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Abstract
Neurons demand vast and vacillating supplies of energy. As the key
contributors of this energy, as well as primary pools of calcium and signaling
molecules, mitochondria must be where the neuron needs them, when the
neuron needs them. The unique architecture and length of neurons, however,
make them a complex system for mitochondria to navigate. To add to this
difficulty, mitochondria are synthesized mainly in the soma, but must be
transported as far as the distant terminals of the neuron. Similarly, damaged
mitochondria—which can cause oxidative stress to the neuron—must fuse with
healthy mitochondria to repair the damage, return all the way back to the soma
for disposal, or be eliminated at the terminals. Increasing evidence suggests
that the improper distribution of mitochondria in neurons can lead to
neurodegenerative and neuropsychiatric disorders. Here, we will discuss the
machinery and regulatory systems used to properly distribute mitochondria in
neurons, and how this knowledge has been leveraged to better understand
neurological dysfunction.
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Introduction
The transport of mitochondria is critical to a neuron’s health. 
Although frequently referred to as “the powerhouse of the cell”, 
mitochondria do much more than produce ATP. In addition to being 
the cell’s major energy provider, mitochondria are responsible for 
storing and buffering Ca2+, detoxifying ammonia, and produc-
ing some steroids1, heme compounds2, heat, and reactive oxygen  
species. They are vital to the metabolism of neurotransmitters 
glutamate and gamma-aminobutyric acid (GABA)3, and send sig-
nals for apoptosis, proliferation, and cell survival4. They even boast 
their own DNA and protein synthesis machinery as a vestige of 
their previous life as bacteria. It is thus unsurprising to learn that  
precise control of mitochondrial number, health, and distribution is 
especially critical to the neuron, which is a complex cell with high 
energy and regulatory demands.

Several features distinguish neurons from other cells. First, they 
have a long, thin axon—the longest axon in the human body 
can extend over one meter—and contain many areas of sub- 
specialization, like the pre-synapse, post-synapse, growth cones, 
and nodes of Ranvier5, each with different metabolic needs. Second,  
as the carriers of synaptic information, neurons have ever- 
changing energy and Ca2+ buffering demands, especially at their 
terminals. Finally, because neurons are post-mitotic and will stay 
with the organism for the duration of its life, they must be pro-
tected from excitotoxicity and kept in a state of homeostasis as 
long as possible. The appropriate allocation and sustenance of  
mitochondria are essential to fulfilling the many demands of the 
neuron, and keeping it in good health.

To meet the vacillating needs of neurons, about 30% to 40% of 
these spry organelles are in motion at any given time6–9. Properly 
distributing mitochondria throughout a neuron, however, is com-
plicated by the fact that mitochondria are primarily produced in the 
soma, with most of their proteins encoded by nuclear DNA, but 
are needed as far away as the synaptic terminal. Static mitochon-
dria pool at or near synapses, which may be important for rapid 
neuronal firing, while passing mitochondria may be recruited to 
support prolonged energy needs and repetitive neuronal firing10–12. 
Additionally, damaged mitochondria produce reactive oxygen 
species, which can be toxic to the cell, and these dysfunctional 
mitochondria must be repaired by fusing with new mitochondria 
transported from the soma, be returned to the soma for degradation 
in a process termed mitophagy, or be cleared through mitophagy  
in neurites in situ13. Whether providing a service to the neuron, or 
needing clearance to prevent damage to the neuron, mitochondria 
must travel long distances and know precisely where and when 
to stop. When their transport machinery breaks down or signals 
regulating this machinery cannot be relayed, the consequence 
can be injury to or even death of the neuron9,14–17. Here we will 
review the molecular mechanisms underlying mitochondrial  
transport in neurons, and what happens when they are disrupted.

Transport machinery
Much like a train, organelle transport requires a track, a motor, 
and a cargo. For mitochondria—the cargo—the overwhelming 
majority of their tracks are microtubules, which in mammalian 
neurons have their plus ends oriented toward the axon terminal, 

and their minus ends toward the soma (although this homogeny 
is not the case in dendrites)18–20. This uniform polarity makes neu-
ronal axons an especially useful model for studying organelle 
transport. The motors used to transport mitochondria depend on 
the direction in which they need to travel. In general, mitochon-
dria move in the anterograde direction (away from the soma) using 
a family of kinesin motors, and move in the retrograde direction 
(toward the cell body) using the dynein motor21. While kinesins 
and dynein are also used to carry other cargos, the motor adaptors 
that anchor the motor and cargo together are cargo-specific, allow-
ing for the regulation of movement by particular cellular signals.  
In addition to microtubules, mitochondrial movement can be pow-
ered along actin filaments by myosin motors, a process that is 
required for short-range movement, and for opposing movement 
along the microtubules22–24.

Anterograde movement with the kinesin heavy chain 
complex
The best-characterized mitochondrial transport complex to 
date uses kinesin heavy chain (KHC, a member of the kinesin-1  
family) as its motor, and Miro and milton as its motor adaptors. 
Miro stands for “mitochondrial Rho” and belongs to the atypical 
Rho (Ras homolog) family of GTPases (RhoT1/2 in mammals). 
Miro is anchored to the outer mitochondrial membrane (OMM) 
via its carboxy-terminus transmembrane domain. Miro binds to  
milton (trafficking protein, kinase-binding, or TRAK1/2 in mam-
mals), which in turn binds to the carboxy-terminus of KHC25–27. 
Milton was identified in a Drosophila screen for blind flies and 
was named after the great poet and polemicist John Milton, who 
was also blind28. Together, Miro and milton facilitate anterograde  
mitochondrial movement along microtubules by connecting  
mitochondria to KHC (Figure 1a). When either Miro or milton is 
mutated in animal models, mitochondria are trapped in the soma 
and lose the ability to move out into the axons9,14–16,26,28.

Miro and milton are not the only adaptors that can link  
mitochondria and KHC. Syntabulin can bind directly to the OMM 
and KHC, and disruption of syntabulin function has been shown 
to inhibit the anterograde transport of mitochondria in neurons29. 
Similarly, disrupting fasciculation and elongation protein zeta-1 
(FEZ1), and RAN-binding protein 2 (RANBP2) also affects  
mitochondrial distribution because of their association with  
kinesins, possibly KIF3A and KIF5B/C, respectively30–34.

Mutations in KHC have been shown to reduce anterograde  
mitochondrial movement but do not eliminate it entirely, which  
suggests that other kinesin motors may also play a role in anterograde 
mitochondrial motility21. For example, kinesins from the Kinesin-3 
family KIF1Bα and KLP6 may interact with KIF1 binding pro-
tein (KBP) to transport mitochondria35–38. KIF1B can transport 
mitochondria along microtubules in vitro, and mutations in Klp6 
inhibits anterograde mitochondrial motility into neurites; however, 
the roles of these other kinesins await further clarification.

Retrograde movement with the dynein complex
Dynein is thought to act as the retrograde motor for microtubule- 
based mitochondrial movement, although far less is known about 
the mechanisms underlying its action. In contrast to the host of 
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kinesins available for anterograde transport, there is only one iden-
tified dynein motor; however, dynein’s larger and more complex 
structure has made it difficult to study. Dynein has been shown to 
form a complex with dynactin, and this complex has been shown 
to also interact with milton/TRAK2 and with Miro39, which lends 
support to dynein’s role in mitochondrial transport (Figure 1b). 
Interestingly, dynein movement is also thought to depend on 
kinesin-1, as mutation in kinesin-1 reduces retrograde movement of  
mitochondria21.

Actin-based movement with myosin complexes
A small though not insignificant number of mitochondria are also 
transported along actin filaments22. This is more common in actin-
enriched neuronal compartments, like growth cones, dendritic spines,  
and synaptic boutons. Myosins are actin-based motors, and the 
myosin Myo19 has been shown to anchor directly to the OMM, and 
regulate mitochondrial motility24, 40. Myosins V and VI have also 
been shown to play a role in mitochondrial motility by opposing 
microtubule-based mitochondrial transport23, although whether these 
myosin motors attach directly to mitochondria or require a motor  
adaptor remains unknown (Figure 1c). WAVE1 (WASP family 
verprolin homologous protein 1), which regulates actin polymeriza-
tion, has been shown to be critical for mitochondrial transport in 
dendritic spines and filopodia—areas that are actin-rich—and there-
fore may be involved in the actin-based transport of mitochondria41.

Anchoring mitochondria
If 30% to 40% of mitochondria are in motion at any given 
time, then more than half of mitochondria are static. While  

Figure 1. Schematic representation of mitochondrial transport machinery. (a) The primary motor/adaptor complex mediating anterograde 
mitochondrial transport along microtubules (purple), including kinesin heavy chain (KHC) (red), Miro (orange), and milton (blue). (b) The 
machinery mediating retrograde mitochondrial transport along microtubules (purple), including dynein (green), dynactin (gold), and a potential 
motor adaptor, Protein X (pink). Protein X could be the milton/Miro complex39. (c) Mitochondrial movement along actin filaments (olive), using 
a myosin motor (fuschia) and a potential motor adaptor, Protein X (yellow).

understanding of how stationary pools of mitochondria are gen-
erated is still  nascent, one protein, syntaphilin, stands out.  
Syntaphilin serves  as a molecular brake, docking mitochondria by 
binding to both the mitochondrial surface and to the microtubule42. 
Both kinesin-1 and the dynein light chain component LC8 have 
been shown to regulate this mechanism43,44. Intriguingly, a recent 
study using optogenetics has shown that the mitochondrial dance 
between mobility and stabilization depends on the balance of forces 
between motors and anchors, rather than all-or-none switching45.

Regulation of the kinesin heavy chain/milton/Miro 
complex
Ca2+

The ability of mitochondria to temporarily stop where they are 
needed is just as important as their ability to move. When cytosolic 
Ca2+ concentration is elevated, Ca2+ binds to the EF hands of 
Miro and triggers a transient and instantaneous conformational 
change in the KHC/milton/Miro complex. This conformational 
change causes dissociation of either the whole complex from  
microtubules9, or KHC from mitochondria17, which arrests  
movement of mitochondria. When Ca2+ concentration is lowered, 
Ca2+ is removed from Miro, and mitochondria are reattached to 
microtubules by the complex and can start moving again. The sensi-
tivity of mitochondrial movement to Ca2+ is likely a means by which 
mitochondria can be recruited to areas of high metabolic demand  
or low local ATP, like post-synaptic specializations and growth 
cones. During glutamate receptor activation, mitochondria are 
recruited where Ca2+ influx is increased, which confers neurons 
with resistance to excitotoxicity9,17. Interestingly, brain-derived 
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neurotrophic factor (BDNF) has recently been shown to arrest 
mitochondrial motility via Ca2+ binding to Miro1 in cultured  
hippocampal neurons46.

Glucose
Glucose has recently been shown to influence mitochondrial  
motility via the KHC/milton/Miro complex. The small sugar UDP-
GlcNAc is derived from glucose through the hexamine biosynthetic 
pathway. UDP-GlcNAc is affixed to milton by O-GlcNAc trans-
ferase (OGT), in a process called O-GlcNAcylation47. Extracellular 
glucose concentration or OGT activity can modulate mitochondrial 
motility through O-GlcNAcylation of milton. This mechanism  
links nutrient availability to mitochondrial distribution, which could 
be a mechanism by which neurons maintain a balanced metabolic 
state.

PINK1/Parkin
When mitochondria are severely damaged, they undergo  
mitophagy, a crucial cellular mechanism that eliminates depo-
larized mitochondria through autophagosomes and lysosomes. 
Damaged mitochondria must be stopped prior to the initiation 
of mitophagy. To accomplish this, mitochondrial depolarization  
activates PINK1 (PTEN-induced putative kinase 1)-mediated 
phosphorylation of Miro16,48, which subsequently triggers Parkin- 
dependent proteasomal degradation of Miro, thus releasing the 
mitochondria from its microtubule motors16,49. It is likely that stop-
ping mitochondria in this manner is an early step in the quarantine 
of damaged mitochondria before degradation. In fact, this PINK1-
mediated phosphorylation of Miro has been shown to protect 
dopaminergic neurons in vivo in Drosophila50. PINK1 and Parkin 
can also work in concert to remove damaged mitochondria through 
local mitophagy in distal axons, which would obviate the need for 
the mitochondria to be transported all the way back to the soma, 
and instead require the recruitment of autophagosomes to the dam-
aged mitochondria13. How a cell chooses between transporting a 
mitochondrion back to the soma or using local mitophagy when  
it is damaged in the axon remains an outstanding question.

The dynamics of mitochondrial fission and fusion also plays a  
central role in PINK1/Parkin-mediated mitophagy. For example, 
mitofusin, a large GTPase that regulates mitochondrial fusion, is a 
target of the PINK1/Parkin pathway. Degradation of mitofusin pre-
vents mitochondria from being able to fuse, and they instead frag-
ment, a critical step prior to mitophagy51–55. An in-depth discussion 
of the role of mitochondrial dynamics in quality control merits its 
own review, and an excellent F1000 Faculty Review and two others 
are recommended in the References section56–58.

Other milton/Miro regulators
In humans, milton is encoded by two different genes: TRAK1 and 
TRAK2. It has been reported that TRAK1 binds to both kinesin-1  
and dynein, while TRAK2 predominantly favors dynein39. In  
Drosophila, milton has several splicing variants, one of which 
(milton-C) does not bind to KHC26. These varying forms of  
milton may play an important role in regulating the KHC/milton/
Miro complex.

Another regulator that merits mentioning is HUMMR (hypoxia 
up-regulated mitochondrial movement regulator), whose expres-
sion is induced by hypoxic conditions. HUMMR has been shown to  
interact with the KHC/milton/Miro complex, and increases the ratio 
of anterograde to retrograde movement of mitochondria59. Simi-
larly, a family of proteins encoded by an array of armadillo (Arm) 
repeat-containing genes has been shown to bind to milton/Miro and 
regulate mitochondrial motility60.

It is worthwhile to note that mitochondrial fission and fusion also 
affect mitochondrial motility. The same mitofusin mentioned pre-
viously also binds to milton/Miro, and knockdown of mitofusin 2 
has been shown to inhibit mitochondrial motility61. Additionally, 
transient fusion has been shown to promote mitochondrial 
movement62.

Other regulators
The list of possible mitochondrial transport regulators burgeons 
daily, although thorough mechanisms remain scarce. For example, 
nerve growth factor can cause accumulation of mitochondria to 
its site of application63,64. Another growth factor, lysophosphatidic 
acid, can inhibit mitochondrial movement65. Intracellular ATP lev-
els regulate mitochondrial motility, which decreases when close to 
synapses, and local production of ADP can recruit more mitochon-
dria to areas requiring more ATP66,67. Increased cAMP can increase 
mitochondrial motility68. Pharmacological activation of AMP- 
activated protein kinase (AMPK) can promote anterograde  
movement of mitochondria for the formation of axon branches69. 
Activation of the serotonin receptor increases mitochondrial  
movement via the AKT-GSK3β (Akt-glycogen synthase kinase 3β) 
pathway6, and conversely, dopamine and activation of the dopamine 
receptor D2 can inhibit mitochondrial movement via the same 
AKT-GSK3β pathway70,71. One recent study shows that GSK-3β 
directly regulates dynein72, while another study shows that it pro-
motes anterograde movement68. This list of molecules likely skims 
the surface of all the signals and sensors involved in mitochondrial 
motility, which are yet to be uncovered.

Implications for neurological disorders
Because mitochondria are critical for energy production, cal-
cium buffering, and cell survival pathways, it is not surprising to 
learn that impaired mitochondrial movement has been linked to  
neuronal dysfunction and neurological disorders73–75. The long dis-
tance travelled by mitochondria in neurons, as compared to in other 
cells, may account for the fact that neurons are more vulnerable 
to impairments in mitochondrial transport. Altered mitochondrial 
motility may provide an early indication of neuronal pathology  
prior to cell death, either because motility is directly affected 
or because it is altered as a consequence of other mitochondrial  
malfunctions.

Neurodegenerative diseases
Aging itself has been shown to decrease neuronal mitochondrial 
motility in mice, and several age-dependent neurodegenerative  
diseases have been linked to mitochondrial motility defects76. 
Mutations in the previously mentioned PINK1 and Parkin are 
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both causes of familial Parkinson’s disease (PD)77,78. In individuals  
lacking either functional PINK1 or Parkin, a failure to isolate, stop, 
and remove the damaged mitochondria may contribute to neuro-
nal cell death. Unpublished work using patients’ samples from our 
laboratory also suggests that neurodegeneration in non-PINK1/ 
Parkin-related PD cases may arise in a similar manner, and that 
stopping damaged mitochondrial motility is neuroprotective. 
This finding highlights the broader implications of mitochondrial  
motility in neuronal health and pathology.

The pathological forms of amyloid beta and tau, the chief mark-
ers of Alzheimer’s disease (AD), have both been shown to inhibit  
mitochondrial motility in several AD models79–83. Superoxide dis-
mutase 1, soluble (SOD1), fused in sarcoma (FUS), C9orf72, and 
TAR DNA-binding protein 43 (TDP-43) mutations, which cause 
familial amyotrophic lateral sclerosis (also called Lou Gehrig’s 
disease), have also been shown to impair mitochondrial transport 
in mice, flies, and cultured neuronal models84–91. Mutant hunting-
tin protein, with the polyglutamine expansions characteristic of 
Huntington’s disease etiology, can act to “jam traffic” by mechani-
cal obstruction, and may also bind to milton or even to the mito-
chondria itself to disrupt mitochondrial motility92–94. Mutations in  
mitofusin 2 causing Charcot-Marie-Tooth disease alter mitochon-
dria movement95, and finally, mitochondrial motility defects have 
also been observed in models of hereditary spastic paraplegia, a 
disease characterized by axonal degeneration96,97.

Neuropsychiatric disorders
A few psychiatric disorders have also been linked to mitochon-
drial motility defects. Mutations in disrupted in schizophrenia 1 
(DISC1) may contribute to both schizophrenia and some forms of 
depression98. DISC1 complexes with TRAK1/milton and Miro1 
to modulate anterograde transport of mitochondria99,100, and its  
interactors NDE1 and GSK3β have recently been recently shown 
to associate with TRAK1/milton and similarly play a role in mito-
chondrial motility68. DISC1 also interacts with the previously 
mentioned FEZ1101, which binds to kinesins25,28. Among sev-
eral causes, depression can be attributed to a loss of serotonin102.  
Interestingly, the application of serotonin to cultured  
hippocampal neurons has been shown to increase mitochondrial 
motility6.

Closing remarks
The proper transport of mitochondria in neurons is critical to the 
homeostasis of the cell. Many questions in this field, however, 
remain to be answered. On a basic level of investigation, a more 
thorough understanding of the machinery—like the dynein motor, 
myosin motors, and the signals and adaptors that regulate this  
complex system—is still desperately needed.

A significant higher-level question is: how does the cell decide  
what to do with a damaged mitochondrion in the distal segment  
of an axon? The cell has several options: return the mitochon-
dria to the soma for lysosomal degradation, which requires long- 
distance retrograde transport; degrade the mitochondrion via local 
mitophagy, which requires recruitment of autophagosomes to  

mitochondria and fusion of autophagosomes with lysosomes in  
the axon; or send a healthy mitochondrion from the soma via 
anterograde transport to repair the damage by fusing with the 
unhealthy mitochondrion. Could this decision be made on the 
basis of the nature or severity of the damage to the mitochon-
drion? Does this decision take into account the relative energy 
expended? What are the signals and molecules that execute this  
decision? These actions must also be influenced by the local meta-
bolic state, de novo protein synthesis, and neuronal activity in 
extremities far from the cell body.

It is also crucial to explore the translational implications of these 
findings. What of this knowledge can be leveraged for therapeutic 
benefit? Perhaps mitochondrial motility could be used as a novel 
phenotypic readout to screen for more effective treatments for 
neurological disorders, as well as a way to diagnose the disease 
and monitor its progression. A more comprehensive understanding 
of the molecular mechanisms underlying mitochondrial transport 
will prove invaluable as it provides novel targets, like the KHC/ 
milton/Miro complex, for diagnostic innovation and therapeutic 
intervention.

Most knowledge of mitochondrial movement in neurons has been 
uncovered using cultured rodent neurons. The application of emerg-
ing in vivo models will shed light on the physiological significance 
of the regulation of mitochondrial motility76,103–107. Therefore, imag-
ing mitochondria in living animals, especially during development 
and aging, as well as under disease conditions, will be an important 
step for the field.

Finally, given the inseparable relationship between neuronal 
function and metabolism, and mitochondrial motility and distri-
bution, their underlying regulatory mechanisms must be inter-
woven. How do action potentials, neuronal signaling molecules 
like dopamine and serotonin, or metabolites like glucose, fatty 
acids,  nd amino acids influence mitochondrial motility and dis-
tribution? And how do mitochondrial motility and function  
reciprocally control neuronal homeostasis? Answers to these  
questions will reveal how neurons respond to changes in their activ-
ities  and environments by regulating this cellular linchpin.
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