pone.0259717.t001
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Drop-out analyses showed that the majority of perinatal characteristics were similar for the

included EPT infants and children and the EPT infants and children that either declined par-

ticipation or had low quality on MRI at term age or at 10 years of age (S1 Table). The excep-

tions were that GA was higher and sepsis and bronchopulmonary dysplasia were less common

for the included EPT children at 10 years of age.

The majority of the perinatal characteristics for the 27 EPT children who were included at

both time points were similar to the EPT infants or children that were included at only one

time point (S2 Table). At term age the 27 EPT infants included at both time points had higher

GA, and patent ductus arteriosus ligation, intraventricular haemorrhage grade 1 and 2 and

bronchopulmonary dysplasia were less common than for the EPT infants included only at

term age. At 10 years of age the 27 EPT children included at both time points had lower inci-

dence of retinopathy of prematurity and bronchopulmonary dysplasia than the EPT children

included at only 10 years of age (S2 Table).

The anthropometric measurements at 12 years of age are summarized in S3 Table. At 12

years of age, the EPT children tended to be shorter and have a smaller head circumference

compared to the control children, but there were no statistically significant differences in

height, weight, Z-score for height, Z-score for weight, BMI or head circumference.

Brain volumes

Grey and white matter brain volumes at term age. The EPT infants had significantly

smaller GM volume compared to the control infants when the results were adjusted for ICV

and sex. There was no significant difference in adjusted WM volume (Table 2). The significant

results remained after correcting for multiple comparisons. For the 27 EPT infants included at

both time points there was also smaller adjusted GM volume (S4 Table).

Grey and white matter brain volumes at 10 years of age. At 10 years of age the WM vol-

ume was significantly smaller for the EPT children when adjusted for ICV and sex. However,

the adjusted GM volume was larger for the EPT children than the control children (Table 2).

The significant results remained after correcting for multiple comparisons. The results for the

Table 2. Brain volumes at term age and at 10 years of age for included extremely preterm (EPT) infants and children, compared to control infants and children.

Term age EPT infants Control infants Mean difference p-value

n = 45 n = 15 (95% CI)

GM, mean (SD) cm3 200.7 (5.4) 205.7 (6.1) −5.0 (−8.4, −1.5) a0.004

WM, mean (SD) cm3 148.2 (4.6) 149.0 (4.4) −0.9 (−3.5, 1.7) a0.50

CSF, mean (SD) cm3 85.8 (9.4) 80.1 (10.4) 5.7 (−0.2, 11.6) a0.058

CPAR, mean (SD) cm3 347.4 (39.6) 357.6 (24.0) −10.1 (−26.9, 6.7) b0.24

ICV, mean (SD) cm3 433.3 (40.2) 437.7 (22.5) −4.4 (−20.0, 12.0) b0.60

10 years of age EPT children Control children Mean difference p-value

n = 51 n = 38 (95% CI)

GM, mean (SD) cm3 760.8 (11.4) 755.1 (12.6) 5.6 (0.6, 10.6) a0.028

WM, mean (SD) cm3 456.1 (13.3) 462.1 (10.6) −6.0 (−10.9, −1.0) a0.010

CSF, median (range) cm3 200.0 (12.2) 199.6 (14.2) 0.4 (−4.6, 5.3) a0.88

CPAR, mean (SD) cm3 1198.3 (84.5) 1244.5 (104.2) −46.2 (−86.4, −6.0) b0.024

ICV, mean (SD) cm3 1394.9 (97.8) 1449.2 (123.1) −54.4 (−101.7, −7.1) b0.024

MRI = magnetic resonance imaging, GM = grey matter, WM = white matter, ICV = intracranial volume, CPAR = cerebral parenchyma, CSF = cerebrospinal fluid.
aGeneralized estimating equations, adjusted for ICV + sex.
bGeneralized estimating equations, adjusted for sex. Bold values remained significant after correcting for multiple comparisons using the Benjamini-Hochberg

procedure.

https://doi.org/10.1371/journal.pone.0259717.t002
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27 children included at both time points compared to the control children also found smaller

adjusted WM volume, but the adjusted GM volume was not significantly larger (S4 Table).

In S2 Table the brain volumes for the 27 EPT children that were included at both time

points were compared to the EPT infants (n = 18) and EPT children (n = 24) included at one

time point, and there were no differences in GM or WM volumes.

Differences in intracranial volume, cerebral parenchyma and cerebrospinal fluid at

term age and at 10 years of age. At term age there were no significant differences in CPAR

or ICV, but at 10 years of age CPAR and ICV were significantly smaller (Table 2). The adjusted

CSF volumes were not different between the EPT children and control children at term age or

at 10 years of age.

All unadjusted brain volumes are found in S4 and S5 Tables.

Effect sizes and relative volumes for white and grey matter brain volumes. Effect sizes

calculated for the adjusted group differences demonstrated a large effect size for GM volume,

and a small effect size for WM volume at term age. At 10 years of age the effect size for reduced

WM volume, and the effect size for larger GM volume for EPT children were moderate (Fig

3). The relative volumes are presented as GM and WM as percentage of ICV adjusted for sex

in S6 Table. The relative GM volume was significantly reduced at term age for the EPT infants

compared to the control infants. At 10 years of age the relative WM volume was significantly

reduced for the EPT children compared to the control children, and relative GM volume was

significantly larger for the EPT children compared to the control children, therefore the results

for the relative volumes match the results for the absolute volumes.

Discussion

We investigated the volumes of white and grey matter at term age and at around 10 years of

age in a well-defined cohort of children born EPT, up to GA 26 weeks and 6 days, compared to

Fig 3. Effect size calculations for brain volumes at term age and at 10 years of age. Effect size (Cohen d, SD)

calculations at term age (45 extremely preterm infants and 15 control infants) and at 10 years of age (51 extremely

preterm children and 38 control children) for white and grey matter volumes.

https://doi.org/10.1371/journal.pone.0259717.g003
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term born controls. To our knowledge, this study is the first to describe WM and GM volumes

at both term age and 10 years of age in cohort consisting of only EPT children. The main find-

ings of this study were that the EPT infants had smaller adjusted GM volume at term age and

the EPT children had smaller adjusted WM volume at 10 years of age compared with full term

controls. The differences in cerebral parenchyma and intracranial volume between EPT chil-

dren and controls were more prominent at 10 years of age than at term age, and no difference

was found for CSF volume.

Grey and white matter volumes at term age

At term age, the GM volume was smaller for the EPT infants compared to the control infants. We

found no difference for WM volume between EPT infants and control infants. Brain growth dur-

ing the third trimester of pregnancy is rapid in normal pregnancies and after 33 weeks there is a

proportional increase in GM volume compared to ICV in the fetus [42]. Children born EPT are

exposed to an early ex-utero environment with altered sensory inputs due to parental absence,

procedures, noise and light. Altered sensory inputs affects the normal brain maturation [43].

These children also experienced nutritional challenges during early critical windows of brain

development [44]. A combination of these factors could be affecting the critical period of synapto-

genesis and leading to atypical trajectories of brain growth resulting in reduced GM volume [42].

A majority of previously published studies have reported that differences in GM volume

between preterm infants and control infants were most prominent at term age [12, 45, 46].

However, there are previous studies that have reported contradictory findings regarding

whether WM volume is smaller for preterm infants than for control infants at term age [11,

20]. These discrepancies could be partly explained by differences in the inclusion criteria and

study methods, for example including children with different gestational ages and infants who

had complications related to preterm birth such as intraventricular haemorrhage, severe white

matter injuries or periventricular leukomalacia.

Grey and white matter brain volumes at 10 years of age

At 10 years of age we found smaller WM and larger GM volumes for the EPT children com-

pared to the control children. The interplay between WM and GM during normal brain devel-

opment is still not fully understood [47–49]. It is reported from previous research that by six

years of age term born children already have about 90% of the adult ICV [17, 47–50]. Recent

knowledge about normal brain development entails a decrease in GM volume relative to ICV

throughout childhood and cortical thinning beginning at around 3 years of age [48, 50–52]. In

contrast, WM volume increases during the entire childhood and up to at least the fourth

decade of life [48, 50, 53–55]. This reflects the maturation and myelination of organized brain

connections that increase during childhood, linked to increased WM volume [48, 56]. Both

dendritic pruning and myelination in the interface between cortical GM and WM have been

linked to cortical thinning and a reduction of GM volume over time [47, 48, 50, 51, 56]. An

early environmental risk, such as the preterm extra uterine environment, could lead to alterna-

tive brain trajectories [6, 57]. These could include possible disturbances of normal brain matu-

ration, with expected increases in WM volume and decreases in GM volume [6, 29, 57–59].

Our finding that the adjusted WM volume was smaller for the EPT children than for the

control children at 10 year of age is in line with previous reports. One previous study reported

that preterm children with a weight of less than 1250 g had less increase of WM and less

decrease of GM from age 8 to 12 years compared to term born controls [60]. Thus, the

expected normal development, with a WM increase and a GM decrease, was less marked in

preterm children compared to controls. Another cross-sectional study reported significantly
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smaller WM volume at the age of 16 years in children born before GA 32 weeks compared to

term born controls [24].

We also found that the GM volume was larger in the EPT children at 10 years of age and

smaller at term age compared to control children which could possibly be due to a disrupted

cortical thinning as a result of extreme prematurity. Disrupted cortical thinning has previously

been seen in low birth weight children compared to control children [61]. We expect that the

found differences in brain volumes are not only due to a delayed maturation, but also due to

stable changes not compensated over time.

There are studies comparing children born very preterm with full term controls during child-

hood and adolescence that have found either that GM volume was more reduced than WM vol-

ume in the preterm children or an equal effect on GM and WM volumes [20, 62]. A longitudinal

study that compared very preterm children at less than 30 weeks of gestation or weighing less

than 1250 g with full term children showed less growth in both GM and WM volumes from term

age to 7 years of age, with a dominance in growth reduction in GM volume [20]. That the present

study found smaller WM volume but larger GM volume at 10 years of age, might be partly

explained by the different age at the follow-up MRI scan, the exclusion of children with intraven-

tricular haemorrhage grade 3–4, severe white matter injuries or periventricular leukomalacia and

the lower GA of our cohort. A number of studies have reported relationships between brain vol-

umes and gestational age [18, 21, 46, 63], but they did not include many children born EPT.

Lower gestational age has been reported to have a greater effect on WM volume [18, 63].

More advanced techniques have been applied to investigate the white matter integrity in

preterm children. Fixel based analysis found lower fibre density and fibre cross-section in very

preterm children compared to full term controls at age 7 and 13 years, and the differences

were larger with lower GA [64]. Diffusion tensor imaging (DTI) and neurite orientation and

dispersion density imaging (NODDI) have found lower fractional anisotropy and higher neur-

ite orientation dispersion index in very preterm children compared to term born controls [65].

These previous findings lead us to speculate that the smaller WM volume for the EPT children

found in this study is reflecting altered underlying microstructural properties of WM.

Differences in intracranial volume, cerebral parenchyma and cerebrospinal

fluid at term age and at 10 years of age

We found that CPAR and ICV were significantly smaller for the EPT children compared to

the controls at 10 years of age, but this was not the case at term age. CSF volume was not differ-

ent between EPT children and controls. Also previous studies have reported similar ICV

between children <1000 grams and control children at term age [13]. The smaller ICV at 10

years of age is in line with previous cross-sectional studies, which demonstrated smaller ICV

in very preterm [24] and EPT children [23] compared with controls in childhood and adoles-

cence. Also, a longitudinal study focusing on regional brain growth of children born before 30

weeks of gestation demonstrated that ICV remained smaller in preterm children than in term

born controls at age 7 and 13 years of age [16]. Studies that investigated brain volumes in

adults who were born very preterm have demonstrated that the small overall brain volumes

seen in preterm children persisted into adulthood [17, 19]. Thus, even though the survival

rates and care of the children with the lowest GA are developing we still see smaller ICV and

CPAR in relatively healthy EPT children without major morbidities compared to control chil-

dren up to 10 years of age. The brain parenchyma is affected, since we found no difference in

CSF volume. We found no significant difference in anthropometric measurements at age 12.

Even though this tells us little about their body size at the time when the children were imaged

it is an indication that our cohort is relatively healthy, and even so we found significant brain
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tissue reduction at 10 years of age. It is possible that the mean differences in brain volumes

that we found between EPT children and controls might be clinically relevant, since previous

studies have reported that similar altered brain volumes in preterm children were accompa-

nied by adverse cognitive outcomes [18, 20, 24]. Studies on cognition, motor and behavioural

outcomes at 12 years of age in our cohort are ongoing.

Strengths and limitations

A strength was that this was a population-based study that focused exclusively on EPT children

up to GA 26 weeks and 6 days. Because we wanted to disentangle the effect of extreme prema-

turity on brain volumes, we excluded focal brain lesions, congenital conditions and many

complications related to preterm birth. We carefully selected high quality scans for the volu-

metric analyses. Another strength of the study was the long follow-up period including two

MRI scans with 10 years apart.

A limitation of the study was the relatively small sample sizes that may have prevented sta-

tistical differences to be discerned. This was due to rigorous data quality criteria and implicit

methodological difficulties. Furthermore, we only included children without major morbidi-

ties on their conventional MRI scans, in order to reflect the process of normal brain develop-

ment. Another limitation of the study was the use of two separate control groups at term age

and at 10 years of age, however the two control groups had similar perinatal characteristics

and the brain volumes were comparable to previously published brain volumes of healthy

term born children at both time points [13, 66].

The MRI scans at term age and at 10 years of age were performed with different MRI acqui-

sition parameters and on different scanners with different field strengths. This was unavoid-

able, as the original scanner was no longer available when the children reached the age of 10

years. However, previous studies indicate that brain volumes can be robustly measured across

different scanners, field strengths and acquisitions [67, 68]. But the aggregation of neuroimag-

ing data across scanners could potentially increase statistical power to detect biological vari-

ability of interest. Additionally, the default processing pipelines can be customized to increase

accuracy of segmentation and normalization, yet the impact of customizations on analyses in

EPT children are not clear. Extremely preterm populations have specific brain anatomical fea-

tures that prevented us from creating customized templates [69]. Although we used the default

DARTEL pipeline the brain volumes reported here were in line with those reported in previ-

ously published studies including similar populations [20, 66].

Conclusion

In this MRI study of EPT children, the largest differences in adjusted GM and WM volumes

between EPT children and controls were in GM at term age and in WM at 10 years of age. In

addition, ICV and CPAR were smaller for the EPT children at 10 years of age compared to the

term born controls, but this was not the case at term age, and no difference was found for CSF

volume at either time point. This suggest that EPT birth results in long-lasting effects on brain

volumes for this vulnerable group, with a different pattern of GM and WM distribution. Our

findings highlight the need for long-term follow-up studies that focus on the outcomes of

being born EPT, including cognitive data.
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