
Citation: Mostafa, S.; Wang, Y.; Zeng,

W.; Jin, B. Plant Responses to

Herbivory, Wounding, and Infection.

Int. J. Mol. Sci. 2022, 23, 7031.

https://doi.org/10.3390/

ijms23137031

Academic Editors: Massimo Maffei

and Francesca Barbero

Received: 30 May 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Plant Responses to Herbivory, Wounding, and Infection
Salma Mostafa, Yun Wang, Wen Zeng and Biao Jin *

College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225012, China;
dh18033@yzu.edu.cn (S.M.); mz120190969@yzu.edu.cn (Y.W.); mx120200764@yzu.edu.cn (W.Z.)
* Correspondence: bjin@yzu.edu.cn

Abstract: Plants have various self-defense mechanisms against biotic attacks, involving both physical
and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas
chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs).
Complex interactions between plants and herbivores occur. Plant responses to insect herbivory
begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and
herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create
differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction,
the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release
of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on
early and late plant responses, including physical barriers, signal transduction, SM production as
well as epigenetic regulation, and phytohormone responses.

Keywords: airborne signaling; epigenetic regulation; intracellular signaling; physical barrier; plant–
herbivore interaction; secondary metabolite; signal transduction

1. Introduction

Plant–insect interactions can be divided into two main types: mutualistic interactions
(with pollinating insects) and antagonistic interactions (with herbivores) [1]. Many studies
have examined antagonistic interactions between plants and herbivores to understand
plant defensive mechanisms. Plants use versatile defensive strategies during sudden biotic
attacks, involving both physical and chemical barriers. The primary physical barriers
include epidermal layers, hairs, thorns, and trichomes. When a plant comes into contact
with an insect, chemical changes occur. The plant’s initial chemical response to an insect
attack is cell wall modification [2], in which signals released by the insect are received by
receptors that activate the plant’s immune system. Following herbivore attacks, plants
are often susceptible to infection by pathogens (e.g., bacteria, fungi, and viruses). At
the infection site, cell surface receptors recognize molecular attacks and activate pattern-
triggered immunity (PTI) [3]. The host cell and extracellular spaces are exposed to secretions
of different effector proteins from herbivores, which activate effector-triggered immunity
(ETI) [3]. Thereafter, mobile signals are generated and migrate to distal tissues, activating
the secondary immune system. This complex regulatory mechanism is known as systemic
acquired resistance (SAR) [4].

Several changes occur in the plant cell plasma membrane following herbivore at-
tack. The response begins with the perception of molecular stimuli and effector proteins,
prompting increased cytosolic calcium ([Ca2+] cyt) levels, the depolarization of plasma
membrane potential (Vm) [5], and the activation of mitogen-activated protein kinases
(MAPK), which are responsible for protein phosphorylation [6], nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activation, and reactive oxygen species (ROS)
and reactive nitrogen species (RNS) production. Afterwards, phytohormones including
jasmonic acid (JA), salicylic acid (SA), and ethylene are rapidly activated and produced
in large amounts. These phytohormones are basic components of stress-related signaling
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pathways [7,8]. Plants also accumulate secondary metabolites (SMs), including volatile
organic compounds (VOCs), as a late defense response [5]. SMs act as feeding deterrents
and toxins and reduce the nutritional value of plant food [1].

Biotic stresses also induce epigenetic changes at the DNA and histone levels. Genetic
and epigenetic regulation are important for organism growth and maintenance, as well
as survival under unfavorable conditions [9]. Through DNA methylation, histone modifi-
cation, and small non-coding RNAs, these regulatory processes have significant impacts
on plant resistance and signal adjustment. Several recent studies have described these
mechanisms in response to biotic stresses, particularly DNA methylation [10].

Humanity is facing challenges related to sustainable food security, and biotic stress is
considered a major cause of crop losses [11]. Accordingly, a better understanding of plant
defensive mechanisms under biotic stresses could help avoid future crop losses. In this
review, we summarize recent progress and discoveries related to plant–herbivore–infection
interactions, focusing on physical and chemical barriers, plant defense signaling, and the
role of epigenetic regulation in the early response to insect attack, as well as the production
of SMs and VOCs during the late response.

2. Plant Defense Prior to Herbivore Attack
Plant Physical Barriers

Plant morphological and microstructural properties provide protection against herbi-
vore attacks. These natural physical barriers, which act as the first line of defense against
insect herbivory, include hairs, trichomes, spines, thorns, and cuticles covering aerial plant
parts (Figure 1) [12,13]. Plant cuticular waxes play a major role in the regulation of plant–
insect interactions at multiple levels [13]. For example, in ant-plants (Macaranga griffithiana;
Euphorbiaceae), cuticular waxes are slippery due to their high triterpenoid content, which
protects ants against other insects [14]. Transgenic Gossypium hirsutum plants, with a higher
wax content, are more resistant against whiteflies (Bemisia tabaci) [15]. Plants with higher
numbers of spines are more resistant to insects; for example, Manduca sexta caterpillars
grew faster in three Solanum species (Solanum carolinense, Solanum atropurpureum, and
Solanum aethiopicum) with their spines experimentally removed than in plants with intact
spines [16].
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Trichome structures, including glandular trichomes, increase plant resistance by in-
fluencing insect oviposition and/or feeding [17]. High trichome density further increases
plant resistance against attacks. For example, strawberry plant resistance to the two-spotted
spider mite (Tetranychus urticae) was increased at higher trichome densities [18]. Both the
physical structure of trichomes and their chemical constituents influence plant protec-
tion [19]. Trichomes mainly consist of compounds with low nutritional value for insects,
such as cellulose and phenolics, which can be toxic to insect herbivores [19]. Interestingly,
non-glandular trichomes in maize and soybean plants contain silicon, which improves
plant resistance against fall armyworm (AW; Spodoptera frugiperda) [20]. Glandular tri-
chomes also act as reservoirs for terpenes, fatty acid derivatives, and VOCs, some of which
can attract natural enemies that protect host plants indirectly [21]. Previous studies have
focused on elucidating the roles of plant physical structures in defense [12,13]. In addition,
genetic engineering to develop transgenic plants with enhanced physical barriers may also
improve plant resistance against herbivore attacks.

3. Plant Responses during Herbivore Attack, Wounding, and Infection
3.1. Signal Transduction in Host Plants

Interactions between plant signal transduction and insect feeding play a significant
role in the induction of plant immunity [22]. During herbivore attacks, plant cell surface-
localized pattern recognition receptors (PRRs) enhance plant immunity through the recogni-
tion of plant-derived damage-associated molecular patterns (DAMPs), microbe-associated
molecular patterns (MAMPs) [23], herbivore-associated molecular patterns (HAMPs) [24],
and phytocytokines and the activation of PTI against pathogens [23]. Generally, PRRs
consist of a short trans-membrane domain attached to a varying extracellular domain and
conserved cytoplasmic kinase [25]. HAMPs are induced by chemical cues found in herbi-
vore oral secretions (OSs) or oviposition fluid [24]. However, very few PRRs for HAMPs
have been described [25]. Herbivore attacks induce changes in plasma membrane potential
(Vm), followed by the generation of secondary messengers (e.g., [Ca2+] cyt) and ROS [24],
as well as a rapid increase in phytohormones (e.g., JAs) [26]. These changes are among the
earliest plant defense responses, occurring within seconds to minutes after an herbivory
attack [5]. HAMP compounds also provoke the release of leaf volatiles and terpenoids [25].
For example, ROS are induced in tomato (Solanum lycopersicum) protoplasts in response
to tobacco hornworm caterpillar (Manduca sexta) OS [24], and OSs from two pest species,
Helicoverpa armigera and Spodoptera litura, prompt rapid induction of JA signaling in cotton
plants (Gossypium hirsutum) [26].

Leaf damage caused by insect attacks suggests the delivery of resistance elicitors
through attachments to different receptors on the plasma membrane [5]. The interaction
between resistance elicitors and receptors causes a fluctuation in Vm, i.e., cell membrane
electrical potential maintained by ion flux balance across the plasma membrane [27]. These
electrical signals move from cell to cell in plants, carrying different messages. Unbalanced
ion fluxes give rise to positive or negative changes in Vm, defined as depolarization and
hyperpolarization, respectively [27], which induce plant defense responses. For example,
the herbivore Spodoptera littoralis induces Vm depolarization in infected Lima bean plants
(Phaseolus lunatus) [28].

The involvement of Ca2+ in plant responses upon herbivore attack has been demon-
strated in several studies. Herbivore wounds cause massive increases in Ca2+ cytosolic ion
content following Vm changes [5]. Ca2+ influx is regulated by protein channels and trans-
porters located in the plasma membrane and Ca2+ sensors [5]. Many Ca2+-binding proteins
and calcium sensors in plants recognize Ca2+ signals and regulate downstream responses.
Calcium sensors carry one or more EF-hand Ca2+-binding motifs [29]. The main sensor
families are calmodulins (CaMs)/calmodulin-like proteins (CMLs), Ca2+/CaM-dependent
protein kinases (CCaMKs), calcium-dependent protein kinases (CDPKs/CPKs), calcineurin
B-like protein (CBL), and CBL interacting protein kinase (CIPK) modules [29,30].
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CaMs are highly conserved calcium-modulated proteins that consist of two globular
domains. Each domain contains two EF-hand motifs, and one motif can bind one Ca2+

ion. Therefore, one CaM molecule can bind four Ca2+ ions [31]. Several CaM-binding
transcription factors (TFs) have been shown to be involved in defense responses through
crosstalk with plant hormones [32]. In infected Arabidopsis plants, the CaM-binding
TF AtSR1/CAMTA3 functions as a negative regulator of SA through the interaction of
SA-related genes [33]. CaM is also essential to the function of the CaM-binding protein
CBP60g in Arabidopsis infected by Pseudomonas syringae; CBP60g increases SA levels
following pathogen/biotic attacks. The disconnection between CBP60g and CaM prevents
SA production, demonstrating the role of CaM in plant defense [34].

Other divergent forms of CaM include CMLs, 50 members of which have been dis-
covered in Arabidopsis [35]. In soybean, the overexpression of CMLs (SCaM-4/-5) im-
proves resistance to a wide range of insects and pathogens (e.g., bacteria, fungi, and
viruses) [32,36]. Other CMLs are specific to plant immunity and biotic stress, such as
CML42 and CML43 [5,37]. The downregulation of Arabidopsis CML42 enhances resistance
to Spodoptera littoralis, which is correlated with the upregulation of JA-related genes [38]. By
contrast, CML37 acts positively in plant defense against S. littoralis, suggesting opposing
functions in plant resistance [32,39]. Still other CMLs (e.g., CML9, 11, 12, 16, 17, and 23)
are involved in insect attack resistance, and are highly regulated in plants treated with
lepidopteran herbivore OS [32,40].

Interestingly, although CCaMKs have been detected in various plants, including
legumes, maize (Zea mays), and tobacco, they are not present in Arabidopsis [41]. Unlike
CaMs, CCaMKs possess a CaM-binding domain and visinin-like domain (Ca2+-binding
domain) with three EF-hands. CCaMKs also have an autoinhibitory domain overlapping
the CaM-binding domain [41,42]. However, the role of CCaMKs during herbivore attacks
has been poorly studied, in contrast to their role in abiotic stress responses. Further study
is required to obtain a thorough understanding of CCaMK functions in the regulation of
Ca2+ ions, particularly in plant biotic attacks.

CPK sensors act as multipurpose proteins, whereas a single CPK protein functions in
Ca2+ binding and signaling for phosphorylation [5]. Recently, the genes AcoCPK1, AcoCPK3,
and AcoCPK6 were found to enhance plant resistance against Sclerotinia sclerotiorum in
pineapple, Ananas comosus [43]. CPKs are also involved in the regulation of K+ channel
transportation in Arabidopsis [44].

After the detection of Ca2+ signals by CBL proteins, CBL and CIBK sensors interact
to form CBL–CIBK complexes; the CBL–CIBK signaling pathway is regulated by complex
mechanisms in association with other signaling pathways [5]. ROS signaling molecules
regulate Ca2+ signals upon biotic stress. For example, AtCIPK6 overexpression negatively
regulates ROS production in Arabidopsis. Thus, downregulation of AtCIPK6 increased
plant resistance to the pathogen Pseudomonas syringae [45]. Interactions among MeCIPK23,
MeCBL1, and MeCBL9 and their overexpression increase the cassava (Manihot esculenta)
defense response to Xanthomonas axonopodis pv. manihotis [46]. When AtCIPK26 interacts
with AtCBL1 or AtCBL9, the NADPH oxidase AtRBOHF is phosphorylated, and ROS
accumulate through the action of RBOHF [47]. CBL–CIBK complexes also play a role in K+

regulation; K+ deficiency is correlated with the accumulation of JA [48] and ROS and the
activation of Ca2+ to enhance plant defensive mechanisms [47]. Under low-K+ conditions,
AtCBL1 and AtCBL9 activate the phosphorylation of Arabidopsis K+ transporter 1 (AKT1)
through the action of AtCIPK23 [47]. CBL10 also competes with CIPK23 for binding with
K+ channels (AKT1). The binding of CBL10 with AKT1 hinders AKT1-mediated K+ flux
into the cytoplasm [49].

ATPases, which are the main energy source for plant cells, also play an essential extra-
cellular role in plants under stress. Extracellular ATP signaling is associated with secondary
messengers, such as Ca2+, ROS, and NO [50]. Ca2+-ATPases act as ion transporters across
cellular membranes. Ca2+-ATPases belong to the P-type ATPases superfamily, which is
generally divided into two groups according to ATPase localization in plant cells: P-IIA
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ER-type Ca2+-ATPases (ECAs) and P-IIB autoinhibited Ca2+-ATPases (ACAs). ECAs are
analogous to animal sarcoplasmic–endoplasmic reticulum Ca2+-ATPases, whereas ACAs
are equivalent to animal PM-type ATPases [30,51]. ACAs are more selective, transporting
only Ca2+, whereas ECAs also transport Cd2+, Mn2+, and Zn2+ [51]. Calcium signaling
pathways following herbivore attack are illustrated in Figure 2.
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Figure 2. Schematic diagram of the calcium signaling pathway following biotic attack. After an
attack, resistance elicitors are released in herbivore oral secretions (OS), precipitated, and bound to
receptors, causing a rapid increase in calcium cytosolic ([Ca2+] cyt) content. Calcium channels and
ATP-dependent Ca2+ pumps in the cell membrane and cell organelles (e.g., mitochondria, vacuoles,
and endoplasmic reticulum) organize Ca2+ ions inside and outside the cell/organelles. Greater
increases in Ca2+ ions trigger potassium (K+) channel activation, causing plasma membrane potential
(Vm) depolarization. Different calcium receptors (e.g., CBL–CIPK, calcineurin B-like protein- CBL
interacting protein kinase, CML42/CML43, calmodulin-like proteins 42/43, and CPK3/CPK13,
calcium-dependent protein kinases3/13) increase to activate transcription factors, such as HSFB2A.
Finally, transcriptional regulation in the nucleus induces plant herbivore defense (Modified from [5]).

Salivary proteins induce plant–insect interactions through ROS accumulation and
cell death enhancement. The elevation of intracellular Ca2+ ions and ROS act as signal
transducers under biotic stress. Several forms of ROS are present in plants, including hydro-
gen peroxide (H2O2•), superoxide anion (O2−•−), hydroxyl radical (HO•), peroxynitrite
(ONOO), and singlet oxygen (1O2) [27]. ROS are mainly generated through the action of
NADPH oxidase, which is activated by Ca2+ ions, producing O2− for further conversion to
H2O2 in the plasma membrane [52]. For example, salivary protein 1 (NlSP1) in the brown
plant hopper (BPH) induces an immune response in rice plants through H2O2 aggregation
and cell death [53]. Salivary proteins also produce crosstalk between ROS and plant phyto-
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hormone signals. For example, high SA concentrations induce ROS production, whereas SA
affects the metabolism of ROS in mitochondria. SA plays an important role in plant defense
against biotic attacks and is essential for SAR formation [52]. ROS production induces SA
accumulation and vice versa; however, SA also promotes ROS scavenging [54,55].

The exact mechanism of RNS in plants remains ambiguous; however, nitric oxide
(NO) is involved in plant stress tolerance and acts as a signaling molecule during herbi-
vore attacks [56]. In Pisum sativum (pea), NO accumulates in response to feeding by the
aphid Acyrthosiphon pisum [57]. Exogenous NO application to infected pea plants induces
a defense mechanism against aphids, thus reducing their growth [58]. Dynamic interac-
tions between ROS and the NO signaling pathway have been suggested during abiotic
stresses [59], although whether such crosstalk occurs during biotic stress remains unclear.
Further study is needed to elucidate the role of RNS during biotic stress in plants.

JA is an important plant regulator involved in plant responses to wounding. Changes
in JA and phytohormone levels are induced by the conversion of Ca2+ ions, ROS, and
RNS signaling. However, the relationship between ROS production and phytohormone
signaling is complex. For example, high JA levels induce ROS accumulation, whereas low
JA levels induce NO, which is antagonistic to ROS activation [60]. In tomato plants, JA loss
leads to ROS accumulation in response to fatty acid amide elicitation [55]. The involvement
of Ca2+-binding proteins in JA regulation has been demonstrated in wounded plants,
where calcium influx triggers the activation of Ca2+/CaM-dependent phosphorylation of
JAV1, dismantling the JAV1–JAZ8–WRKY51 (JJW) complex to activate JA biosynthesis [61]
(Figure 3). However, the role of Ca2+-binding proteins in phytohormone regulation remains
poorly understood.
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between cells.

3.2. Intracellular Signaling

The release of long-distance signals from the site of damage to different plant parts is
an important defensive strategy necessary for plant survival. Systemic signaling is involved
in the communication between wounded and unwounded plant tissues [27]. Once cell
membrane and signal transduction are interrupted, ion channels move ions across plasma
membranes, facilitating long-distance communication between cells. The transfer of these
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signals from wounded sites to other cells induces a defense response [27]. For example, the
non-selective glutamate receptor-like channels (GLRs) recently discovered in Arabidopsis
are involved in Ca2+ signaling transmission during herbivory. Both Arabidopsis and
Solanum lycopersicum GLRs are involved in long-distance signaling [62]. In addition to Ca2+

signaling, electrical signals, ROS, and crosstalk between ROS and Ca2+ have large impacts
on long-distance signaling (reviewed in [62]).

Previous studies have demonstrated that JA, methyl jasmonate (MeJA), and jasmonoyl-
L-isoleucine (JA-Ile; the bioactive form of JA) can be transferred through both phloem and
xylem from wounded tissues, accumulating up to several centimeters from distal unharmed
tissues [63–65]. JA is also synthesized in vascular bundles [66–68] such that damage to
veins results in high JA and JA-Ile accumulation [64]. The wounded site of the leaf causes
JA activation in both harmed and unharmed tissues, indicating the translocation of JA
from wounded to unwounded sites [69]. As demonstrated in Arabidopsis, shoot wounding
induces the relocation of endogenous JA through phloem tissues and the translocation of
cis-12-oxo-phytodienoic acid (OPDA), the precursor of JA and its derivatives, leading to
the conversion of JA into JA-Ile to initiate JA signaling in unharmed roots [69]. Deuterium-
labeled analogs have been used in Nicotiana tabacum (tobacco) and Solanum lycopersicum
(tomato) plants. Exogenous application of both JA and JA–Ile induced high accumula-
tion thereof in distal leaves, in both control plants and wounded plants untreated with
exogenous JA or JA–Ile, whereas the mobility of JA–Ile was greater than that of JA [70]
(Figure 3).

However, some studies have shown that JA/JA-Ile induction in distal intact tissues fol-
lowing plant wounding was derived from de novo biosynthesis, rather than transport from
the damaged site [71]. In tomato plants, enzymes such as lipoxygenase (LOX) and allene
oxide synthase (AOS; involved in JA synthesis) are localized in the companion cell–sieve
element complex of vascular bundles, in addition to accumulated JA and OPDA, demon-
strating JA biosynthesis in these tissues [66,72]. However, other studies have rejected the
hypothesis that JA is resynthesized in distal tissues following herbivore attacks, suggesting
that phytohormone distribution is dependent on vascular connections between leaves, as
JA concentrations increase in both locally damaged and systemically unharmed leaves.
The JA precursor OPDA is not systemically induced; its concentration increases only in
local tissues after continuous wounding [73,74]. These findings suggest that increases in JA
concentrations do not occur through de novo biosynthesis [65]. Further study is required
to improve our understanding of the transport of JA and its derivatives between cells, as
well as long-distance signaling over long distances far from damaged sites.

3.3. Airborne Signaling

VOCs are emitted by plants in response to mechanical damage or herbivore feed-
ing [75,76]. Long-distance signaling by plants through the release of VOCs elicits systemic
immunity against herbivore attacks [65,75]. Generally, VOCs are induced by cell disruption;
thereafter, they function as DAMPs and HAMPs, through which plants recognize damage
and herbivore attacks [77]. These VOCs are synthesized de novo after damage; molecules
such as oligosaccharines and peptides are then generated as secondary signals [78]. For
example, the peptide precursor IbHypSys is highly induced following wounding of sweet
potato plants, leading to the formation of sporamin, an important defense protein [79].
Spodoptera exigua caterpillar OS strongly induces VOCs in cotton plants in response to
DAMPs and HAMPs [80]. VOC emission patterns can be divided into two main types; the
first occurs within a few seconds after damage (e.g., enzymes in leaf tissues), and the second
within hours after damage (e.g., several types of terpenes and phenolic compounds) [78].
Some stored terpenes are emitted directly upon tissue damage, including pre-existing
secretory structures [78]. Other phenomena that arise in response to damage include the
accumulation of SMs, such as phenolic compounds and tannins [81–83], the activation
of defensive oxidative enzymes by MeJA or ethylene [84], and the high expression and
biosynthesis of proteinase inhibitor genes [85,86]. In addition, a high concentration of VOCs
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leads to the repellence of biotic attack. For instance, Sitophilus granarius L. and Tribolium
confusum are repelled by the highest concentrations of cereal VOCs [87,88].

4. Plant Response to Biotic Attack through Epigenetic Regulation and SMs
4.1. Epigenetic Regulation

Epigenetic regulation plays a crucial role in plant resistance and signal adjustment
in response to herbivore attacks. DNA methylation is involved in plant immunity and
regulates chromatin structure, DNA stability, and gene expression [89]. In Brassica rapa,
methylation changes are induced in both leaves and flowers following leaf damage by Pieris
brassicae caterpillars [90]. Soybean plant resistance responses to soybean cyst nematodes
result in DNA methylation [91]. Recently, CHH methylation was reported to regulate
defense responses against the fungal pathogen Blumeria graminis f. sp. tritici in infected
wheat plants [92].

The function of small RNAs (sRNAs) has been demonstrated in plant–herbivore
interactions. In plants, sRNAs are divided into two major classes according to their roles,
i.e., microRNAs (miRNAs), which are produced from single-strand stem-loop precursor
structures, and short interfering RNAs (siRNAs), which are derived from double-strand
RNA transcripts [93,94]. Both miRNAs and siRNAs, individually or in combination, can
improve plant resistance against diseases [95]. In the tea plant Camellia sinensis L., 130
known and 512 novel miRNAs were identified in response to attacks by the geometrid
Ectropis oblique [96]. In rice plants, 464 known and 183 novel miRNAs were identified
after brown planthopper (BPH) attacks [97]. In sweet potato, the target genes of miR408
(IbKCS, IbPCL, and IbGAUT) are highly expressed in plants after wounding, whereas
their expression is suppressed in transgenic lines overexpressing miR408, confirming the
participation of miRNAs in plant defense [98].

Long non-coding RNAs (LncRNAs) are involved in several developmental and biolog-
ical processes, such as chromatin reshaping and transcriptional activation [99], contributing
to plant defenses against biotic attacks [100]. For example, lncRNAs have been detected
in Nicotiana attenuata in response to herbivore attacks, and the accumulation of lncRNAs
induced the release of active JAs [100]. Interaction has been observed between herbivores
and lncRNAs, and AW-elicited lncRNAs have been identified in treated plants [101]. LncR-
NAs have also been studied in rice plants infected with blast fungus, confirming their role
in defense [102]. In infected cotton plants, differentially expressed lncRNAs are involved in
resistance to Verticillium dahliae disease [103], and lncRNAs are involved in plant resistance
to aphid damage [104].

Histone modifications, such as acetylation, methylation, and ubiquitination, which
occur at histone N-terminal tails, have been demonstrated in plant–pathogen interac-
tions [105]. Histone acetylation levels are affected by the activity of histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs). HATs connect the acetyl moiety of
acetyl-CoA to lysine amino groups and are usually correlated with increased gene ex-
pression, whereas HDACs detach acetyl groups from histones, causing gene suppres-
sion [106,107]. Both complex subunits of HATs, ELONGATOR PROTEIN2 (ELP2) and
ELP3, enhance plant defenses through their acetyltransferase activity [108]. In Arabidop-
sis, the involvement of HATs (AtELP2 and AtELP3) and HDACs (AtHDA6, AtHDA9,
AtHDA19, AtSRT2, and AtHD2B) in plant resistance against pathogens has been demon-
strated in several studies [107,109–112]. Plant cell wall acetylation status affects plant
resistance to phloem-feeding insects [2]. Pectin acetylesterase 9 (PAE9) enhances DAMP-
induced defenses against phloem-feeding aphids in Arabidopsis [2]. In wheat, the HAT
complex TaGCN5-TaADA2 plays a role in the regulation of cuticular wax biosynthesis in
response to powdery mildew [113]. In rice, C-terminal tail binding of subunit OsRpp30
to the HDAC OsHDT701 causes a negative defense response to the fungal and bacterial
pathogens Magnaporthe oryzae and Xanthomonas oryzae, respectively [114]. Tomato plant
resistance to bacterial wilt (Ralstonia solanacearum) in two different cultivars showed that
differential HDAC expression led to the downregulation of resistant genes [115].
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Histone (de)methylation positively (negatively) regulates immunity defense-associated
genes in plants [108]. For example, H3K4 and H3K36 methylation activates the tran-
scription of defense-related genes, whereas H3K9 and H3K27 methylation causes gene
repression [105,116]. Previous studies have identified histone methyltransferases in Ara-
bidopsis (AtATX1, AtSDG8, and AtSDG25), in addition to histone demethylases (AtJMJ27
and AtIBM1), which are involved in regulating plant–pathogen interactions [105,117,118].
The Arabidopsis SET DOMAIN GROUP methyltransferase (SDG8) plays a role in im-
munity. The SDG8 mutant exhibits increased susceptibility to Alternaria brassicicola and
Botrytis cinerea, activating JA-responsive genes and promoting misregulation of MKK3
and MKK5, which are protein kinases involved in the phosphorylation cascade activated
upon pathogen attack [119,120]. The rice demethylase JMJ705 contributes to the regulation
of defense responses, whereas its overexpression reduces H3K27me2/3 levels, leading
to the upregulation of defense-related genes and the enhancement of plant resistance to
pathogens [121].

The regulatory mechanism of histone ubiquitination controls the interaction of target
proteins with other proteins [122]. Histone ubiquitination occurs as a result of adding one
or more ubiquitin groups to lysine residues of target proteins through the action of various
enzymes [123]. There are two major types of ubiquitination, mono- and polyubiquitination,
distinguished according to the number of ubiquitin chains attached to the target proteins.
Polyubiquitination of the 26S proteasome, an ATP-dependent, multi-subunit protease
complex, causes the degradation of target proteins, whereas monoubiquitination acts as an
endogenous signal and does not cause the degradation of target proteins [124]. For example,
in Arabidopsis, monoubiquitination components, such as histone monoubiquitination1
(HUB1), are involved in plant defenses against necrotrophic fungal pathogens [125]; for
example, H2B monoubiquitination (H2Bub) is involved in the defense against Verticillium
dahliae toxins [122]. The Arabidopsis polyubiquitination component UBC22 is involved in
plant defense against pathogens [126]. JA accumulation after a herbivore attack leads to
the binding of COI1, a component of the ubiquitin E3 ligase SCFCOI1 and first receptor of
JA-Ile, to JAZ proteins; their reaction with 26S proteasomes causes the ubiquitination and
degradation of JAZ repressors, leading to the release of TFs of JA-regulated genes [8,127];
this demonstrates the relationship between JA and histone ubiquitination.

4.2. SMs

In plant–insect interactions, chemical changes are induced in the host plant, such
as increased production of SMs, which are involved in the regulation of plant resistance
against herbivores. SM concentrations vary among compounds and alter the metabolite
profile of the infected plant [128]. Five classes of SMs play a role in the regulation of plant
defense: glucosinolates, benzoxazinoids, aromatics, terpenes, and green-leaf volatiles [129].
For example, conifers release accumulated terpenes (monoterpenes) in response to bark
beetle attacks [130]. Herbivore behaviors in response to released VOCs are highly variable.
During ecological interactions, herbivores can be attracted to volatiles emitted at low
or moderate concentrations, which serve as ecological cues. By contrast, herbivores are
repelled by other volatiles produced by heavily infested plants [131].

Phenolic compounds, including lignin, coumarins, furanocoumarins, flavonoids, and
tannins, are also highly produced following plant infection and play a role in plant defense
strategies [132]. Meta-analyses of plants infected by beneficial microbes, pathogens, or
insects have confirmed increased phenolic compound levels [133]. Lignin contributes
to both biotic and abiotic stress tolerance. During herbivore attacks, lignin acts as a
physical barrier to herbivory, toughening plant tissues and thus rendering them non-
digestible to insects and other herbivores [134]. Coumarins are secreted by plant roots
and are mainly involved in iron uptake; they also play a role in plant protection against
herbivores and infections [135]. For example, coumarins isolated from Artemisia granatensis
inhibited herbivory by insects such as Spodoptera littoralis, Myzus persicae, and Rhopalosiphum
padi [136]. Furanocoumarins are toxic compounds released by few plant species as a
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defense against herbivory, mainly in Apiaceae and Rutaceae species [134]. For example,
some hogweed plant species (Apiaceae) produce high concentrations of furanocoumarins,
protecting plants against insect feeding [137]. Flavonoid compounds are important SMs
produced by plants [138] and accumulate in high amounts after herbivore attacks. In
tea leaves (Camellia sinensis), herbivore attacks cause upregulation of flavonoid-related
genes, leading to flavonoid accumulation and inducing a defense response against the tea
green leafhopper [139]. Tannins, which are anti-nutritional compounds, are also induced
following attack, to reduce the nutritional quality of plant tissues for insects [140]. In plant–
insect interactions, tannins build complexes that reduce the amount of nitrogen, thereby
preventing insects from hydrolyzing proteins by inhibiting their digestive enzymes [141].
However, some insects possess tannin-binding salivary proteins that may reduce the
negative effects of tannins [140].

Lectins are proteins found naturally in most plants; they enhance plant immunity dur-
ing plant–insect interactions through the release of cytokines and other effectors. However,
the mechanism of plant lectin production in response to insect or pathogen attacks remains
unclear [142].

Sulfur-containing compounds, including glutathione, glucosinolates, phytoalexins,
and defensin, play an important defensive role in plants. Glutathione participates in
several detoxification reactions in plants, in addition to its signaling regulation role in
plant–herbivore interactions [143]. For example, in soybean plants (Glycine max L. Merr.)
infected with the nematode Heterodera glycines, glutathione mediated the generation of
H2O2. Low concentrations of glutathione increase H2O2 levels, thereby reducing nematode
accumulation [144]. Many glucosinolates have been identified in nearly all parts of the
plant. The active forms of glucosinolate compounds accumulate in response to damage by
herbivores. Glucosinolate concentrations influence Brassica rapa plant resistance against
Delia radicum insects [145]. Phytoalexins are low-molecular-weight compounds with an-
timicrobial effects; they accumulate as part of the defense against insect attacks [146]. For
example, diterpenoid phytoalexins are highly concentrated in maize (Zea mays) attacked by
the European corn borer (Ostrinia nubilalis) [147]. Defensins have antimicrobial, antifun-
gal, and insecticidal properties in plants and are induced by pathogen attacks [148]. The
role of defensins in defense is to inhibit insect digestive enzymes, such as α-amylase and
proteases [148].

Nitrogen-containing compounds work effectively in plant defensive mechanisms.
Alkaloids, cyanogenic glycosides, and non-protein acids are the main nitrogen-containing
compounds. Alkaloids are accumulated in plants under different stresses. Pyrrolizidine
alkaloids (PAs) are toxic compounds that defend plants against insect herbivory; the most
effective forms of PAs are jacobine and erucifoline [149]. For example, jacobine causes high
thrip mortality, demonstrating its significant role in plant protection [150].

Cyanogenic glycosides are important chemical components in plant defense mecha-
nisms. In cassava (Manihot esculenta), feeding by the whitefly (Bemisia tabaci) activates
cyanogenic glycosides, whereas the resulting hydrogen cyanide is converted to beta-
cyanoalanine [151]. A role of non-protein acids has been demonstrated in many stud-
ies. Several forms of non-protein acid compounds have been studied in the context of
plant defense, such as γ-aminobutyric acid (GABA), β-aminobutyric acid (BABA), and
canavanine [152]. BABA inhibits aphid growth on tic bean plants (Vicia faba L. var mi-
nor) [153]. GABA tends to increase under biotic stresses, as reported in Arabidopsis leaves
upon herbivory. GABA accumulation is stimulated after wounding by insect feeding
(Spodoptera littoralis) [154,155]. The production of toxic canavanine is mainly limited to
Fabaceae species. Seeds of Canavalia, Dioclea, Hedysarum, and Medicago sativa L. are rich in
canavanine [156]. Some insect herbivores (e.g., Drosophila species) avoid feeding on plants
containing canavanine, demonstrating its toxicity and repellent effects against insects [157].
Plant SMs involved in defense are listed in Figure 4.



Int. J. Mol. Sci. 2022, 23, 7031 11 of 19

Int. J. Mol. Sci. 2022, 23, x  11 of 19 
 

 

effective forms of PAs are jacobine and erucifoline [149]. For example, jacobine causes 
high thrip mortality, demonstrating its significant role in plant protection [150]. 

Cyanogenic glycosides are important chemical components in plant defense mecha-
nisms. In cassava (Manihot esculenta), feeding by the whitefly (Bemisia tabaci) activates cy-
anogenic glycosides, whereas the resulting hydrogen cyanide is converted to beta-cyano-
alanine [151]. A role of non-protein acids has been demonstrated in many studies. Several 
forms of non-protein acid compounds have been studied in the context of plant defense, 
such as γ-aminobutyric acid (GABA), β-aminobutyric acid (BABA), and canavanine [152]. 
BABA inhibits aphid growth on tic bean plants (Vicia faba L. var minor) [153]. GABA tends 
to increase under biotic stresses, as reported in Arabidopsis leaves upon herbivory. GABA 
accumulation is stimulated after wounding by insect feeding (Spodoptera littoralis) 
[154,155]. The production of toxic canavanine is mainly limited to Fabaceae species. Seeds 
of Canavalia, Dioclea, Hedysarum, and Medicago sativa L. are rich in canavanine [156]. Some 
insect herbivores (e.g., Drosophila species) avoid feeding on plants containing canavanine, 
demonstrating its toxicity and repellent effects against insects [157]. Plant SMs involved 
in defense are listed in Figure 4. 

 
Figure 4. The main plant secondary metabolites (SMs) involved in plant defenses against herbivores, 
broadly classified as phenolics, terpenes, and sulfur (S)- and nitrogen (N)-containing compounds. 

JA and its derivatives increase the production of SMs after herbivore attacks by in-
ducing related biosynthetic enzymes [158]. The artificial application of these phytohor-
mones (e.g., JA, MeJA, and MeSA) induces SM accumulation. For example, in Bidens pilosa, 
the application of MeJA and MeSA as resistance elicitors enhances SM biosynthesis (e.g., 
caffeoylquinic acids, tartaric acid esters, chalcones, and flavonoids) [159]. Economically, 
SMs are one of the main factors influencing crop quality and yield. An improved under-
standing of the relationship between SM induction and herbivore attacks may lead to 
more comprehensive pest management and thus higher yield production [131]. 

5. Conclusions and Future Perspectives 
Plant resistance to biotic attacks is one of the important survival abilities to overcome 

ecological challenges. Globally, biotic attacks are considered one of the major reasons for 
crop loss; therefore; humanity is confronted by obtaining a sustainable food security. In 
this review, we summarized plant responses to herbivory and infection, focusing on phys-
ical barriers, signal transduction, epigenetic regulation, and SMs. Upon biotic attack, 
plants employ physical barriers (e.g., hairs, thorns, and wax layers) and SMs (including 
VOCs) as a defensive arsenal. During herbivory attacks, plants initiate signal transduction 

Figure 4. The main plant secondary metabolites (SMs) involved in plant defenses against herbivores,
broadly classified as phenolics, terpenes, and sulfur (S)- and nitrogen (N)-containing compounds.

JA and its derivatives increase the production of SMs after herbivore attacks by induc-
ing related biosynthetic enzymes [158]. The artificial application of these phytohormones
(e.g., JA, MeJA, and MeSA) induces SM accumulation. For example, in Bidens pilosa, the
application of MeJA and MeSA as resistance elicitors enhances SM biosynthesis (e.g., caf-
feoylquinic acids, tartaric acid esters, chalcones, and flavonoids) [159]. Economically, SMs
are one of the main factors influencing crop quality and yield. An improved understand-
ing of the relationship between SM induction and herbivore attacks may lead to more
comprehensive pest management and thus higher yield production [131].

5. Conclusions and Future Perspectives

Plant resistance to biotic attacks is one of the important survival abilities to overcome
ecological challenges. Globally, biotic attacks are considered one of the major reasons for
crop loss; therefore; humanity is confronted by obtaining a sustainable food security. In this
review, we summarized plant responses to herbivory and infection, focusing on physical
barriers, signal transduction, epigenetic regulation, and SMs. Upon biotic attack, plants
employ physical barriers (e.g., hairs, thorns, and wax layers) and SMs (including VOCs) as
a defensive arsenal. During herbivory attacks, plants initiate signal transduction to activate
a variety of defensive mechanisms that are mainly mediated by phytohormones (e.g., SA
and JA), Ca2+, and ROS, as well as gene expression and epigenetic regulation. Recent
advances in molecular biology and metabolomics have accelerated fundamental research
on plant–herbivore interactions. Large numbers of metabolites, enzymes, and genes are
involved in plant defense responses. These studies characterized plant defense pathways,
thus improving our understanding of the mechanisms underlying plant defense responses.
However, several unresolved issues remain, which warrant further investigation.

The molecular basis of plant response pathways under pathogen infection has received
extensive research attention, whereas studies of the molecular mechanisms underlying
plant–herbivore interactions are scarce, perhaps because herbivore experiments are difficult
to conduct and control in comparison with those investigating pathogen infections. How-
ever, molecular-level research will help elucidate the mechanisms underlying herbivore
responses and may provide novel insights into insect herbivory.

Most previous studies focused on plant defenses at the individual scale; however,
plants normally encounter biotic attacks at the population level in the field, especially
crops. Airborne signals or molecules such as VOCs, released from an attacked plant, can
arouse defense responses in surrounding plants. Some VOCs even act as pest repellents.
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Therefore, spatiotemporal analyses of the population-level effects of such airborne signals
and molecules are needed to identify potential biocontrol agents for crop protection.

SMs mediate a variety of defensive functions and enhance plant resistance to biotic
attacks. It is important to understand the synthesis of these beneficial metabolites, as
well as their molecular mechanisms, in the context of herbivore behavior. The application
of genetically enhanced crops in SM production may enhance plant resistance. Mass
production of various artificial SMs could also lead to novel strategies for the development
of precision agriculture for plant management. These approaches may help mitigate crop
losses under various future food demand scenarios.
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Abbreviations

Abbreviation Full Name
AOS Allene oxide synthase
AW Armyworm
BPH Brown planthopper
BABA β-aminobutyric acid
CaMs Calmodulins
CMLs Calmodulin-like proteins
CCaMKs Ca2+/CaM-dependent protein kinases
CDPKs/CPKs Calcium-dependent protein kinases
CBL Calcineurin B-like protein
CIPK CBL interacting protein kinase
OPDA Cis-12-oxo-phytodienoic acid
[Ca2+] cyt Cytosolic calcium
DAMPs Damage-associated molecular patterns
ETI Effector-triggered immunity
ELP2 ELONGATOR PROTEIN2
GLRs Glutamate receptor-like channels
GABA γ-aminobutyric acid
HAMPs Herbivore-associated molecular patterns
HATs Histone acetyltransferases
HDACs Histone deacetylases
HUB1 Histone monoubiquitination1
H2O2 Hydrogen peroxide
H2Bub H2B monoubiquitination
JA Jasmonic acid
JA-Ile Jasmonoyl-L-isoleucine
JJW JAV1–JAZ8–WRKY51
LOX Lipoxygenase
LncRNAs Long non-coding RNAs
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MeJA Methyl jasmonate
miRNAs MicroRNAs
MAMPs Microbe-associated molecular patterns
NADPH Nicotinamide adenine dinucleotide phosphate
OS Oral secretions
ACAs P-IIB autoinhibited Ca2+-ATPases
ECAs P-IIA ER-type Ca2+-ATPases
PRRs Pattern recognition receptors
PTI Pattern-triggered immunity
PAE9 Pectin acetylesterase 9
Vm Plasma membrane potential
RNS Reactive nitrogen species
ROS Reactive oxygen species
SA Salicylic acid
SMs Secondary metabolites
SDG Set domain group
siRNAs Short interfering RNAs
SAR Systemic acquired resistance
VOCs Volatile organic compounds
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