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Despite the wide application of the magnetic resonance imaging (MRI) technique, there
are no widely used standards on naming and describing MRI sequences. The absence
of consistent naming conventions presents a major challenge in automating image
processing since most MRI software require a priori knowledge of the type of the
MRI sequences to be processed. This issue becomes increasingly critical with the
current efforts toward open-sharing of MRI data in the neuroscience community. This
manuscript reports an MRI sequence detection method using imaging metadata and
a supervised machine learning technique. Three datasets from the Brain Center for
Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from
multiple research institutes, are used to build and test our model. The preliminary
results show that a random forest model can be trained to accurately identify MRI
sequence types, and to recognize MRI scans that do not belong to any of the known
sequence types. Therefore the proposed approach can be used to automate processing
of MRI data that involves a large number of variations in sequence names, and to
help standardize sequence naming in ongoing data collections. This study highlights
the potential of the machine learning approaches in helping manage health data.

Keywords: health data, MRI sequence naming standardization, data share and exchange, machine learning,
metadata learning, AI-assisted data management
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INTRODUCTION

Magnetic resonance imaging (MRI), as a non-invasive technology
that can provide detailed images of organs and tissues in the
body, has been routinely used in early detection and diagnosis
of various cerebral and cardiovascular diseases (Teipel et al.,
2013; Lemaître et al., 2015; Zhou et al., 2015; Abbasi and
Tajeripour, 2017). An MRI session is typically obtained by
a combination of different radiofrequency pulses and field
gradients’ settings from an MRI scanner, which results in multiple
MRI sequences, or scans, each providing a different perspective
of the examined tissues (Collins, 2016; Calle and Navarro, 2018).
Despite the wide applications of the MRI technique and efforts
to standardize their reporting (Manfredi et al., 2018), there
are no widely used standards on naming and describing the
MRI sequences. Different naming conventions have been used
in different institutes and/or research groups, and the naming
conventions could also be changed over time within the same
institutes. Moreover, software upgrades to the scanner itself may
accidentally necessitate changes to the naming conventions, even
mid-study. On the other hand, most MRI data processing and
pre-processing software packages require a priori knowledge
of the type of the MRI sequences to be processed, where the
file/folder names are typically used to identify a particular scan
type from an MRI session. For example, one needs to identify the
T1-weighted images and pass the file/folder names to FreeSurfer’s
recon-all command1. Even small variations, such as extra spaces
or mixed usage of hyphens and dashes, in sequence names,
can cause problems to computer software programs. Therefore,
the absence of consistent naming conventions presents a major
challenge in automating image processing and pre-processing
procedures. This issue becomes increasingly critical giving
the current efforts toward open sharing of MRI data in the
neuroscience community (Laird et al., 2005; Teeters et al., 2008;
Yarkoni et al., 2011; Hall et al., 2012; Poldrack et al., 2013;
Ferguson et al., 2014; Vaccarino et al., 2018), and the wide
interests in performing meta-analyses of neuroimaging studies
(Müller et al., 2018). The rapid growth of the volume and
heterogeneity of the data makes it unrealistic to process without
an automated approach.

One approach toward fully automatic processing of large
amounts of heterogeneous MRI data is to develop and deploy
standardized ontologies and protocols for data capture and
curation. There have been a number of efforts toward this
direction (Teeters et al., 2008; Poldrack et al., 2013; Van
Horn and Gazzaniga, 2013; Rotenberg et al., 2018; Vaccarino
et al., 2018). The OpenfMRI project (Poldrack et al., 2013)
developed specific file naming schemes for organizing task
based functional MRI data. At Brain-CODE, we have developed
various quality assurance and quality control (QA/QC) pipelines
to help enforce standard naming of MRI data from different
study programs and research institutes (Vaccarino et al., 2018).
The Brain Imaging Data Structure (BIDS) standard was also
proposed to organize and describe neuroimaging data where
the specification covers MRI sequences from most common

1https://surfer.nmr.mgh.harvard.edu

experiments (Gorgolewski et al., 2016; Niso et al., 2018). The
success of this approach, however, requires a global coordination
to develop effective and practical standards, and requires early
planning and consistent quality control through data acquisition
and sharing processes. While this approach is promising for
collecting prospective data, the challenge for identifying and
reorganizing existing data still remains. Previously, aligning
non-standardized names involved a lot of manual effort, which
represents a significant portion of work in data platform
development (Poldrack et al., 2013; Van Horn and Gazzaniga,
2013). To help fulfill the needs for automating data processing,
the proposed work adopts a machine learning approach to
identify the type of MRI sequences using imaging metadata.

The neuroscience community has used two principal data
formats for MRI data storage. The Digital Imaging and
Communications in Medicine (DICOM) format was proposed in
the 1980s to help manage medical image information, and it has
been adopted widely by medical imaging equipment vendors and
healthcare organizations (Mildenberger et al., 2002). The DICOM
standard is very comprehensive and flexible. It uses a tag-based
format to encode information about the patient/participant,
the device, and imaging sequence specifics, in the imaging file
headers. In recent years, a neuroimaging informatics technology
initiative (NIfTI) format has also been widely adopted2. The
NIfTI standard specifies a relatively limited space (348-bytes) for
data headers. Although it has been proposed that more detailed
metadata regarding the imaging sequences should be provided
in conjunction to the image data in NIfTI format (Turner and
Laird, 2012; Poldrack et al., 2013; Gorgolewski et al., 2016), there
is no widely used systematic framework for generating imaging
metadata when performing DICOM to NIfTI conversions. In
addition, the DICOM to NIfTI conversion may need different
procedures for different imaging sequences (Li et al., 2016).
Therefore the DICOM file format is more suitable for the purpose
of identifying MRI sequences.

By the DICOM standard, the embedded metadata in DICOM
headers should, in theory, be able to identify the type of an MRI
sequence3. HeuDiConv4 and ReproIn5 are two recent software
projects conducted to facilitate identifying MRI sequences using
built-in or user-provided criteria. In practice, however, some
DICOM headers could be left blank or even be filled incorrectly.
It has previously been reported that over 15% of images
contained false headers that can cause incorrect categorization
of sequences (Gueld et al., 2002). This is also in line with
our experience with Brain-CODE data platform (Vaccarino
et al., 2018). A check of data collected by two Brain-CODE
study programs indicated that nearly half of the sequences
collected missed the DICOM header (0018,0024) Sequence Name,
which represents the manufacturer’s designation of the sequence
names6. This makes it rather challenging to set up predetermined

2https://nifti.nimh.nih.gov
3https://www.dicomstandard.org/current
4https://github.com/nipy/heudiconv
5https://github.com/ReproNim/reproin
6https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/
01-magnetic-resonance-imaging-data.html
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criteria to identify MRI sequence types. In addition, some
sequences like MR Localizer may have the same values in some
relevant DICOM headers as other sequences, which can cause
incorrect labeling for automated sequence identification. On
the other hand, with the rich metadata encoded in DICOM
headers, there could be multiple routes to determine the type
of an MRI sequence. Even with a subset of the DICOM headers
missing and/or being incorrect, it is still possible to identify the
type of an MRI sequence by other existing DICOM headers.
This is a classic machine learning classification problem where
the DICOM header fields provide a rich set of features to
classify the MRI scans. In the proposed work, we adopted
the random forest technique, which is a supervised machine
learning algorithm that leverages a large number of relatively
uncorrelated decision paths to determine its prediction (Breiman,
2001), to predict the MRI sequence types. The random forest
algorithm has been shown to have strong fault tolerance and
high prediction accuracy for prediction data with distorted
information (Kaur and Malhotra, 2008).

In this manuscript, we report our first attempt to use
a random forest model and imaging sequence metadata
to identify MRI sequence types. Three datasets from the
Brain-CODE data platform, each involving MRI data with
nominally aligned dataset-specific MRI sequences from multiple
scanners/institutes, are used to build and test our model.
The datasets are provided by three independent disease
programs funded by the Ontario Brain Institute: the Ontario
Neurodegeneration Disease Research Initiative (ONDRI), the
Canadian Biomarker Integration Network in Depression (CAN-
BIND), and the Province of Ontario Neurodevelopmental
Disorders Network (POND). The preliminary results show that a
random forest-based model can be trained to accurately identify
MRI sequence types, and to flag MRI sequence types that are
unknown to the model.

MATERIALS AND METHODS

Data Preparation
Dataset Description
We used MRI data from the three independent research
programs, ONDRI, CAN-BIND, and POND, from Brain-CODE.
These data were scanned at multiple research institutes and
hospitals across Canada, and were then uploaded to the Stroke
Patient Recovery Database (SPReD)7, an XNAT (Marcus et al.,
2007) based imaging server in the Brain-CODE platform. There
were a total of 1,853 subjects, and 3,642 imaging sessions collected
by the end of the year 2019, when the metadata was prepared for
the present study. The counts of research sites, subjects, sessions,
and scans are summarized in Table 1.

Data Labeling
Tremendous efforts have been made to standardize the naming of
the data collected and stored on Brain-CODE. For MRI data, we
have developed pipelines to check the scan name and parameters,

7https://spred.braincode.ca

aligning different naming conventions from different research
institutes into Brain-CODE standard. For the present work, other
major challenges are posed by scans that were not required by the
study programs but were uploaded to the platform as ancillary
data, as well as retrospective data acquired before corresponding
naming standards had been developed and implemented. This
represents over 30% of the total sequences used in this study,
most of which have been labeled manually. There are 2,350 scans
(261 from CAN-BIND and 2,089 from POND project), most
derived images, out of a total of 34,691 scans that we were not able
to identify. These scans were excluded from the current study.
Table 2 summarizes the number of scans of each MRI sequence
type used in the present study.

Machine Learning Procedures
Feature Selection
A list of sequence metadata, including sequence specific headers,
timing parameters, spatial and contrast properties, and hardware
manufacturers, of DICOM images are selected as the features for
the present machine learning study, as shown in Table 3. The
selection of the features is primarily guided by the neuroscience
domain knowledge from the authors, since the relationships
between the various image metadata are better understood by

TABLE 1 | A summary of the datasets used in this study.

ONDRI CAN-BIND POND Total*

Sites 14 10 5 29

Subjects 542 621 690 1,853

Sessions 1,475 1,369 798 3,642

Scans 12,326 12,958 9,407 34,691

∗Note there might be overlap in research sites from the three research
programs. We did not try to remove the duplicates when counting the sites in
the present study.

TABLE 2 | A summary of the magnetic resonance imaging (MRI) sequences for
the machine learning model training and testing*1.

Sequence description MRI sequence Count

T1 weighted images 3DT1 3,807

Fluid attenuated inversion
recovery images with T2
contribution

2D FLAIR 1,458

Proton density and T2 weighted
images

PD/T2 2,384

T2star weighted images T2-star 1,773

Diffusion tensor images DTI 9,385

Functional MRI images fMRI 7,482

Multiple image types*2 junk 4,589

Arterial spin labeling perfusion
images

ASL 87

Field mapping data Field Map 1,376

∗1Out of 34,691 sequences listed in Table 1, there were 2,350 scans (261 from
CAN-BIND and 2,089 from POND project), most derived images, that we were not
able to identify and label. These sequences are excluded from the current study.
∗2This “junk” category includes sequences of Localizer, AAHead_Scout,
Calibration, etc., that are not typically used for subsequent research.
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TABLE 3 | A list of the MRI sequence metadata used as features in the current
machine learning model.

Sequence metadata DICOM headers

1 Scanning sequence (0018,0020)

2 Sequence variant (0018,0021)

3 Scan options (0018,0022)

4 MR acquisition type (0018,0023)

5 Sequence name (0018,0024)

6 Image type (0008,0008)

7 Repetition time (0018,0080)

8 Echo time (0018,0081)

9 Inversion time (0018,0082)

10 Flip angle (0018,1314)

11 Pixel bandwidth (0018,0095)

12 Image orientation (0020,0037)

13 Diffusion b-values*1

14 FOV X

15 FOV Y

16 MultiEcho_TE1

17 MultiEcho_TE2

18 Scanner manufacturer (0008,0070)

These metadata include sequence specific tags (1–6), timing parameters (7–
9, 16, 17), etc., that are encoded in DICOM headers, and some computed
properties (14, 15). The corresponding DICOM headers are also presented in the
table when available.
∗1Diffusion b-values are encoded in different DICOM headers depending on the
scanner manufacturer. For GE, Philips, and Siemens scanners, this attribute is
encoded in (0043,1039), (2001,1003), and (0019,100c), respectively.

domain experts, rather than the machine learning algorithms.
In comparison with data-driven feature selection, domain
knowledge guided feature selection can help prevent the problem
of overfitting where the constructed models may not reflect the
true relationships in the data set (Groves, 2013). The selected
list of features has also been validated by the feature importance
extracted from the constructed random forest model (see section
“Feature Importance”).

A few criteria that we used for selecting the features listed in
Table 3 are as follows.

(1) The features need to be sequence relevant.
(2) The features need to be machine generated or programmed

properties. Any notes or comments made by humans,
including DICOM header (0008,103E), which is commonly
used for manually identifying sequence types, are not
used in this study.

(3) The features have to exist in the majority of the scans. For
example, although the 3rd and 4th gradient echoes can be
useful in identifying relevant sequences, they only exist in
a very small fraction of the scans. Therefore, only the first
two gradient echoes are selected in this study.

All the selected features are retrieved from the SPReD
platform through a programming interface provided by XNAT
(Marcus et al., 2007). We note all these metadata represent the
properties of the image itself and they can also be obtained from
most other DICOM tools.

Feature Engineering
The selected features include metadata in numeric format
(mainly MRI timing parameters) and in string format. We used
the following feature engineering approaches to handle missing
data, empty fields, and categorical features.

(1) Missing values are replaced with 1,000,000 for both
categorical and numerical features, where it represents
infinity in the latter case.

(2) Empty values are simply filled with the string “empty.”
Here we need to differentiate between empty and missing
values where empty values sometimes could mean a header
does not have the corresponding value in some scans.

(3) All categorical features are firstly transformed into
numerical values that represent the indices of each label
in the category. One-hot encoding approach is used to
map the categorical features to binary vectors (Harris
and Harris, 2012). This approach checks each feature and
identifies the total number of distinct values of that feature.
If a feature has n distinct values, it will transform the
feature into n columns where each column contains 0 or
1 indicating the absence or presence of the specific value.
The transformed binary vector is then ready to fit and train
the random forest model.

Hyperparameter Tuning
The random forest algorithm has several tunable
hyperparameters such as the number of decision trees
(numTrees), the maximum depth of each tree (numDepths),
the maximum number of bins to discretize continuous features
(numBins), and an impurity measure used to decide the optimal
split from a root node (Breiman, 2001; Karalis, 2020). To
optimize the performance of the random forest algorithm, we
used a cross-validation method to tune three most relevant
hyperparameters, numTrees (2–64), numDepths (2–24), and
numBins (2–32). Other hyperparameters used default values
from the implementation of machine learning library MLlib
Spark 2.3.1 (Meng et al., 2016; Zaharia et al., 2016). An exhaustive
grid search has been performed with a step size of 2 for each of
the three hyperparameters, with a randomly selected 50 scans of
each sequence type in Table 2 as the training dataset and the rest
scans as the testing dataset. In other words, the training dataset
includes 450 scans and the testing dataset includes 29,891 scans.
We used the relatively small size of the training data because
the prediction accuracy is too high to reflect the impact of the
hyperparameters when the size of the training data reaches only
∼100 scans from each sequence type, as will be shown below.

The cross-validation results show that the model can get a
very good accuracy with numTrees = 40, numDepths = 8, and
numBins = 16. Figure 1 presents the result of a grid search
of numTrees and numDepths with numBins = 32, where we
can see that the accuracy of the model reached a plateau with
roughly numTrees = 32 and numDepths = 8, or numTrees = 24,
and numDepths = 16. In the following model training and
testing processes, we used numTrees = 100, numDepths = 16,
and numBins = 32. Note the two latter hyperparameters are the
maximum values that can be used in the model. We increased the
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FIGURE 1 | Results of a grid search of the number of trees and tree depths of
the random forest model, illustrating the hyperparameter tuning processes.
The number of bins were fixed at 32 in the calculations. The prediction
accuracy was represented by the scale of the colors showing on the right
side. The dashed line (drawn manually to serve as a guide to the eye)
represents the approximate point where the prediction accuracies plateaued.

numTrees to 100 since a higher number of trees can increase the
accuracy of the prediction and make the predictions more stable
but will not cause overfit the model.

Model Training and Testing
In the present work, we chose the sequences types 1–7 (Table 2)
to build and test the random forest model, and used sequences 8
and 9 to test if the trained model can flag the sequences that are
unknown to it. The latter test is critical in practical applications
of the proposed method since sequences that do not exist in a
training dataset are well expected.

Different sizes of training dataset, from 20 scans from each
sequence, to 1,200 scans from each sequence, were used to build
and test the model, while the rest of the scans were used as
the testing dataset. For example, for a training size of 20, the
training dataset includes 20 3DT1 scans, 20 2D FLAIR scans,
and so on, while the testing dataset includes 3,807 – 20 = 3,787
3DT1 scans (since there are 3,807 3DT1 scans in total, see
Table 2), 1,458 – 20 = 1,438 2D FLAIR scans, and so on.
Such disproportionated stratified sampling ensures an adequate
number of each sequence type in the training dataset, since
the collected dataset is imbalanced. Twenty independent runs
were performed on each size of training dataset, in order to
estimate the variations of the prediction accuracies. With the
manually selected list of features (section “Feature Selection”),
and the hyperparameters determined using cross-validation
method (section “Hyperparameter Tuning”), the trained model
could consistently predict the sequence type with very good
accuracy. Therefore, no additional optimization of the features
or hyperparameters was performed in the work.

We then used a model that was built from 1,200 scans from
each sequence type 1–7 to predict the scans of sequence types 8
and 9. The purpose of this step was to test whether the model
is able to recognize scans that do not belong to any of the
known sequence types. We calculated the prediction confidence

FIGURE 2 | The mean prediction accuracy (blue line) and standard deviation
(shaded area around the blue line) of the random forest model built from
different sizes of training datasets. The prediction accuracy is defined as the
fraction of the testing scans that were classified correctly. The X-axis (i.e., Size
of MRI Sequences) represents the number of scans from each type of
sequence 1–7 in Table 2, that are used in the training of the random forest
model. The standard deviations are calculated from 20 independent
computations. When the size reaches approximately 800, the standard
deviation is smaller than the width of the line in the figure, and the prediction
accuracy is consistently larger than 0.999.

of the scans. The prediction confidence, also known as prediction
probabilities, is the probability of an observation belonging to
the most likely class predicted by the model. We found that the
prediction confidences of these sequences are significantly lower
than that of predictions of known sequences. This suggested that
the prediction confidence could be used to flag unknown scans in
practical applications.

All the computations were performed on an in-house Spark
cluster using Spark 2.3.1 (Zaharia et al., 2016). We note that the
use of the Spark cluster is not essential for performing the present
study, as a typical machine learning model training and testing
process with the current dataset takes only about 3.5 mins on an
average personal computer (4 Cores and 8 GB of RAM).

RESULTS

Classification Accuracy
The relationship between the classification accuracy, i.e., the
fraction of correct predictions, of the testing dataset and the size
of the training dataset was shown in Figure 2. For each size of the
training dataset, 20 runs were performed independently to assess
the reproducibility of the machine learning procedure and the
variations of the prediction accuracy. From Figure 2, we can see
that the average accuracy grew rapidly with the increase of the size
of the training dataset. The standard deviation of the accuracies
also decreased rapidly in the meantime, until the value was too
small to be noticed from the plot.

When the number of the training sequences reached about 800
for each type of the selected MRI sequences, the classification
accuracies were steadily over 0.999. In other words, for every
10,000 sequences, less than 10 scans were predicted incorrectly.
Most of the incorrectly labeled scans are from category 7, “junk”
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type. This is because the category contains several sequence types
(Localizer, AAHead_Scout, Calibration, etc.) and the number of
the scans included in the training dataset represents the total
of all these sequence types, so the low performance is expected.
For example, when including 1,200 scans of each sequence type
in the training dataset, 36 scans were incorrectly labeled out of
442326 sequence predictions (99.99% accuracy). Out of the 36
scans, 34 of them are from the category 7, “junk”. The other two
incorrectly labeled scans are a 2D Flair scan and a PD/T2 scan. In
other words, a good prediction accuracy can be reached for every
sequence type that has been included in the training dataset, but a
larger number of “junk” scans is needed to reach similar accuracy
since the category contains several sequence types.

Feature Importance
The feature importance was extracted from the model built from
the training data with 1,200 of each of the sequence types 1–7 in
Table 2. Figure 3 shows the ranked feature importance. We can
see that (0018,0020) Scanning Sequence ranked the highest among
all the selected features, with an importance score >0.10. Other
sequence-specific DICOM headers such as (0018,0021) Sequence
Variant, (0018,0022) Scan Options, (0018,0024) Sequence Name,
etc., also have relatively high importance scores. These results
are expected since these DICOM headers are designed to
carry essential information about the MRI pulse sequence
types (Inglis, 2015). The timing parameters such as (0018,0080)
Repetition Time, (0018,0081) Echo Time, as well as echo time
parameters from Multi-Echo pulse sequences, also have very
high importance scores. The three parameters that have relatively
low importance scores are the scanner manufacturer, diffusion
b-values, and the inversion time. The low ranks of the latter
two attributes are apparently because they are only relevant
to a small set of sequences in the dataset used in the current
study. Nonetheless, they are essential to identify some sequence
types such as FLAIR and diffusion weighted images (King
et al., 2004). The attribute scanner manufacturer is also a
useful feature as some attributes, such as diffusion b-values,
are encoded in different DICOM headers depending on the
scanner manufacturers. Therefore, we kept all the manually
selected features listed in Table 3 in the model building and
testing processes.

As mentioned above, the training dataset were collected from
over 20 image centers by three different research projects. Each of
the selected features has many different variations, and covers a
wide range of parameter values. For example, for the 7,482 fMRI
scans, the TR value ranges from about 1,500 to 2,800 ms, the
sequence names have three different variations plus missing or
empty fields; for the 9,385 DTI scans, the TR value ranges from
about 3,800 to 14,000 ms, the sequence name have 148 different
variations. The prediction accuracy is nonetheless very high for
all the sequences. We note the sequence name here refers to the
DICOM header (0018,0024), which is generated automatically by
the vendor software. Another DICOM header (0008,103E), Series
Description, which is an explicit input from the technicians, is
usually used to identify the sequence type. The latter has been
excluded in our feature list because we have seen too much
arbitrariness from this field.

FIGURE 3 | Feature importance score. The feature importance score was
extracted from a model built from the training data with 1,200 scans from
each of the sequence types 1–7 in Table 2. The features are ranked by the
value of the importance score. The corresponding DICOM tags of these
features can be seen in Table 3.

Classification Confidence
Although the average prediction accuracy of the built model can
be very high, it is helpful to know the confidence of a prediction in
order to determine whether another, typically manual verification
step, is needed. Figure 4 presents the distribution of the
prediction confidence of the testing dataset, using the model
built from three different sizes of the training data. We can see
that with the increase of the size of the training dataset, the
prediction confidences clearly shifted toward 1.0. As shown in
Figure 4D, only a very small fraction (14%) of the training data
has a prediction confidence less than 0.8. The predictions with
low confidence are typically from scans that are missing relevant
DICOM headers. The overall prediction confidence is expected
to continue increasing as the size of the training dataset further
increases. However, the size of the training dataset in Figure 4D is
already very close to the population, 1458, of sequence 2D FLAIR
(see Table 2). Thus, we did not further increase the training
dataset in the present study.

Prediction of Unknown Classes
In MRI data collecting practices, it is common to see sequences
that do not exist in the training dataset. Therefore, a machine
learning model can only be used in production if it can recognize
the unknown sequences and report to the researcher that
these sequences cannot be processed automatically. To test the
model’s capability to recognize unknown classes, we used the
random forest model trained with 1,200 scans from each of MRI
sequences 1–7 (known classes) to predict the scans of sequence
types 8 and 9 (unknown classes) listed in Table 2. Figure 5 shows
the distribution of the prediction confidence. The prediction
confidence is mostly distributed in the range of 0.25–0.45 for
scans of sequence type 8, and in the range of 0.4–0.6 for scans
of sequence type 9. Comparing to the predictions of the known
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FIGURE 4 | The percent distribution of the prediction confidence of the
random forest model built from different sizes of the training datasets. From
(A–D), the training datasets consisted of 20, 100, 600, and 1,200 scans from
each of the sequence types 1–7 listed in Table 2. The data are collected from
20 separate computations.

FIGURE 5 | The percent distribution of the classification confidence on
predicting two unknown classes, (A) Arterial Spin Labeling (ASL), and (B) Field
Map scans. The random forest models are built from 1,200 scans from each
of the sequence types 1–7 listed in Table 2. The data are collected from 20
separate computations.

classes shown in Figure 4D, where the prediction confidences
concentrated toward 1, we can see that the prediction confidence
can be used to detect and report the MRI scans that do not belong
to any of the known sequence types.

In practice, one might encounter new sequences that have
similar parameters as one of those that were used to build the
model. For instance, fMRI and DTI sequences could have some

FIGURE 6 | The percent distribution of the classification confidence on
predicting two unknown classes, (A) fMRI, and (B) DTI scans. (A) The random
forest models are built from 1,200 scans from each of the sequence types,
1–5, and 7, listed in Table 2, i.e., without the fMRI scans. (B) The random
forest models are built from 1,200 scans from each of the sequence types,
1–4, 6, and 7, i.e., without DTI scans. The data are collected from 20 separate
computations.

identical parameters as they both rely on the echo-planer imaging
technique. Two additional models have been built, each excluding
the fMRI or the DTI sequences. The excluded sequences were
then treated as an unknown sequence for testing. Figure 6 shows
the distribution of the prediction confidence. When fMRI was
treated as an unknown sequence, 99.5% of the fMRI scans were
predicted to be DTI, and 0.5% were predicted to be in junk
category. When DTI was treated as an unknown sequence, 70%
of the scans were predicted to be fMRI, 27% were predicted
to be 2D Flair, and 3% were predicted to be PD/T2 scans. In
both cases, the prediction confidence is still mostly distributed
in the range of 0.3–0.6, sufficiently lower than the prediction
confidences for the known sequences shown in Figure 4D to
require further investigation.

DISCUSSION

Rapid advancements in neuroimaging technologies and data
storage technologies have offered new perspectives in studying
neuroscience problems (Frégnac, 2017; Landhuis, 2017). One of
the biggest challenges that all researchers in the field are facing
is to effectively identify/recognize the datasets that are available
to explore. We have tried a few methods, including k-means
clustering (Lloyd, 1982), association rule learning (Agrawal
et al., 1993), and a generalized correspondence analysis method
(Beaton et al., 2019), to separate the scans by grouping their
imaging parameters, but all these attempts were unsuccessful.
There are two possible reasons for this, (a) any value range could
be shared by multiple sequences, e.g., the value ranges of TR
for 3DT1, PD/T2, and fMRI scans in this dataset are 6.4–2,740,
2,017–16,000, and 3,800–14,000 ms, respectively; and (b) any of
the DICOM headers could be missing, e.g., nearly half of the
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sequences collected by two Brain-CODE study programs missed
the DICOM header (0018,0024), Sequence Name, as mentioned
above. Therefore it is very difficult to set up a predetermined
decision path to identify the MRI sequence types.

Here we used a random forest model, which uses all the
available features to establish multiple decision paths, and then
combine them together to make a final prediction. Using a
domain-knowledge guided approach, we selected a rather small
set of imaging metadata (Table 3) as the features for the random
forest algorithm, yet the trained models show high prediction
accuracies and high degrees of repeatability (Figure 2). Because
the metadata listed in Table 3 are based on our understanding of
the sequences collected by three research programs used in this
study, this list might need to be reduced or extended if the model
is used to predict scans of other new sequence types in the future.
For example, when dealing with high-resolution fMRI scans,
the parameter “Pixel Bandwidth” may need to be reconsidered,
otherwise low prediction confidence or even mislabeling could
be generated. Also, the list of features needs to be re-examined
if other data types such as computerized tomography (CT) and
positron emission tomography (PET) scans are included.

Extracting the relative feature importance as shown in
Figure 3 can be useful in selecting new features or removing
unnecessary features when investigating different datasets. It
requires specific attention to interpret the feature importance
since some of the features could be correlated to each other. For
the random forest algorithm, any of the correlated features can be
used to build the model. Once one of the features was used, the
importance of the other correlated features could be significantly
reduced. When interpreting the data, it can lead to the incorrect
conclusion that one feature is a stronger predictor than other
correlated features (Dormann et al., 2013). When working with
DICOM data, however, it is helpful to keep the correlated features
since it is common to encounter missing or incorrect values.

This preliminary study highlights the critical role of the size
of the training dataset. As expected, the model clearly gained
higher prediction confidence when trained with a larger size of
training dataset (Figure 4). In practical applications, a threshold
such as 0.8 and 0.9 of the classification can be defined and used
to flag the image sequences for researchers to verify. Despite the
fact that even with the largest training dataset in this study, 14%
of the scans were still predicted with a prediction confidence
less than 0.8, the trend shown in Figure 4 is nevertheless
promising. As more data were added into the training dataset,
there would be less and less predictions requiring manual
verification. Note since the random forest algorithm determines
its prediction by multiple relatively uncorrelated decision paths,
correct predictions can still be expected if a subset of the DICOM
headers of a scan are missing and/or incorrect, albeit with lower
confidence scores.

The built model is not able to predict the type of the sequences
that do not exist in the training data set, but it is necessary for the
model to be able to flag these sequences for manual classification
since it is common to encounter sequences that are unknown
to the model. We demonstrate that the prediction confidence
can be used to detect and report sequences that are unknown
to the model, where a very low prediction confidence would

be generated (Figures 5, 6). However, if the parameters of an
unknown sequence are highly similar or even identical to that of
a known sequence, mislabeling could occur. In such situations,
a second model that includes more relevant parameters, such as
series description and number of image frames, could be trained
to further separate the scans that are predicted as in the same
category by the first model.

We utilized Apache Spark and its machine learning library
MLlib to accelerate the computations in the present study (Meng
et al., 2016), so that each model training and testing process can
be completed in a few minutes. The random forest algorithm
used in this work, is one of the most popular machine learning
algorithm and it has been implemented in many different
computer programming languages including Python library
scikit-learn (Pedregosa et al., 2011) and R library caret (Kuhn,
2008), and both libraries are widely used in the neuroscience
community. The proposed method can be readily used by other
research groups. As most image processing software packages
require a priori knowledge of the types of the MRI sequences
to be processed, the current machine learning approach can be
used as a pre-processing step for running the image processing
software. In addition, it can also be used in data platforms to
standardize sequence naming, and to help convert the existing
data into a standardized format such as BIDS (Gorgolewski et al.,
2016; Niso et al., 2018).

CONCLUSION

Inconsistencies in MRI sequence naming have been a known
issue in the neuroscience community for a long time. This
issue becomes increasingly pressing because of the rapid
growth of the volume of data that are mainly driven by
technological advancements and data sharing efforts. In this
study, we investigated the possibility of using imaging metadata
to automatically identify the type of MRI sequences through
machine learning approaches. We used MRI data that were
collected from multiple institutes and scanners from over 10 years
of time. The preliminary results showed that a random forest
model can be trained to accurately (>99.9%) predict MRI
sequence types. We demonstrated that the prediction confidence
can be used to recognize scans that do not belong to any sequence
type that are known to the model. This approach has the potential
to allow standardizing sequence naming and processing imaging
sequences automatically.

Additionally, this study highlights the importance of the
size of the training dataset, where the prediction confidence of
known classes clearly increases with increasing the size of the
training dataset. Efforts are underway to expand the training
dataset and implement the current machine learning model into
a portable software that can be easily integrated into other image
processing software. With the help of the proposed method, an
automatic image categorization process that requires minimal
human interventions is well expected. The current procedure can
readily be adapted for identifying other image data, such as CT,
PET, X-ray and ultrasound, in DICOM formats. Such adaption
depends on the availability of large amounts of pre-labeled data
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for training the classifier. In a broader context, the metadata
learning approach used here can be expected to play an important
role in organizing and managing medical imaging data in the
age of big data.
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