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a b s t r a c t

A class of random graph models is considered, combining features of exponential-family
models and latent structure models, with the goal of retaining the strengths of both
of them while reducing the weaknesses of each of them. An open problem is how to
estimate such models from large networks. A novel approach to large-scale estimation
is proposed, taking advantage of the local structure of such models for the purpose
of local computing. The main idea is that random graphs with local dependence can
be decomposed into subgraphs, which enables parallel computing on subgraphs and
suggests a two-step estimation approach. The first step estimates the local structure
underlying random graphs. The second step estimates parameters given the estimated
local structure of random graphs. Both steps can be implemented in parallel, which
enables large-scale estimation. The advantages of the two-step estimation approach are
demonstrated by simulation studies with up to 10,000 nodes and an application to a
large Amazon product recommendation network with more than 10,000 products.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The statistical analysis of network data is an emerging area in statistics (Kolaczyk, 2009). Network data arise in the
study of insurgent and terrorist networks, contact networks facilitating the spread of infectious diseases (e.g., corona-
viruses such as SARS, MERS, and COVID-19; Ebola; HIV), social networks, and the World Wide Web.

Many models of network data have been proposed, as described in recent review papers (Fienberg, 2012; Hunter et al.,
2012; Salter-Townshend et al., 2012; Smith et al., 2019; Schweinberger et al., 2020; Hoff, 2020). Among the plethora
of models, two broad classes of models can be distinguished: models with latent structure, including stochastic block
models (e.g., Nowicki and Snijders, 2001; Bickel and Chen, 2009; Rohe et al., 2011) and latent space models (e.g., Hoff
et al., 2002; Handcock et al., 2007; Sewell and Chen, 2015; Smith et al., 2019); and exponential-family models of random
graphs (Lusher et al., 2013; Harris, 2013), including Erdős and Rényi random graphs, logistic regression models, and models
resembling Markov random fields in spatial statistics (Besag, 1974). Both have advantages and disadvantages, as one of
the pioneers of statistical network analysis observed:
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‘‘I expect that, especially for modeling larger networks (with, say, a few hundred or more nodes), the latent space models
will not be able to represent network structures as expressed by subgraph counts sufficiently well and the exponential
random-graph models will not be able to represent the cohesive structure sufficiently well. Models that combine important
features of these two approaches may be the next generation of social network models’’ (Snijders, 2007, p. 324).

In other words, latent structure models capture who is close to whom, but are not flexible models of many network
phenomena of interest (despite the fact that latent space models induce a weak tendency towards transitivity, see Hoff
et al., 2002). Well-posed exponential-family models of random graphs can capture a vast range of network phenomena
of interest (including, but not limited to, transitivity), but the underlying assumptions of many of those models make
more sense in small networks than large networks. A case in point is the Markov random graphs of Frank and Strauss
(1986). These models assume that possible edges Xi,j ∈ {0, 1} and Xk,l ∈ {0, 1} of pairs of nodes {i, j} and {k, l} are
independent conditional on the rest of the graph provided {i, j} and {k, l} do not overlap, but are otherwise dependent. As
a consequence, each possible edge Xi,j depends on 2 (n−2) other possible edges, where n is the number of nodes. If Markov
random graphs were applied to online social networks such as Facebook, then each possible friendship would depend on
billions of other possible friendships. Such dependence assumptions are implausible, and when coupled with homogeneity
assumptions regarding parameters can give rise to the well-studied issue of model near-degeneracy (Handcock, 2003;
Schweinberger, 2011; Chatterjee and Diaconis, 2013; Mele, 2017).

One class of next-generation random graph models was introduced in Schweinberger and Handcock (2015), which
combines important features of stochastic block models and exponential-family models, with the goal of retaining the
strengths of both of them while reducing the weaknesses of each of them. The basic idea is that a set of nodes is
partitioned into blocks, and edges among nodes within and between blocks are governed by exponential-family models
of random graphs with local dependence within blocks. A simple example is a model where edges between blocks are
independent Bernoulli random variables, whereas edges within blocks are generated by an exponential-family model
which encourages triangles within blocks but ensures that, for each pair of nodes within a block, the added value of
additional edges and triangles decays. Such models induce local dependence within blocks and the overall dependence
induced by the model is weak provided the blocks are not too large. We have shown elsewhere that such models are
well-behaved—in contrast to the infamous triangle model first studied by Strauss (1986), Jonasson (1999), Häggström and
Jonasson (1999), and others (e.g., Chatterjee and Diaconis, 2013)—and that statistical inference is possible and supported
by statistical theory: e.g., we have established concentration and consistency results for canonical and curved exponential-
family models of random graphs with local dependence under the assumption that the blocks are known and the sizes
of the blocks are similar in a well-defined sense (Schweinberger and Stewart, 2020). In addition, when the blocks are
unknown, the block memberships of most nodes can be recovered with high probability under weak dependence and
smoothness conditions (Schweinberger, 2020).

While some progress has been made in terms of statistical theory, computing remains challenging. When the block
structure is known (which is the case in multilevel networks, e.g., networks consisting of units of armed forces, Lazega and
Snijders, 2016), statistical inference for parameters can rely on existing methods for estimating parameters of exponential-
family models of random graphs (e.g., Strauss and Ikeda, 1990; Snijders, 2002; Hunter and Handcock, 2006; Caimo and
Friel, 2011; Hummel et al., 2012; Okabayashi and Geyer, 2012; Atchade et al., 2013; Jin and Liang, 2013; Thiemichen
and Kauermann, 2017; Krivitsky, 2017; Byshkin et al., 2018; Tan and Friel, 2020). If the block structure is unknown,
however, it needs to be estimated based on the observed network. The recovery of unknown block structure resembles
the recovery of unknown block structure in stochastic block models (e.g., Nowicki and Snijders, 2001; Bickel and Chen,
2009; Bickel et al., 2011; Rohe et al., 2011; Choi et al., 2012; Celisse et al., 2012; Priebe et al., 2012; Amini et al., 2013;
Rohe et al., 2014; Zhang and Zhou, 2016; Binkiewicz et al., 2017; Gao et al., 2017). However, the recovery of unknown
block structure is more challenging for exponential-family models with local dependence than stochastic block models.
The main challenge is the intractability of the complete-data likelihood function, i.e., the likelihood function given an
observation of the network as well as the block structure. The intractability of the complete-data likelihood function is
rooted in the intractability of the normalizing constants of within-block probability mass functions, which stems from the
local dependence within blocks.

We present here a tractable approximation of the likelihood function, leveraging concentration results for random
graphs with local dependence. Based on the approximation of the likelihood function, we propose a two-step estimation
approach that exploits the local structure of random graphs with local dependence for the purpose of local computing.
The first step estimates the block structure and decomposes the random graph into subgraphs with local dependence. The
decomposition of the random graph relies on approximations of the likelihood function supported by theoretical results.
The second step estimates parameters given the estimated block structure by using Monte Carlo maximum likelihood
methods (Hunter and Handcock, 2006) or maximum pseudolikelihood methods (Strauss and Ikeda, 1990). Both steps can
be implemented in parallel, which enables large-scale estimation on multi-core computers or computing clusters. We
demonstrate the advantages of the two-step estimation approach by simulation studies with up to 10,000 nodes and an
application to a large Amazon product recommendation network with more than 10,000 products.
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The remainder of our paper is organized as follows. Section 2 introduces models. Section 3 discusses likelihood-
based inference based on approximations of the likelihood function motivated by theoretical results, and Section 4 takes
advantage of such approximations to estimate models. Section 5 presents simulation results and Section 6 presents an
application.

2. Models

We consider random graphs with a set of nodes A = {1, . . . , n} and a set of edges E ⊂ A×A. Here, edges are regarded
as random variables Xi,j ∈ {0, 1}, where Xi,j = 1 if nodes i and j are connected by an edge and Xi,j = 0 otherwise. We
focus on undirected random graphs without self-edges, although the methods introduced here can be extended to directed
random graphs. Throughout, we denote by X = (Xi,j)ni<j the set of possible edges of a random graph, and by X = {0, 1}(

n
2)

the sample space of X .
Since the pioneering research of Holland and Leinhardt (1970, 1972, 1976) in the 1970s, it is known that network

data are dependent data. In small networks, each possible edge might depend on many other possible edges – in fact,
it might depend on all other possible edges. In large networks, however, it is not credible that each possible edge
depends on all other possible edges: e.g., in networks with n ≫ 10,000 nodes – such as the network used in Section 6

it is implausible that each possible edge depends on all
(n
2

)
− 1 ≫ 50,000,000 other possible edges. Instead, it is

empting to believe that the dependence among edges in large networks is local, in the sense that each edge depends
n a subset of other possible edges. We consider here a simple form of local dependence, following Schweinberger
nd Handcock (2015). Assume that A is partitioned into K ≥ 2 subsets of nodes A1, . . . ,AK , called blocks, and let

= (z1, . . . , zn) be the block memberships of nodes, where zi,k = 1 if node i belongs to block Ak and zi,k =

0 otherwise. We henceforth denote by X k,k = (Xi,j)ni<j: zi,k=zj,k=1 the within-block edges among nodes in block Ak

(k = 1, . . . , K ) and by X k,l = (Xi,j)ni,j: zi,k=zj,l=1 the between-block edges among nodes in block Ak and nodes in block
Al (l < k = 1, . . . , K ).

efinition (Local Dependence). A model of a random graph X satisfies local dependence if the probability mass function
of X can be factorized as follows:

pη(θ,z)(x) =

K∏
k=1

pηW ,k(θ,z)(xk,k)
k−1∏
l=1

n∏
i,j: zi,k=zj,l=1

pηB,k,l(θ,z)(xi,j), x ∈ X, (1)

where

• pη(θ,z)(x) is the probability mass of graph x, parameterized by η(θ, z) ∈ Rd;
• pηW ,k(θ,z)(xk,k) is the probability mass of within-block subgraph xk,k, parameterized by ηW ,k(θ, z) ∈ RdW ,k (k =

1, . . . , K );
• pηB,k,l(θ,z)(xi,j) is the probability mass of between-block edge xi,j, parameterized by ηB,k,l(θ, z) ∈ RdB,k,l (i, j : zi,k =

zj,l = 1);
• the parameter vector η(θ, z) ∈ Rd consists of the subvectors ηW ,k(θ, z) ∈ RdW ,k (k = 1, . . . , K ) and ηB,k,l(θ, z) ∈ RdB,k,l

(l < k = 1, . . . , K ).

The map η : Θ × Z ↦→ Rd depends on the model. In general, η : Θ × Z ↦→ Rd may be a linear or non-linear
function of a parameter vector θ ∈ Θ ⊆ Rq of dimension q ≤ d. An example is given by the curved exponential-family
parameterizations used in Section 6, where η : Θ×Z ↦→ Rd is a non-linear function of a parameter vector θ ∈ Θ ⊆ Rq of
dimension q < d. Well-chosen curved exponential-family parameterizations help ensure that the added value of additional
edges, triangles, and other subgraph configurations decays (Stewart et al., 2019), which is plausible in many applications
and can improve the in-sample performance of models (Hunter et al., 2008) as well as the out-of-sample performance
of models (Stewart et al., 2019). The factorization of the probability mass function of models with local dependence has
at least three implications. First, edges among nodes in block Ak can depend on other edges in block Ak (k = 1, . . . , K ).
Second, the factorization implies that edges among nodes in block Ak do not depend on edges that involve nodes in other
blocks (k = 1, . . . , K ). Third, edges between blocks are independent. In other words, the dependence is local in the sense
that it is confined to within-block subgraphs.

We introduce here two examples of models with local dependence, to be used as motivating examples throughout
Sections 3–5.

Example 1 (Stochastic Block Model). An important special case of models with local dependence is given by stochastic block
models (e.g., Nowicki and Snijders, 2001; Bickel and Chen, 2009; Rohe et al., 2011). Stochastic block models assume that
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p
ossible edges Xi,j between nodes i and j in blocks k and l are independent Bernoulli(µk,l) random variables, where the
probability µk,l ∈ (0, 1) of an edge depends on the blocks k and l of nodes i and j, respectively. Stochastic block models
are special cases of models with local dependence, having within-block probability mass functions of the form

pηW ,k(θ,z)(xk,k) =

n∏
i<j: zi,k=zj,k=1

µ
xi,j
k,k (1 − µk,k)1−xi,j

=

n∏
i<j: zi,k=zj,k=1

exp
(
θW ,k,k xi,j − log(1 + exp(θW ,k,k))

)

∝ exp

⎛⎝θW ,k,k n∑
i<j

xi,j zi,k zj,k

⎞⎠ ,
where

θW ,k,k = logit(µk,k) ∈ R, k = 1, . . . , K .

The between-block probability mass functions are of the form

pηB,k,l(θ,z)(xk,l) =

n∏
i<j: zi,k=zj,l=1

µ
xi,j
k,l (1 − µk,l)1−xi,j

=

n∏
i<j: zi,k=zj,l=1

exp
(
θB,k,l xi,j − log(1 + exp(θB,k,l))

)

∝ exp

⎛⎝θB,k,l n∑
i<j

xi,j zi,k zj,l

⎞⎠ ,
where

θB,k,l = logit(µk,l) ∈ R, l < k = 1, . . . , K .

As a consequence, the joint probability mass function of random graph X is proportional to

pη(θ,z)(x) ∝

K∏
k=1

exp

⎛⎝θW ,k,k n∑
i<j

xi,j zi,k zj,k

⎞⎠ k−1∏
l=1

exp

⎛⎝θB,k,l n∑
i<j

xi,j zi,k zj,l

⎞⎠ .
However, while stochastic block models are popular, the assumption that edges within and between blocks are indepen-
dent is restrictive, because edges among nodes that are close – in the sense of being members of the same block – may
very well be dependent.

Example 2 (Model with Local Dependence). To allow edges within blocks to be dependent, we build on the stochastic block
model described above, but tilt the within-block probability mass function of the stochastic block model as follows:

pηW ,k(θ,z)(xk,k) ∝ exp

⎛⎝θW ,k,k,1 n∑
i<j

xi,j zi,k zj,k

⎞⎠ exp

⎛⎝θW ,k,k,2 n∑
i<j

xi,j zi,k zj,k 1i,j(xk,k)

⎞⎠ ,
where θW ,k,k,1 ∈ R and θW ,k,k,2 ∈ R and 1i,j(xk,k) is an indicator function, which is 1 if nodes i and j are both connected
to one or more other nodes in block k, and is 0 otherwise. If xi,j = 1 and 1i,j(xk,k) = 1, the edge between nodes i and j
is called transitive, because i and j form transitive triples with other nodes, which are known as triangles in the random
graph literature. The first term of the within-block probability mass function shown above corresponds to the within-block
probability mass function of the stochastic block model. The second term tilts the within-block probability mass function
of the stochastic block model: If θW ,k,k,2 > 0, the model rewards within-block subgraphs with transitive edges, whereas
θW ,k,k,2 < 0 penalizes them, and θW ,k,k,2 = 0 neither rewards nor penalizes them—in which case the model reduces to
the stochastic block model.
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Using the same between-block probability mass functions as the stochastic block model, the joint probability mass
function of random graph X is proportional to

pη(θ,z)(x) ∝

K∏
k=1

exp

⎛⎝θW ,k,k,1 n∑
i<j

xi,j zi,k zj,k

⎞⎠ exp

⎛⎝θW ,k,k,2 n∑
i<j

xi,j zi,k zj,k 1i,j(xk,k)

⎞⎠
×

k−1∏
l=1

exp

⎛⎝θB,k,l n∑
i<j

xi,j zi,k zj,l

⎞⎠ .
The resulting model can capture an excess in the expected number of transitive edges within blocks, relative to

the stochastic block model. To demonstrate, note that the resulting model is an exponential-family model and – by
exponential-family theory (Brown, 1986, Corollary 2.5, p. 37) – the expected number of transitive edges in block Ak
satisfies

EθW ,k,k,1, θW ,k,k,2>0 sk,k,2(X)  
model with local dependence

> EθW ,k,k,1, θW ,k,k,2=0 sk,k,2(X)  
stochastic block model

, k = 1, . . . , K ,

where sk,k,2(X) is the number of transitive edges in block Ak and EθW ,k,k,1, θW ,k,k,2 sk,k,2(X) is the expectation of sk,k,2(X). In
ther words, the expected number of transitive edges in block Ak is greater under the model with θW ,k,k,2 > 0 than under
he stochastic block model with θW ,k,k,2 = 0, assuming that both have the same edge parameters θW ,k,k,1 (k = 1, . . . , K ).
Therefore, the model with local dependence can capture an excess in the expected number of transitive edges within
blocks, relative to the stochastic block model. In addition, models with local dependence can capture excesses in the
expected number of other subgraph statistics within blocks by adding suitable model terms.

How models with within-block edge and transitive edge terms differ from the ‘‘triangle model’’. It is worth noting that the
model with local dependence induced by within-block edge and transitive edge terms differs in two important ways
from the infamous triangle model with edge and triangle terms, which has been known to be ill-behaved since the
1980s (Strauss, 1986; Jonasson, 1999; Schweinberger, 2011; Chatterjee and Diaconis, 2013):

• The model with local dependence restricts dependence among edges to subsets of nodes, i.e., blocks. As long as the
blocks are not too large, the overall dependence induced by the model is weak. By contrast, the triangle model does
not restrict dependence to subsets of nodes, leading to undesirable behavior in large graphs.

• Within blocks, the model with local dependence and positive within-block transitive edge parameters assumes that,
for each pair of nodes, the value added by the first triangle to the log odds of the conditional probability of an edge
is positive, but additional triangles add nothing. By contrast, the triangle model assumes that, for each pair of nodes,
each additional triangle has the same added value, which is unreasonable and results in undesirable behavior in
large graphs.

These sensible assumptions ensure that models with local dependence have more desirable properties than the triangle
model (Schweinberger and Stewart, 2020).

Exponential-family representations of models. It is worth noting that Models 1 and 2 can be represented in exponential-
family form:

pη(θ,z)(x) = exp(⟨η(θ, z), s(x)⟩ − ψ(η(θ, z))), x ∈ X,

where ⟨η(θ, z), s(x)⟩ denotes the inner product of a vector of natural parameters η : Θ×Z ↦→ Rd and a vector of sufficient
statistics s : X ↦→ Rd, and ψ(η(θ, z)) ensures that pη(θ,z)(x) sums to 1. While exponential-family representations are not
needed to introduce Models 1 and 2, the properties of exponential families facilitate the theoretical results in Section 3.2,
concerned with approximations of likelihood functions.

3. Likelihood-based inference

While the block structure z is observed in some applications (e.g., in multilevel networks), it is unobserved in other
applications. We focus here on unobserved block structure z .

It is tempting to base statistical inference for the unknown block structure z and the unknown parameter vector θ
on the likelihood function, but likelihood-based inference for models with local dependence is challenging. The main
reason is that the probability mass function pη(θ,z)(x) is intractable, because the within-block probability mass functions
pηW ,k(θ,z)(xk,k) are intractable (k = 1, . . . , K ). The intractability of pηW ,k(θ,z)(xk,k) is rooted in the fact that its normalizing
constant is a sum over all exp(

(
|Ak|
2

)
log 2) possible within-block subgraphs of block Ak, which cannot be computed unless

Ak is small, i.e., unless |Ak| ≪ 10 (k = 1, . . . , K ).
To facilitate likelihood-based inference, we introduce tractable approximations of the intractable probability mass

function pη(θ,z)(x) in Section 3.1 and support them by theoretical results in Section 3.2. A statistical algorithm that takes
advantage of such approximations is introduced in Section 4.
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.1. Approximate likelihood functions: motivation

Suppose that we want to estimate both z and θ. It is natural to estimate them by using an iterative algorithm that
ycles through updates of z and θ as follows:

Step 1: Update z given θ.
Step 2: Update θ given z .

he algorithm sketched above is generic and cannot be used in practice, but regardless of which specific algorithm is used
whether EM, Monte Carlo EM, variational EM, Bayesian Markov chain Monte Carlo, or other algorithms – most of them
ave in common that Step 1 is either infeasible or time-consuming, whereas Step 2 is less problematic than Step 1.

tep 1. Step 1 is either infeasible or time-consuming, because the probability mass function pη(θ,z)(x) is intractable. To
emonstrate, consider a Bayesian Markov chain Monte Carlo algorithm that updates z = (z1, . . . , zn) given θ by Gibbs
ampling. Gibbs sampling of z1, . . . , zn turns out to be infeasible, because the full conditional distributions of z1, . . . , zn
epend on the intractable within-block probability mass functions pηW ,k(θ,z)(xk,k) (k = 1, . . . , K ). One could approximate
hem by Monte Carlo samples of within-block subgraphs, but such approximations may not generate Markov chain Monte
arlo samples from the target distribution (Liang et al., 2016) and are problematic on computational grounds:

• Using Monte Carlo approximations of within-block probability mass functions is infeasible when the number of nodes
n is large, because such approximations are needed for each update of each of the n block memberships z1, . . . , zn.

• Worse, the n block memberships z1, . . . , zn cannot be updated in parallel, because the block membership of one
node depends on the block memberships of other nodes.

s a consequence, Step 1 is infeasible when n is large.

tep 2. Step 2 is less problematic than Step 1. While the probability mass function pη(θ,z)(x) is intractable and may have
o be approximated by Monte Carlo methods (Hunter and Handcock, 2006), such Monte Carlo approximations are needed
nce to update θ given z1, . . . , zn, whereas Monte Carlo approximations are needed n times to update z1, . . . , zn given θ

ne by one. In addition, the probability mass function pη(θ,z)(x) decomposes into between- and within-block probability
ass functions and hence within-block probability mass functions can be approximated in parallel, i.e., on multi-core
omputers or computing clusters.

pproximations. To enable feasible updates of z given θ when n is large, we are interested in approximating the
ntractable probability mass function pη(θ,z)(x) by a tractable probability mass function. To do so, we focus on models with
etween-block edge terms θB,k,l

∑n
i<j xi,j zi,k zj,l and within-block edge terms θW ,k,k,1

∑n
i<j xi,j zi,k zj,k along with additional

ithin-block terms that induce local dependence within blocks. We denote the vector of between- and within-block edge
arameters by θ1 and the vector of all other within-block parameters by θ2. We assume that θ2 = 0 reduces the model
o the stochastic block model. An example is given by the model with between-block edge terms and within-block edge
nd transitive edge terms described in Section 2: the parameter vector θ1 consists of the between-block edge parameters
B,k,l (l < k = 1, . . . , K ) and the within-block edge parameters θW ,k,k,1 (k = 1, . . . , K ), whereas the parameter vector θ2
onsists of the within-block transitive edge parameters θW ,k,k,2 (k = 1, . . . , K ). If the parameter vector θ2 is set to 0, the
odel reduces to the stochastic block model, under which edges within and between blocks are independent.
Such models have two useful properties:

• The probability mass functions pη(θ,z)(x) and pη(θ1,θ2=0,z)(x) impose the same probability law on between-block
subgraphs.

• The probability mass function pη(θ1,θ2=0,z)(x) is tractable, because edges between and within blocks are independent
under all z .

We henceforth approximate pη(θ,z)(x) by pη(θ1,θ2=0,z)(x), which corresponds to the probability mass function of the
tochastic block model.
The idea underlying the approximation is that when the blocks are not too large, most pairs of nodes are not members

f the same block. Since pη(θ,z)(x) and pη(θ1,θ2=0,z)(x) impose the same probability law on possible edges between pairs of
odes that are not members of the same block, pη(θ,z)(x) and pη(θ1,θ2=0,z)(x) agree on most of the random graph. Therefore,
η(θ,z)(x) can be approximated by pη(θ1,θ2=0,z)(x) for the purpose of updating z given θ. Suppose, e.g., that we consider to
pdate z given θ by replacing z by z ′

̸= z . We may decide to do so if the loglikelihood ratio

log
pη(θ,z ′)(x)
pη(θ,z)(x)

= log pη(θ,z ′)(x) − log pη(θ,z)(x)

s large: e.g., the acceptance probability of Metropolis–Hastings algorithms depends on the loglikelihood ratio above. If
(x) can be approximated by p (x), we can base the decision on log p ′ (x)− log p (x) rather
η(θ,z) η(θ1,θ2=0,z) η(θ1,θ2=0,z ) η(θ1,θ2=0,z)
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than log pη(θ,z ′)(x) − log pη(θ,z)(x), because

log pη(θ,z ′)(x) − log pη(θ,z)(x) = [log pη(θ1,θ2=0,z ′)(x) − log pη(θ1,θ2=0,z)(x)]
+ [log pη(θ,z ′)(x) − log pη(θ1,θ2=0,z ′)(x)] − [log pη(θ,z)(x) − log pη(θ1,θ2=0,z)(x)].

herefore, as long as

max
z

|log pη(θ,z)(x) − log pη(θ1,θ2=0,z)(x)|

s small, we have

log pη(θ,z ′)(x) − log pη(θ,z)(x) ≈ log pη(θ1,θ2=0,z ′)(x) − log pη(θ1,θ2=0,z)(x).

The advantage of approximating pη(θ,z)(x) by pη(θ1,θ2=0,z)(x) is that there exist methods for stochastic block models to
stimate the block structure from large random graphs (e.g., Daudin et al., 2008; Rohe et al., 2011; Amini et al., 2013;
u et al., 2013). We take advantage of such methods in Section 4, but we first shed light on the conditions under which
axz |log pη(θ,z)(x) − log pη(θ1,θ2=0,z)(x)| is small.

.2. Approximate likelihood functions: theoretical results

We show that updates of z given θ can be based on pη(θ1,θ2=0,z)(x) rather than pη(θ,z)(x) by showing that

max
z

|log pη(θ,z)(X) − log pη(θ1,θ2=0,z)(X)|

s small with high probability when the blocks are not too large.
We start with a special case in Theorem 1 and then present more general results in Theorem 2. To prepare the ground

or Theorems 1 and 2, let Z = {1, . . . , K }
n be the set of all block structures, and denote by m(z) the size of the largest

lock under z ∈ Z. Let S ⊆ Z be any subset of block structures that includes the data-generating block structure z⋆ ∈ Z,
nd denote by m(S) the size of the largest block among all block structures z ∈ S, so that m(z) ≤ m(S) for all z ∈ S. We
llow the size of the largest block m(S) to increase as a function of the number of nodes n: e.g., m(S) may be a constant
ultiple of log n or nα (α < 1). The size of the largest data-generating block is denoted by ∥A∥∞ = max1≤k≤K |Ak|.

heorem 1. Consider the model with between-block edge terms and within-block edge and transitive edge terms described
n Section 2. Let Θ =

∏K
l≤k Θk,l be the parameter space, Θk,l be a compact subset of R (l < k = 1, . . . , K), and Θk,k be a

ompact subset of R2 (k = 1, . . . , K). Choose ϵ ∈ (0, 1) as small as desired. Then there exists a universal constant c > 0 such
hat, for all θ ∈ Θ , with at least probability 1 − ϵ,

max
z∈S

|log pη(θ,z)(X) − log pη(θ1,θ2=0,z)(X)| < 2 c
√

− log
ϵ

2
+ n log K

√
K m(S)2 ∥A∥

2
∞

log n.

The proof of Theorem 1 can be found in the supplement. The basic idea underlying Theorem 1 is that the deviation
axz |log pη(θ,z)(x) − log pη(θ1,θ2=0,z)(x)| cannot be too large when the blocks are not too large, because most pairs of nodes
re not members of the same block and pη(θ,z)(x) and pη(θ1,θ2=0,z)(x) impose the same probability law on possible edges
etween pairs of nodes that are not members of the same block.
Theorem 1 implies that the largest deviation of the loglikelihood function under the unrestricted model and the

estricted model is smaller than n2 with high probability, provided the blocks are not too large. To see that, observe
hat ∥A∥∞ ≤ m(S) and K ≤ n imply

2 c
√

− log
ϵ

2
+ n log K

√
K m(S)2 ∥A∥

2
∞

log n ≤ δ(ϵ) n m(S)4 (log n)3/2,

here δ(ϵ) > 0 is a function of ϵ but is not a function of the number of nodes n. In other words, as long as the size
(S) of the largest block in S satisfies m(S) ≪ n1/4 / (log n)3/8, the maximum deviation is much smaller than n2 with
igh probability. As a consequence, the largest deviation of the loglikelihood function under the unrestricted model and
he restricted model is small with high probability – note that in dense random graphs many quantities are of order n2,
o quantities of order less than n2 may be considered small. For example, consider Bernoulli(µ) random graphs, under
hich possible edges Xi,j are independent Bernoulli(µ) random variables (Erdős and Rényi, 1959, 1960). If a Bernoulli(µ)
andom graph is dense in the sense that µ = E Xi,j ∈ (0, 1) does not decrease as a function of the number of nodes n,
hen the expected number of edges is of order n2,

E
n∑
i<j

Xi,j =

(
n
2

)
µ,

nd so is the expected loglikelihood function of the natural parameter θ = logit(µ) ∈ R,

E log pθ (X) =

(
n
)
(θ µ− log(1 + exp(θ ))) .
2
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ther quantities are likewise of order n2 in dense random graphs, so quantities of order less than n2 may be considered
small. Thus, the largest deviation of the loglikelihood function under the unrestricted model and the restricted model is
small with high probability.

Last, but not least, note that m(S) ≪ n1/4 / (log n)3/8 implies that the number of blocks K must satisfy K ≫
3/4 (log n)3/8. In other words, the number of blocks K needs to grow as function of the number of nodes n. It is worth
oting that in the special case of stochastic block models, it is known that K is allowed to grow as fast as n / log n in
ense-graph settings (Zhang and Zhou, 2016).
It turns out that the result in Theorem 1 is not limited to the model with between-block edge terms and within-

lock edge and transitive edge terms, but is a special case of more general results. To introduce these more general
esults, we make the following assumptions. We assume that the probability mass function pη(θ,z)(x) can be represented
n exponential-family form,

pη(θ,z)(x) = exp(⟨η(θ, z), s(x)⟩ − ψ(η(θ, z))), x ∈ X,

here ⟨η(θ, z), s(x)⟩ denotes the inner product of a vector of natural parameters η : Θ × Z ↦→ Rd and a vector of
ufficient statistics s : X ↦→ Rd, and ψ(η(θ, z)) ensures that pη(θ,z)(x) sums to 1; note that all models used in our paper
an be represented in exponential-family form. We assume that η : Θ × Z ↦→ Ξ and that Ξ ⊆ int(N) is a subset of the
nterior int(N) of the natural parameter space N of the exponential family (Brown, 1986). Let E ≡ Eη⋆ be the expectation
nder the data-generating parameter vector η⋆ ≡ η(θ⋆, z⋆), where (θ⋆, z⋆) ∈ Θ × Z denotes the data-generating value of

(θ, z) ∈ Θ × Z. We denote by d : X × X ↦→ {0, 1, 2, . . . } the Hamming metric, which is defined by

d(x1, x2) =

n∑
i<j

1x1,i,j ̸=x2,i,j , (x1, x2) ∈ X × X,

where 1x1,i,j ̸=x2,i,j is 1 if x1,i,j ̸= x2,i,j and is 0 otherwise. The main assumptions can then be stated as follows.

C.1] There exists a constant c > 0 such that, for all (θ, z) ∈ Θ × Z and all (x1, x2) ∈ X × X,

|⟨η(θ, z), s(x1) − s(x2)⟩| ≤ c d(x1, x2) m(z) log n.

C.2] There exists a constant c > 0 such that, for all (θk,l,1, θk,l,2) ∈ Θk,l × Θk,l and all z ∈ Z,⏐⏐⟨ηk,l(θk,l,1, z) − ηk,l(θk,l,2, z), Eη(θ,z) sk,l(X)
⟩⏐⏐ ≤ c ∥θk,l,1 − θk,l,2∥ m(z)2 log n,

where ηk,l(θk,l, z), θk,l, and sk,l(x) denote the subvectors of η(θ, z), θ, and s(x) corresponding to the subgraph between
blocks k and l (l < k) or the subgraph of block k (k = l) and Θk,l is a compact subset of Rqk,l (k ≤ l = 1, . . . , K ).

Conditions [C.1] and [C.2] are smoothness conditions: [C.1] states that the inner product of natural parameters and
sufficient statistics must not be too sensitive to changes of edges, whereas [C.2] states that the inner product of between-
and within-block natural parameters and expected sufficient statistics must not be too sensitive to changes of parameters.

An example of a model violating condition [C.1] is a model containing a sufficient statistic s(x) of the form

s(x) =

{
0 if

∑n
i<j xi,j = 0(n

2

)
if
∑n

i<j xi,j ∈ {1, . . . ,
(n
2

)
}.

Under such models, adding a single edge can change the inner product of natural parameters and sufficient statistics by
a multiple of n2. That would violate [C.1], because [C.1] assumes that changing a single edge changes the inner product
by at most c m(z) log n ≤ c n log n.

An example of a model violating condition [C.2] is a model with within-block sufficient statistics that count the number
of triangles within blocks,

sk,k(x) =

n∑
h<i<j: h, i, j∈Ak

xi,h xj,h xi,j, k = 1, . . . , K ,

with within-block parameters of the form ηk,k(θ, z) = θk,k ∈ R (k = 1, . . . , K ). If all nodes belong to block A1, the
inner product of the block’s within-block natural parameter vector and expected sufficient statistic vector is a multiple
of |θ1,1 − θ ′

1,1| n
3, where θ1,1 and θ ′

1,1 are two possible values of the within-block triangle parameter of block A1. As
a result, [C.2] would be violated, because [C.2] requires the inner product to be at most c |θ1,1 − θ ′

1,1| m(z)2 log n ≤

c |θ1,1 − θ ′

1,1| n
2 log n.

However, the fact that some model specifications violate conditions [C.1] and [C.2] is not necessarily a major concern,
for two reasons. First, the specifications that violate conditions [C.1] and [C.2] are, more often than not, of limited interest
in applications: e.g., we are not aware of any good reason for using the sufficient statistic in the first example, and the
triangle term in the second example is known to induce model near-degeneracy in large networks and may therefore not
be useful in practice (Strauss, 1986; Jonasson, 1999; Schweinberger, 2011; Chatterjee and Diaconis, 2013). Second, while

some ill-posed specifications do not satisfy conditions [C.1] and [C.2], there are many well-posed specifications that do
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satisfy them: e.g., conditions [C.1] and [C.2] are satisfied by the model with between-block edge and within-block edge
and transitive edge terms, which we verify in the proof of Theorem 1. In addition, conditions [C.1] and [C.2] cover the
models with size-dependent parameterizations used in Sections 5 and 6.

The following result, Theorem 2, is a generalization of Theorem 1.

Theorem 2. Consider a model with local dependence satisfying conditions [C.1] and [C.2]. Choose ϵ ∈ (0, 1) as small as
desired. Then there exists a universal constant c > 0 such that, for all θ ∈ Θ , with at least probability 1 − ϵ,

max
z∈S

|log pη(θ,z)(X) − log pη(θ1,θ2=0,z)(X)| < 2 c
√

− log
ϵ

2
+ n log K

√
K m(S)2 ∥A∥

2
∞

log n.

The proof of Theorem 2 can be found in the supplement. An application of Theorem 2 to the model with between-block
dge terms and within-block edge and transitive edge terms can be found in Theorem 1.

Last, but not least, it is worth noting that the upper bound m(S) on the sizes of blocks cannot be too small, because it
s not possible to recover the block structure with high probability when the blocks are too small. However, Zhang and
hou (2016) showed that under stochastic block models the number of blocks K is allowed to grow as fast as n / log n
n dense-graph settings, which implies that the sizes of the blocks can be as small as log n. These important issues are
tudied in more depth in Zhang and Zhou (2016) and Gao et al. (2017).

. Two-step estimation approach

We propose a two-step estimation approach that takes advantage of the theoretical results of Section 3 and enables
arge-scale estimation of models with local dependence.

To describe the two-step estimation approach, assume that z = (z1, . . . , zn) is the observed value of a random variable
= (Z1, . . . , Zn) with distribution

Z i
iid
∼ Multinomial(1, π = (π1, . . . , πK )), i = 1, . . . , n.

t is natural to base statistical inference on the observed-data likelihood function

L(θ,π) =

∑
z∈Z

pη(θ,z)(x) pπ(z).

he problem is that L(θ,π) is intractable, because pη(θ,z)(x) is intractable and the set Z contains exp(n log K ) elements.
The first problem can be solved by taking advantage of the theoretical results of Section 3, which suggest that pη(θ,z)(x)

an be approximated by pη(θ1,θ2=0,z)(x) provided that the blocks are not too large. A complication is that pη(θ,z)(x) and
η(θ1,θ2=0,z)(x) may not be close when the block structure z ∈ Z \ S is not contained in S, in which case some of the
locks can be large and the within-block models of large blocks can induce strong dependence. In the worst case, all
odes belong to a single block, in which case pη(θ,z)(x) may induce strong dependence throughout the random graph
hile pη(θ1,θ2=0,z)(x) induces no dependence at all, so pη(θ,z)(x) and pη(θ1,θ2=0,z)(x) may be very different. However, the
asic inequality∑

z∈S

pη(θ,z)(x) pπ(z) ≤ L(θ,π) ≤

∑
z∈S

pη(θ,z)(x) pπ(z) + Pπ(Z ∈ Z \ S)

uggests that as long as the event Z ∈ Z \ S is a rare event in the sense that Pπ(Z ∈ Z \ S) is close to 0, L(θ,π) can be
pproximated by L(θ1, θ2=0,π):

L(θ,π) =

∑
z∈Z

pη(θ,z)(x) pπ(z) ≈

∑
z∈S

pη(θ,z)(x) pπ(z)

≈

∑
z∈S

pη(θ1,θ2=0,z)(x) pπ(z) ≈

∑
z∈Z

pη(θ1,θ2=0,z)(x) pπ(z) = L(θ1, θ2=0,π).

he assumption that Z ∈ Z \ S is a rare event – i.e., the probabilities π1, . . . , πK are small – makes sense in a wide range
f applications, because communities in real-world networks tend to be small (see, e.g., the discussion of Rohe et al.,
011). Therefore, as long as Z ∈ Z \ S is a rare event, we can base statistical inference concerning the block structure on
(θ1, θ2=0,π) rather than L(θ,π). To simplify the notation, we write henceforth L(θ1,π) instead of L(θ1, θ2=0,π).
The second problem can be solved by methods developed for stochastic block models, because L(θ1,π) is the observed-

ata likelihood function of a stochastic block model. There are many stochastic block model methods that could be used,
uch as profile likelihood (Bickel and Chen, 2009), pseudo-likelihood (Amini et al., 2013), spectral clustering (Rohe et al.,
011), and variational methods (Daudin et al., 2008; Vu et al., 2013). Among these methods, we found that the variational
ethods of Vu et al. (2013) work best in practice: the simulation results in Section 5 demonstrate this. In addition, the

ariational methods of Vu et al. (2013) have the advantage of being able to estimate stochastic block models from networks
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ith hundreds of thousands of nodes due to a running time of O(n) for sparse random graphs and O(n2) for dense random
raphs (Vu et al., 2013). Some consistency and asymptotic normality results for variational methods for stochastic block
odels were established by Celisse et al. (2012) and Bickel et al. (2013).
Variational methods approximate ℓ(θ1,π) = logL(θ1,π) by introducing an auxiliary distribution a(z) with support Z

nd bounding ℓ(θ1,π) from below by using Jensen’s inequality:

ℓ(θ1,π) = log
∑
z∈Z

a(z)
pη(θ1,θ2=0,z)(x) pπ(z)

a(z)

≥

∑
z∈Z

a(z) log
pη(θ1,θ2=0,z)(x) pπ(z)

a(z)
def
= ℓ̂(θ1,π).

Each auxiliary distribution with support Z gives rise to a lower bound on ℓ(θ1,π). To choose the best auxiliary distribution
– i.e., the auxiliary distribution that gives rise to the tightest lower bound on ℓ(θ1,π) – we choose a family of auxiliary
distributions and select the best member of the family. In practice, an important consideration is that the resulting lower
bound is tractable. Therefore, we confine attention to a family of auxiliary distributions under which the resulting lower
bounds are tractable. A natural choice is given by a family of auxiliary distributions under which the block memberships
are independent:

Z i
ind
∼ Multinomial(1, αi = (αi,1, . . . , αi,K )), i = 1, . . . , n.

By the independence of block memberships under the auxiliary distribution, we obtain the following tractable lower
bound on ℓ(θ1,π):

ℓ̂(α; θ1,π)
def
=

∑
z∈Z

aα(z) log
pη(θ1,θ2=0,z)(x) pπ(z)

aα(z)

=

n∑
i<j

K∑
k=1

K∑
l=1

αi,k αj,l log pη(θ1,θ2=0,zi,k=1, zj,l=1,z−i,j)(xi,j) +

n∑
i=1

K∑
k=1

αi,k (logπk − logαi,k),

where pη(θ1,θ2=0,zi,k=1, zj,l=1,z−i,j)(xi,j) denotes the marginal probability mass function of Xi,j and z−i,j denotes the block
memberships of all nodes excluding nodes i and j.

In practice, we obtain the best lower bound on ℓ(θ1,π) by maximizing ℓ̂(α; θ1,π) with respect to α. Direct maximiza-
ion of ℓ̂(α; θ1,π) with respect to α is possible but inconvenient, because ℓ̂(α; θ1,π) contains products of αi,k and αj,l. As
a consequence, a fixed-point update of αi,k depends on (n−1) K other terms αj,l and hence fixed-point updates tend to be
time-consuming and get stuck in local maxima, as demonstrated by Vu et al. (2013). Vu et al. (2013) proposed an elegant
approach to alleviating the problem by using minorization–maximization (MM) methods (Hunter and Lange, 2004). Such
methods construct a minorizing function that approximates ℓ̂(α; θ1,π) but is easier to maximize than ℓ̂(α; θ1,π). A
function M(α; θ1,π,α

(t)) of α minorizes ℓ̂(α; θ1,π) at point α(t) at iteration t of an iterative algorithm for maximizing
ˆ(α; θ1,π) if

M(α; θ1,π,α
(t)) ≤ ℓ̂(α; θ1,π) for all α,

M(α(t)
; θ1,π,α

(t)) = ℓ̂(α(t)
; θ1,π),

here θ1,π,α
(t) are fixed. In other words, M(α; θ1,π,α

(t)) is bounded above by ℓ̂(α; θ1,π) for all α and touches ℓ̂(α; θ1,π)
t α = α(t). As a result, increasing M(α; θ1,π,α

(t)) with respect to α increases ℓ̂(α; θ1,π). Vu et al. (2013) showed that
he following function minorizes ℓ̂(α; θ1,π) at point α(t):

M(α; θ1,π,α
(t)) =

n∑
i<j

K∑
k=1

K∑
l=1

(
α2
i,k

α
(t)
j,l

2α(t)
i,k

+ α2
j,l

α
(t)
i,k

2α(t)
j,l

)
log pη(θ1,θ2=0,zi,k=1, zj,l=1,z−i,j)(xi,j)

+

n∑
i=1

K∑
k=1

αi,k

[
logπ (t)

k − logα(t)
i,k +

(
1 −

αi,k

α
(t)
i,k

)]
.

he minorizing function M(α; θ1,π,α
(t)) is easier to maximize than ℓ̂(α; θ1,π), because it replaces the products of αi,k and

j,l by sums of α2
i,k and α2

j,l. An additional advantage is that the maximization of M(α; θ1,π,α
(t)) amounts to n quadratic

rogramming problems, which can be solved in parallel.
We therefore propose a two-step estimation approach as described in Table 1. We discuss the two steps below and

onclude with some comments on parallel computing.

tep 1. The first step estimates z based on α. We do so by increasing M(α; θ1,π,α
(t)) with respect to αi subject

o the constraints 0 < α < 1 (k = 1, . . . , K ) and
∑K

α = 1 (i = 1, . . . , n). We increase rather than
i,k k=1 i,k
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Table 1
Two-step estimation approach.

1. Estimate z along with π and θ1 by iterating:

1.1 Update α by increasing M(α; θ
(t)
1 ,π

(t),α(t)) with respect to αi subject to 0 < αi,k < 1 (k = 1, . . . , K ) and
∑K

k=1 αi,k = 1 and denote
the update by α

(t+1)
i (i = 1, . . . , n).

1.2 Update π and θ1 by maximizing ℓ̂(α(t+1)
; θ1,π) with respect to π and θ1:

— Update π (t+1)
k = (1/n)

∑n
i=1 α

(t+1)
i,k , k = 1, . . . , K .

— Update θ
(t+1)
1 = argmaxθ1∈Θ1

ℓ̂(α(t+1)
; θ1,π

(t+1)).

Upon convergence, we estimate the block membership indicators ẑ by computing k = argmax1≤l≤K α̂i,l and setting ẑi,k = 1 and ẑi,l = 0 for
all l ̸= k (i = 1, . . . , n), where α̂ denotes the final value of α.

2. Estimate θ given ẑ by θ̂ = argmaxθ∈Θ ℓ̂̂z (θ) or θ̃ = argmaxθ∈Θ ℓ̃̂z (θ).

maximize M(α; θ1,π,α
(t)), because maximizing M(α; θ1,π,α

(t)) is more time-consuming and algorithms maximizing
M(α; θ1,π,α

(t)) are more prone to end up in local maxima than algorithms increasing M(α; θ1,π,α
(t)). Since ℓ̂(α; θ1,π)

and M(α; θ1,π,α
(t)) depend on θ1 and π and both are unknown, we iterate between updates of α and updates of θ1 and

π. The updates of θ1 and π are based on maximizing ℓ̂(α; θ1,π) with respect to θ1 and π and are identical to the updates
of Vu et al. (2013), because θ2 = 0 reduces the model to a stochastic block model. As a convergence criterion, we use

|ℓ̂(α(t+1)
; θ

(t+1)
1 ,π(t+1)) − ℓ̂(α(t)

; θ
(t)
1 ,π

(t))|

ℓ̂(α(t+1); θ
(t+1)
1 ,π(t+1))

< γ ,

where γ > 0 is a small constant. Upon convergence, we estimate the block membership indicators ẑ by computing
k = argmax1≤l≤K α̂i,l and setting ẑi,k = 1 and ẑi,l = 0 for all l ̸= k (i = 1, . . . , n), where α̂ denotes the final value of α.

Step 2. We estimate θ given ẑ by Monte Carlo maximum likelihood methods (Hunter and Handcock, 2006) or maximum
pseudolikelihood methods (Strauss and Ikeda, 1990). Monte Carlo maximum likelihood methods exploit the fact that the
loglikelihood function of θ given ẑ , defined by

ℓ̂z (θ) = log pη(θ,̂z)(x) − log pη(θ0, ẑ)(x),

can be written as

ℓ̂z (θ) = ⟨η(θ, ẑ) − η(θ0, ẑ), s(x)⟩ − logEη(θ0, ẑ) exp(⟨η(θ, ẑ) − η(θ0, ẑ), s(X)⟩),

where θ0 is a fixed parameter vector (e.g., θ0 may be an educated guess of the data-generating parameter vector). In
general, the expectation Eη(θ0, ẑ) is intractable, but it can be estimated by a Monte Carlo sample average based on a Monte
Carlo sample of graphs generated under η(θ0, ẑ). Therefore, we can approximate ℓ̂z (θ) by

ℓ̂̂z (θ) = ⟨η(θ, ẑ) − η(θ0, ẑ), s(x)⟩ − log Êη(θ0 ,̂z) exp(⟨η(θ, ẑ) − η(θ0, ẑ), s(X)⟩),

here Êη(θ0, ẑ) is a Monte Carlo approximation of Eη(θ0, ẑ) based on a Monte Carlo sample of graphs generated by using
(θ0, ẑ). Hence θ given ẑ can be estimated by

θ̂ = argmax
θ∈Θ

ℓ̂̂z (θ).

dditional details on Monte Carlo maximum likelihood methods can be found in Hunter and Handcock (2006). We note
hat the local dependence of the model facilitates parallel computing, which is discussed in the following paragraph.
tandard errors of θ̂ can be based on the estimated Fisher information matrix, although such standard errors are
onditional on the estimated block structure ẑ and therefore do not reflect the uncertainty about ẑ . A parametric
ootstrap approach would be an interesting alternative to capturing the additional uncertainty due to ẑ , but would be
ime-consuming.

An alternative is to estimate θ given ẑ by maximum pseudolikelihood estimators (Strauss and Ikeda, 1990). Maximum
seudolikelihood estimators were invented by Besag (1974) to sidestep intractable likelihood functions of Markov random
ields in spatial statistics, and are known to be consistent estimators of Markov random fields with exponential-family
arameterizations (e.g., Comets, 1992). Strauss and Ikeda (1990) adapted them to exponential-family random graph
odels. While believed to be inferior to maximum likelihood estimators when the dependence among edges is strong
nd propagates throughout the random graph (e.g., van Duijn et al., 2009), maximum pseudolikelihood estimators seem
o perform well when the dependence is weak, e.g., when the dependence among edges is confined to non-overlapping
r overlapping blocks (Stewart and Schweinberger, 2020). The maximum pseudolikelihood estimator is defined as

θ̃ = argmax ℓ̃̂z (θ),

θ∈Θ
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w
here

ℓ̃̂z (θ) =

n∑
i<j

log pη(θ,̂z)(xi,j | x−i,j).

Here, x−i,j denotes x excluding xi,j, and pη(θ,̂z)(xi,j | x−i,j) denotes the conditional probability of Xi,j = xi,j given X−i,j = x−i,j.
Since the conditional distributions of Xi,j given the rest of the random graph are Bernoulli distributions, computing
maximum pseudolikelihood estimators consumes less time than computing Monte Carlo maximum likelihood estimators.

Parallel computing. In Step 1, the maximization of the minorizing function amounts to n quadratic programming problems,
which can be solved in parallel. In Step 2, the local dependence induced by the model implies that the contributions of
the between- and within-block subgraphs to the loglikelihood function and its gradient and Hessian can be computed
in parallel. Hence both steps can be implemented in parallel, which suggests that the two-step estimation approach can
be applied to large networks as long as the blocks are not too large and multi-core computers or computing clusters are
available.

5. Simulation results

We assess the performance of the two-step estimation approach by conducting multiple simulation studies, with the
number of nodes n ranging from 30 to 10,000, the number of blocks K ranging from 3 to 100, and the sizes of blocks
ranging from 5 to 100:

I. A small-scale simulation study to compare the block recovery of the gold standard, the Bayesian approach
of Schweinberger and Handcock (2015), to the two-step estimation approach. Since the Bayesian approach is too
time-consuming to be applied to large networks, we use small networks with n = 30 nodes and K = 3 blocks. The
K = 3 blocks consist of 10 nodes (balanced case) or 5, 10, 15 nodes (unbalanced case).

II. A large-scale simulation study to assess the block recovery in Step 1 of the two-step estimation approach, using
K = 25, 50, 75, 100 blocks of size 25, 50, 75, 100.

III. A large-scale simulation study to assess how the block recovery in Step 1 of the two-step estimation approach is
affected by the sparsity of between-block subgraphs, using K = 25 blocks of size 25.

IV. A large-scale simulation study to assess the parameter recovery in Step 2 of the two-step estimation approach, using
K = 25, 50, 75, 100 blocks of size 25, 50, 75, 100.

In Step 1 of the two-step estimation approach, we use the variational approach described in Section 4. We compare
the variational approach to the spectral clustering method described in Lei and Rinaldo (2015). Spectral clustering is an
alternative to the variational approach in Step 1 of the two-step estimation approach. In Step 2 of the two-step estimation
approach, we use maximum pseudolikelihood estimators, which are more scalable than Monte Carlo maximum likelihood
estimators and facilitate simulation studies with up to 10,000 nodes. In each scenario, we generate 500 graphs from the
model having between-block edge terms and within-block edge and transitive edge terms, as described in Section 2.
To select sensible values of the parameter vector θ, note that the probabilistic behavior of random graphs with local
dependence is sensitive to the choice of parameter values, and so is the block recovery. The same applies to stochastic
block models: e.g., when the probabilities of edges within and between blocks are too low, we may not be able to
recover the block structure with high probability (Zhang and Zhou, 2016; Gao et al., 2017). We have therefore selected
the parameter vector θ based on the following considerations: We would like to ensure that, with high probability, the
model generates graphs that resemble real-world networks in terms of sufficient statistics s(X). In principle, we could
select θ by inspecting the expectation of s(X). The problem is that the expectation is not available in closed form. We
have therefore selected θ based on simulating graphs, and checking whether the simulated graphs resemble real-world
networks.

In simulation study I, to allow blocks of different sizes to have different parameters, we use size-dependent between-
block edge parameters θB,k,l = −.882 log n (l < k = 1, . . . , K ) and within-block edge and transitive edge parameters
θW ,k,k,1 = −.434 log nk(z) and θW ,k,k,2 = .217 log nk(z) (k = 1, . . . , K ), where nk(z) is the size of block k under z ∈ Z.
The size-dependent parameterization is motivated by the sparsity of random graphs: e.g., if edges Xi,j are independent
Bernoulli(µ) random variables, it is tempting to believe that there exist constants c > 0 and 0 < α < 1 such that the
expected number of edges of each node (n − 1)µ is bounded above by c nα , because real-world networks are sparse. As
a consequence, µ should be of order nθ and η = logit(µ) should be of order log nθ = θ log n, where θ = α − 1 < 0. In
more general models with edge terms as well as other model terms, all model terms should scale as the edge term, so
that no model term can dominate any other model term. These considerations suggest that parameters should scale with
the log number of nodes. In simulations studies II and IV, the sizes of blocks are identical, so we use between-block edge
parameters θB,k,l = .5 − log n (l < k = 1, . . . , K ) and within-block edge and transitive edge parameters θW ,k,k,1 = −1.5
and θW ,k,k,2 = .5 (k = 1, . . . , K ). In simulation study III, we use the same within-block parameters, but between-block
edge parameters θB,k,l = .5 − α log n (l < k = 1, . . . , K ), with α varying from .5 and 1.

In all scenarios, we assess block recovery by using Yule’s φ-coefficient:

φ(z⋆, z) =
n0,0 n1,1 − n0,1 n1,0√ ,
(n0,0 + n0,1) (n1,0 + n1,1) (n0,0 + n1,0) (n0,1 + n1,1)
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Fig. 1. Block recovery in terms of Yule’s φ-coefficient. 500 graphs with n = 30 nodes and K = 3 blocks with 10 nodes (balanced case) or 5, 10, 15
nodes (unbalanced case) were generated. The figure compares the block recovery of the Bayesian approach, the variational approach, and spectral
clustering. The Bayesian approach is the gold standard. The variational approach is the default in Step 1 of the two-step estimation approach. Spectral
clustering is an alternative to the variational approach in Step 1.

Table 2
Average computing time in seconds of the Bayesian approach, the variational approach, and spectral clustering. 500
graphs with n = 30 nodes and K = 3 blocks with 10 nodes (balanced case) or 5, 10, 15 nodes (unbalanced case)
were generated. The Bayesian approach is the gold standard. The variational approach is the default in Step 1 of the
two-step estimation approach. Spectral clustering is an alternative to the variational approach in Step 1. In Step 2 of
the two-step estimation approach, maximum pseudolikelihood estimates are computed. The computing times of the
variational approach and spectral clustering mentioned above are the total computing times, including both Step 1 and
Step 2.

Bayesian approach Variational approach Spectral clustering

n = 30, K = 3, balanced 42,579.6 23.83 .18
n = 30, K = 3, unbalanced 32,480.9 24.00 .18

where

na,b ≡ na,b(z⋆, z) =

n∑
i<j

1(1(z⋆i = z⋆j ) = a) 1(1(z i = z j) = b), a, b ∈ {0, 1}.

Here, 1(.) is an indicator function, which is 1 if its argument is true and is 0 otherwise. The quantity n0,0(z⋆, z) is the
number of pairs of nodes that are assigned to distinct blocks under both z⋆ and z , while the quantity n1,1(z⋆, z) is the
number of pairs of nodes that are assigned to the same block under both z⋆ and z . The sum of the other two quantities,
n0,1(z⋆, z)+n1,0(z⋆, z), is the number of pairs of nodes on which z⋆ and z disagree. If z⋆ and z agree on all pairs of nodes,
Yule’s φ-coefficient is 1. In fact, Yule’s φ-coefficient is bounded above by 1, and is invariant to the labeling of the blocks.

The results of the small-scale simulation study I are shown in Fig. 1. The results suggest that the two-step estimation
approach is almost as good as the Bayesian approach in terms of block recovery in the balanced case (K = 3 blocks of
size 10), but is worse in the unbalanced case (K = 3 blocks of size 5, 10, 15). The worse performance in the unbalanced
case may be due to the fact that there are smaller blocks in the unbalanced case than in the balanced case, and recovering
small blocks is more challenging than recovering large blocks. That said, the advantage of the Bayesian approach over the
two-step estimation approach in terms of block recovery in the unbalanced case is limited, and comes at excessive costs:
Table 2 reveals that the computing time of the Bayesian approach is thousands of times higher than the computing time
of the two-step estimation approach.

The large-scale simulation studies II, III, and IV shed light on the performance of Steps 1 and 2 of the two-step
estimation approach in large networks. The results of simulation study II, shown in Fig. 2, reveal that the variational
approach used in Step 1 of the two-step estimation approach outperforms spectral clustering in terms of block recovery
in most scenarios. Simulation study III shows how the block recovery in Step 1 of the two-step estimation approach is
affected by between-block subgraph sparsity. According to Fig. 3, the more sparse between-block subgraphs are, the more
the dense within-block subgraphs ‘‘stand out’’, improving block recovery. Last, but not least, simulation study IV helps
assess parameter recovery in Step 2 of the two-step estimation approach. Fig. 4 shows that maximum pseudolikelihood
estimates are close to the data-generating parameters, and more so when the blocks are small and the number of blocks
is large.
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Fig. 2. Block recovery in terms of Yule’s φ-coefficient. 500 graphs with K = 25, 50, 75, 100 blocks of size 25, 50, 75, 100 were generated from
he model with between-block edge parameters θB,k,l = .5 − log n (l < k = 1, . . . , K ) and within-block edge and transitive edge parameters
W ,k,k,1 = −1.5 and θW ,k,k,2 = .5 (k = 1, . . . , K ). The figure compares two alternative approaches to recovering the block structure in Step 1 of the
wo-step estimation approach, the variational approach and spectral clustering.

. Amazon product recommendation network

We use the two-step estimation approach to shed light on the structure of a large Amazon product recommendation
etwork that is not captured by stochastic block models. The data on the Amazon product recommendation network were
ollected by Yang and Leskovec (2015) and can be downloaded from the website

http://snap.stanford.edu/data/com-Amazon.html

he network consists of products listed at www.amazon.com. Two products i and j are connected by an edge if i
nd j are frequently purchased together according to the ‘‘Customers Who Bought This Item Also Bought’’ feature at
ww.amazon.com. Amazon assigns all products to categories, which we consider to be ground-truth blocks. We use a
ubset of the network consisting of the top 500 non-overlapping categories with 10 to 80 products, where the ranking of
ategories is based on Yang and Leskovec (2015). The resulting network consists of 10,448 products and 33,537 edges.
To model the Amazon product recommendation network, we take advantage of curved exponential-family random

raph models with within-block edge and geometrically weighted degree and edgewise shared partner terms (Snijders
t al., 2006; Hunter and Handcock, 2006; Hunter et al., 2008). The resulting models are more general than the motivating
xample used in Sections 2 and 3 – the model with between-block edge terms and within-block edge and transitive
dge terms – and ensure that, for each pair of products, the added value of additional edges and triangles within blocks
ecays. In fact, transitive edge terms are special cases of geometrically weighted edgewise shared partner terms, and both
f them are well-behaved alternatives to the ill-behaved triangle terms mentioned in Section 2. A full-fledged discussion
f those models is beyond the scope of our paper. We refer the interested reader to the seminal papers of Snijders et al.
2006), Hunter and Handcock (2006), and Hunter et al. (2008).

The natural parameters of the within-block edge terms are given by

ηW ,k,1(θ, z) = θ1 log nk(z),

here the logarithmic term log nk(z) arises from sparsity considerations and is a simple form of a size-dependent
arameterization, as explained in Section 5. The within-block geometrically weighted degree terms are based on the
umber of products with t edges in block Ak. The natural parameters of within-block geometrically weighted degree
erms are given by

η (θ, z) = θ log n (z) exp(θ )
[
1 − 1 − exp(−θ ) t] , t = 1, . . . , n (z) − 1.
W ,k,2,t 2 k 3 ( 3 ) k

http://snap.stanford.edu/data/com-Amazon.html
http://www.amazon.com
http://www.amazon.com
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Fig. 3. Block recovery in terms of Yule’s φ-coefficient as a function of between-block subgraph sparsity. 500 graphs with K = 25 blocks of size 25
were generated from the model with between-block edge parameters θB,k,l = .5 − α log n (l < k = 1, . . . , K ) and within-block edge and transitive
edge parameters θW ,k,k,1 = −1.5 and θW ,k,k,2 = .5 (k = 1, . . . , K ), with α varying from .5 to 1. The figure demonstrates that the more sparse
etween-block subgraphs are, the more the dense within-block subgraphs ‘‘stand out’’, improving block recovery.

Fig. 4. Maximum pseudolikelihood estimates of within-block parameters. 500 graphs with K = 25, 50, 75, 100 blocks of size 25, 50, 75, 100 were
enerated from the model with between-block edge parameters θB,k,l = .5 − log n (l < k = 1, . . . , K ) and within-block edge and transitive edge
arameters θW ,k,k,1 = −1.5 and θW ,k,k,2 = .5 (k = 1, . . . , K ). The horizontal axis corresponds to θW ,k,k,1 = −1.5, while the vertical axis corresponds
o θW ,k,k,2 = .5 (k = 1, . . . , K ). The red circle in each plot indicates the data-generating within-block parameter vector (θW ,k,k,1, θW ,k,k,2) = (−1.5, .5).

he within-block geometrically weighted edgewise shared partner terms are based on the number of connected pairs of
roducts i and j in block Ak such that i and j have t shared partners in block Ak. The natural parameters of the within-block
eometrically weighted edgewise shared partner terms are given by

η (θ, z) = θ log n (z) exp(θ )
[
1 − 1 − exp(−θ ) t] , t = 1, . . . , n (z) − 2.
W ,k,3,t 4 k 5 ( 5 ) k
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Table 3
Monte Carlo maximum likelihood estimates and standard errors (S.E.) of θ1, . . . , θ6 estimated from the Amazon product
recommendation network with 10,448 products; note that θ = (θ1, . . . , θ6) should not be confused with the size-
dependent natural parameter vector η(θ, z). The parameters θ1 and θ6 are the base weights of the within- and
between-block edge terms, respectively. The parameters θ2 and θ4 are the base weights of the within-block degree and
edgewise shared partner terms, whereas θ3 and θ5 control the rate of decay of the added value of additional edges
and edgewise shared partners, respectively.
Term Estimate S.E. Estimate S.E.

Within-block edges θ1 −.369 .002 −1.410 .008

Within-block degrees θ2 (base parameter) .742 .020
Within-block degrees θ3 (decay parameter) .910 .023

Within-block shared partners θ4 (base parameter) .303 .005
Within-block shared partners θ5 (decay parameter) 1.106 .012

Between-block edges θ6 −1.199 .004 −1.199 .004

To reduce computing time, it is convenient to truncate the two geometrically weighted model terms by setting
ηW ,k,2,t (θ, z) = 0 (t = 21, . . . , nk(z) − 1) and ηW ,k,3,t (θ, z) = 0 (t = 13, . . . , nk(z) − 2). The two thresholds 21 and
13 are motivated by the fact that no product has 21 or more edges and less than 1% of all pairs of products has 13 or
more edgewise shared partners. Last, but not least, the natural parameters of the between-block edge terms are given by

ηB,k,l(θ, z) = θ6 log n, l < k.

The resulting exponential family is a curved exponential family (Hunter and Handcock, 2006), because the natural
parameter vector η(θ, z) of the exponential family is a nonlinear function of θ given z ∈ Z. The natural parameter vector
η(θ, z) depends on the sizes of blocks, because we do not want to force small and large blocks to have the same natural
parameters, as explained in Section 5.

The curved exponential-family model specified above can capture an excess in the expected number of triangles within
blocks relative to stochastic block models, while ensuring that, for each pair of products, the added value of additional
edges and triangles within blocks decays (Stewart et al., 2019). An excess in the expected number of triangles within
blocks relative to stochastic block models can arise when, e.g., (a) three products are similar (e.g., three books on the
same topic); (b) three products are dissimilar but complement each other (e.g., a bicycle helmet, head light, and tail
light); and (c) three products, either similar or dissimilar, were produced by the same source (e.g., three books written
by the same author).

Since we know the number of ground-truth blocks, we set K = 500 and estimate the block structure by using the
two-step estimation approach, using the variational approach in Step 1 and Monte Carlo maximum likelihood estimates
in Step 2. To assess the performance of the two-step estimation approach in terms of block recovery, we use Yule’s
φ-coefficient. Yule’s φ-coefficient turns out to be .964, which indicates near-perfect recovery of the ground-truth block
structure. An inspection of the estimated block structure reveals that, out of the 500 categories of products in the Amazon
product recommendation network, products in 15 categories are misclassified. Some of the small categories are merged
with large categories, while some unusual products of large blocks are misclassified as well. Some of the products are
unusual in the sense of having few edges to other products in the same category, while others are unusual in the sense
of having many edges to other products in the same category.

The Monte Carlo maximum likelihood estimates and standard errors of θ1, . . . , θ6 are shown in Table 3. The parameters
θ1, . . . , θ6 of the geometrically weighted terms can be interpreted in terms of log odds of conditional probabilities of
edges, given all other edges (Hunter, 2007). A worked-out example can be found in Stewart et al. (2019). Table 3 suggests
that there is evidence for transitivity. The observed tendency towards transitivity has advantages in practice: It enables
Amazon to recommend co-purchases of brandnew products and existing products, even when there are no data on past
co-purchases of these products. For example, when a brandnew product i is introduced (e.g., a novel) and product i is
known to be related to existing product j (e.g., a novel by the same author), and product j tends to be co-purchased with
product k (e.g., a classic novel), then Amazon could recommend co-purchases of products i and j as well as products i
and k, despite the fact that there are no data on past co-purchases of products i and k and there is no direct connection
between products i and k (although there in indirect connection via product j).

To demonstrate that the curved exponential-family random graph model considered here can capture structural
features of networks that simpler models – such as stochastic block models – cannot capture, we compare the goodness-
of-fit of the curved exponential-family random graph model to the goodness-of-fit of stochastic block models. Since the
two models impose the same probability law on between-block subgraphs, it is natural to compare the two models in
terms of goodness-of-fit with respect to within-block subgraphs. We assess the goodness-of-fit of the two models in terms
of the within-block geodesic distances of pairs of products, i.e., the length of the shortest path between pairs of products
in the same block; the numbers of within-block dyadwise shared partners, i.e., the number of unconnected or connected
pairs of products with i shared partners in the same block; the numbers of within-block edgewise shared partners, i.e., the
number of connected pairs of products with i shared partners in the same block; and the number of within-block transitive

edges, i.e., the number of pairs of products with at least one shared partner in the same block. Figs. 5 and 6 compare the
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Fig. 5. Amazon product recommendation network with 10,448 products: goodness-of-fit of curved exponential-family random graph model. The
red lines indicate observed values of statistics. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Amazon product recommendation network with 10,448 products: goodness-of-fit of stochastic block models. The red lines indicate observed
values of statistics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

goodness-of-fit of the two models based on 1,000 graphs simulated from the estimated models. The figures suggest that
the curved exponential-family random graph model considered here is superior to the stochastic block model in terms of
both connectivity and transitivity.

7. Discussion

The two-step estimation approach proposed here enables large-scale estimation of models with local dependence and
unknown block structure provided that the number of blocks K is known. An important direction of future research are
methods for selecting K when K is unknown. We note that even in the special case of stochastic block models, the issue of
electing K has not received much attention, with the notable exception of recent work by Saldana et al. (2017), Wang and
ickel (2017), and others. Whether – and how – the developed methods can be extended to models with local dependence
s an open question, but having scalable methods for selecting K would doubtless be useful in practice.

The proposed methods are implemented in R packages hergm (Schweinberger and Luna, 2018). A stable and user-
friendly version will be released in the near future.
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