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Transient cell assembly networks 
encode stable spatial memories
Andrey Babichev & Yuri Dabaghian

One of the mysteries of memory is that it can last despite changes in the underlying synaptic 
architecture. How can we, for example, maintain an internal spatial map of an environment over 
months or years when the underlying network is full of transient connections? In the following, we 
propose a computational model for describing the emergence of the hippocampal cognitive map in a 
network of transient place cell assemblies and demonstrate, using methods of algebraic topology, how 
such a network can maintain spatial memory over time.

The mammalian hippocampus plays a major role in spatial cognition by producing an internalized representation 
of space, or a cognitive map of the environment1–4. Several key observations shed light on the neuronal compu-
tations responsible for implementing such a map. The first observation is that the spiking activity of the principal 
cells in the hippocampus is spatially tuned. In rats, these neurons, called place cells, fire only in certain locations 
within the environment—their respective place fields5. As demonstrated in many studies, this simple principle 
allows us to map the animal’s ongoing trajectory6, 7, its past navigational experience8, and even its future planned 
routes9–11 from the place cell’s spiking activity.

The second observation is that the spatial layout of the place fields—the place field map—is flexible: as the 
environment is deformed, the place fields shift and change their shapes, while preserving their mutual overlaps, 
adjacency and containment relationships12–15. Thus, the sequential order of place cells’ (co)activity induced by the 
animal’s moves through a morphing environment remains invariant within a certain range of geometric transfor-
mations16–20. This implies that the place cells’ spiking encodes a coarse framework of qualitative spatiotemporal 
relationships, such that the hippocampal map provides a ready topological framework which can be filled in with 
more detailed metrical data input by other brain regions.

The third observation concerns the synaptic architecture of the (para)hippocampal network: it is believed 
that groups of place cells that demonstrate repeated coactivity form functionally interconnected cell assemblies, 
which together drive their respective “reader-classifier” or “readout” neurons in the downstream networks21, 22. 
The activity of a readout neuron actualizes the qualitative relationships between the regions encoded by the indi-
vidual place cells, thus defining the type of spatial connectivity information encoded in the hippocampal map23.

A given cell assembly network architecture appears as a result of spatial learning, i.e., it emerges from 
place cell coactivities produced during an animal’s navigation through a particular place field map, via a 
“fire-together-wire-together” plasticity mechanism24, 25. A salient property of the cell assemblies is that they may 
disband as a result of a depression of synapses caused by reduction or cessation of spiking activity over a suffi-
ciently long timespan26. Some of the disbanded cell assemblies may later reappear during a subsequent period 
of coactivity, then disappear again, and so forth. Electrophysiological studies suggest that the lifetime of the cell 
assemblies ranges between minutes27, 28 and hundreds of milliseconds29–33. In contrast, spatial memories in rats 
can last much longer34–36, raising the question: how can a large-scale spatial representation of the environment be 
stable if the neuronal substrate changes on a much shorter timescale?

The hypothesis that the hippocampus encodes a topological map of the environment allows us to address 
this question computationally, using methods derived from the field of algebraic topology. Below, we propose a 
phenomenological model of a transient hippocampal network and use persistent homology theory37–39 to demon-
strate that a large-scale topological representation of the environment encoded by this network can remain stable 
despite the transience of neuronal connections.

The Model
We use a computational model to integrate the information provided by individual place cells into a large-scale 
topological representation of the environment; we have described this model in detail elsewhere40–44 but briefly 
outline it here. Alexandrov45 and Čech46 noted that if one covers a space X with a sufficient number of regions U1, 
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U2, …, Un, then it is possible to reconstruct the topology of X from the pattern of overlaps between these regions. 
To do that, one builds what is known as a “nerve simplicial complex” or simply “nerve of the cover”  : each ele-
ment Ui defines a vertex of  , each pair of overlapping elements, Ui and Uj, defines a 1D simplex (a bond), σij and 
so on. The Alexandrov-Čech theorem states that if every such overlap is contractible in X, then the nerve of the 
cover,  , is topologically equivalent to the covered space X47. If X is viewed as the environment and Ui’s as the 
place fields, then this construction suggests that the place field map encodes the topological information of the 
space navigated by the rat.

One can visualize the process of building the nerve simplicial complex (i.e., learning a space) as follows: as 
soon as an animal enters a place field Ui, the simplicial complex   acquires a vertex vi; as soon as the intersection 
of two place fields is visited, a link, σij, appears between the vertices vi and vj. Visiting a location where three place 
fields overlap contributes a triangle, σijk, between vertices vi, vj and vk, and so on (see Suppl. Fig. 1). As the animal 
explores the environment, new overlaps are detected and the nerve simplicial complex grows over time, 
 = t( ). If the environment is densely covered with place fields, then there will be a moment, Tmin, when the 
animal will have sampled a critical mass of the intersections between the place fields, at which point the simplicial 
complex T( )min  will be sufficiently dense to capture the topological structure of the underlying environment.

One might be tempted to view this argument as a mathematical proof that the information encoded in place 
cell activity is sufficient to encode the topological features of the environment, but the reality is more complex: we 
must remember that place fields are artificial constructs used by experimentalists to visualize the spike data. The 
hippocampus and the downstream brain regions do not have access to the elements of the geometric construction 
described above—the shape of the place fields or their locations. For the brain, the information is represented 
only by place cell spiking activity: if the animal enters a location where several place fields overlap, this fact will be 
detected by the downstream brain areas only by sensing the co-firing of the respective place cells. In other words, 
physical overlap of place fields necessitates temporal overlap of the firing of the respective place cells.

The rest of the construction is similar: the activity of a place cell, ci, is represented by a vertex vi; the detected 
coactivity of two place cells, ci and cj—by a bond, σij, between vertices vi and vj; the detected coactivity of three 
place cells, ci, cj and ck—by a 2D simplex σijk and so on. This procedure will produce a temporal “coactivity com-
plex”  t( ) that is analogous to the  t( ) constructed above: at every moment of time t, the coactivity complex t( )  
represents only those place cell combinations that have exhibited (co)activity. As the animal begins to explore the 
environment, the newly emerging coactivity complex is small, fragmented and contains many holes, most of 
which do not correspond to physical obstacles or to the regions that have not yet been visited by the animal 
(Fig. 1A). These gaps tend to disappear as the pool of place cell coactivities accumulates. Numerical simulations 
show that, if place cells operate within biological parameters40, the topological structure of   becomes equivalent 
to the topological structure of the environment within minutes. The minimal time Tmin required to produce a 
correct topological representation of the environment can then be used as an estimate for the time required by a 
given place cell ensemble to learn the topological structure or spatial connectivity of the experimental environ-
ment (Fig. 1B, refs 40–44), and the coactivity complex t( )  itself may serve as a schematic model of the hippocam-
pal map23. The simplexes of  t( ), just like the individual cell groups, provide local information about the 
environment, but together, as a “coactivity” simplicial complex, they represent space as a whole, providing a link 
between the cellular and the net systemic level of the information processing.

The large-scale topology.  The topological structure of a space X can be described in terms of the topolog-
ical loops that it contains, i.e., in terms of its non-contractible surfaces counted up to topological equivalence. A 
more basic topological description of X is provided by simply counting the topological loops in different dimen-
sions, i.e., by specifying its Betti numbers bn(X)47. The list of the Betti numbers of a space X is known as its topo-
logical barcode, = …b X b X b X b X( ) ( ( ), ( ), ( ), )0 1 2 , which in many cases captures the topological identity of 
topological spaces37. For example, the environment   shown at the bottom of Fig. 1A has the topological barcode 
 = …b( ) (1, 1, 0, ), which implies that   is topologically equivalent to an annulus (Fig. 1C). Other familiar 

examples of topological shapes identifiable via their topological barcodes are a two-dimensional sphere S and a 
torus T with the barcodes = …b S( ) (1, 0, 1, 0, ) and = …b T( ) (1, 2, 1, 0, ) respectively (Fig. 1C). For the math-
ematically oriented reader, we note that the matching of topological barcodes does not always imply topological 
equivalence between topological spaces but, in the context of this study, we disregard effects related to torsion and 
other topological subtleties.

The analyses of the coactivity complex is based on comparing its topological barcode b( )  to the topological 
barcode of the environment, b( ) . If these barcodes do not match, then   and   are topologically distinct. In 
contrast, if the barcode of   is “physical,” i.e., coincides with b( ), then the coactivity complex provides a faithful 
representation of the environment. More conservatively, one may compare only the physical dimensions in the 
barcodes b( )  and b( ), i.e., 0D, 1D, 2D loops, or the dimensions containing the nontrivial 0D and 1D loops for 
the environment, as shown on Fig. 1B.

Simplicial model of the hippocampal network.  If every observed group of coactive place cells contrib-
utes a simplex, the resulting coactivity complex   makes no reference to the structure of the hippocampal net-
work, and gives a purely phenomenological description of the information contained in the place cell coactivity. 
In a more detailed approach, the coactivity complex may be constructed so that its maximal simplexes (i.e., the 
simplexes that are not subsimplexes of any larger simplex) represent ignitions of the place cell assemblies, rather 
than arbitrary place cell combinations. The combinatorial arrangement of the maximal simplexes in the resulting 
“cell assembly coactivity complex,” denoted CA, schematically represents the network of interconnected cell 
assemblies23, 42 (Fig. 2A).
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The specific algorithm for constructing the complex CA  may also reflect how neuronal coactivity is processed 
by the readout neurons. If these neurons function as “coincidence detectors,” i.e., if they react to the spikes 
received within a short coactivity detection period wσ (typically, wσ ≈ 200–250 milliseconds41, 48), then the maxi-
mal simplexes σ in the corresponding coincidence detection coactivity complex (denoted σ ) will appear instan-
taneously at the moments of the cell assemblies’ ignitions42, 43. Alternatively, if the readout neurons integrate the 
coactivity inputs from smaller parts of their respective assemblies over an extended coactivity integration period 
ϖς

49, 50, then the appearance of a maximal simplex ς in the corresponding input integration coactivity complex 
(denoted as ς ) will extend over time, reflecting the dynamics of synaptic integration. Physiologically, ϖς can be 
viewed as the period during which the readout neuron nς connects synaptically to a particular combination of 
coactive place cells, forming a cell assembly ς, retaining these connections, responding to subsequent ignitions of 
ς and maintaining information of which cells spiked together—this is the readout neuron’s “finite memory span.” 
Clearly, the distribution of the parameters ϖς in a given cell assembly network affects the rate at which large-scale 
topological information is accumulated and thus controls the model’s description of spatial learning.

To model an input integrator coactivity complex ς, we first built a relational graph G that represents the pool 
of the most coactive pairs of place cells. Specifically, for every cell ci, we select n0 cells cj, j = 1, …, n0, that exhibit 
the highest rates fc c,i j

 of coactivity with ci. The maximal, fully interconnected subgraphs of the graph G—its 

Figure 1.  The place cell coactivity complex. (A) A simulated rat traverses an environment   with a hole in the 
middle, covered by place fields (colored regions). Areas where place fields overlap imply place cell co-firing; this 
is represented by the coactivity complex  . Vertices of   correspond to active neurons, links to pairs of coactive 
neurons, etc. Early in exploring the space, the complex contains gaps, or transient topological noise, that are 
filled in with further exploration over time. The hole in the middle of   corresponds to the central hole in  . 
The non-contractible closed chain of pink simplexes represents the cell assemblies ignited along one path the 
animal traverses (loop in ). (B) Timelines of zero-dimensional (0D, cyan), one-dimensional (1D, blue) and 
two-dimensional (2D, gray) topological loops in  . The number of 0D, 1D and 2D lines at every moment 
defines the Betti values, b0, b1 and b2. As long as a given 0D loop persists,   contains the corresponding 
connected space (a gray triangle in panel A), a 1D loop represents a noncontractible hole and a 2D loop 
represents a bubble in  . In the illustrated case, the 0D spurious loops disappear in 1.5 mins, when   fuses into 
one piece. The spurious 1D loops disappear in about 2.8 min, when all the spurious holes in   close up, and the 
2D loops disappear by Tmin = 4.2 min, at which point   becomes topologically equivalent to  . (C) The barcode: 
topological loops in the environment  , sphere S and torus T. In all three cases, any two 0D loops (i.e., points) 
can be matched with one another via continuous displacements. Thus, all 0D loops are topologically equivalent 
to a single representative 0D loop, i.e., = = =b b S b T( ) ( ) ( ) 10 0 0 . The 1D loops are of two types: some contract 
to a point (blue loops), others are non-contractible due to topological obstructions, e.g., the central hole in  . 
Thus, =b ( ) 11  , b1(S) = 0 and b1(T) = 2. Since the sphere and the torus are 2D surfaces that loop onto 
themselves, their second Betti numbers are b2(S) = b2(T) = 1.   is also 2D but it can be contracted to the 1D rim 
of the central hole, hence  =b ( ) 02 . Lastly, none of the three shapes extend beyond 2D, so there are no higher-
order Betti numbers. The barcodes are = …b( ) (1, 1, 0, 0, ) , = …b S( ) (1, 0, 1, 0, 0, ), and 

= …b T( ) (1, 2, 1, 0, 0, ).
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cliques—can then be then be identified with the cell assemblies and viewed as simplexes ς of the clique complex 
ς G( )51. The process of assembling the cliques from pairwise connections can be used to model the process of 
integrating spiking inputs in the cell assemblies, so that the resulting clique coactivity complex ς  serves as a 
model of the input integration cell assembly network. Numerical simulations show that the input integration 
clique complexes reproduce the topological structure of the environment faster and more reliably than coinci-
dence detection coactivity complexes  = σ⁎

23, 42, 43. In fact, the coincidence detection coactivity complexes can 
be viewed as a specific case of the input integration coactivity complexes: as the integration period shrinks and 
approaches the coactivity period ϖς → wσ, the input integration coactivity complex ς  reduces to the coincidence 
complex σ . For all these reasons we will model only the input integration, i.e., clique coactivity complexes.

Instability of the cell assemblies.  In the foregoing construction of the coactivity complexes ς , a given 
cell assembly could take the entire navigation period to form ϖς = Ttot. It is then presumed to exist from the 
moment of its first appearance for as long as the navigation continues42. A natural approach to modeling cell 
assemblies with finite lifetimes is to restrict the period during which they can form, so that ϖς < Ttot. In a popula-
tion of cell assemblies, the integration periods can be distributed with a certain mode ϖ and a variance Δϖ. In 
order to simplify the approach, we will make two assumptions. First, we will describe the entire population of the 
readout neurons in terms of the integration period of a typical readout neuron, describing the ensemble of read-
out neurons with a single parameter, ϖ. Second, we will assume that the integration periods of all neurons are 
synchronized, i.e., that there exists a globally defined coactivity integration window of width ϖ during which the 
entire population of the readout neurons synchronously processes coactivity inputs from their respective place 
cell assemblies. In such case, ϖ can be viewed as a period during which the cell assembly network processes the 
ongoing place cell spiking activity. Below we demonstrate that these restrictions result in a simple model that 
allows us to describe a population of finite lifetime cell assemblies and show that the resulting cell assembly net-
work, for a sufficiently large ϖ, reliably encodes the topological connectivity of the environment.

Computational model of the transient cell assembly network.  To build a coactivity complex   with 
fluctuating or “flickering” maximal simplexes that represents a network with rewiring cell assemblies, we imple-
ment a “sliding coactivity integration window” approach (see Suppl. Movie 1). First, we identify the maximal 
simplexes that emerge within the first ϖ-period after the onset of the navigation, ϖ1, based on the place cell 
activity rates evaluated within that window, fς(ϖ1), and construct the corresponding input integration coactivity 
complex  ϖ( )1 . Then the algorithm is repeated for the subsequent windows ϖ2, ϖ3, … which are obtained by 
shifting the starting window ϖ1 over small time steps Δt. Since consecutive windows overlap, the corresponding 
coactivity complexes  ϖ( )1 , ϖ( )2 , … consist of overlapping sets of maximal simplexes. A given maximal simplex 
ς (uniquely defined by the set of its vertexes in any window) may appear in a chain of consecutive windows ϖ1, 
ϖ2, …, ϖk − 1 then disappear at a step ϖk (i.e., ς ϖ∈ −( )k 1 , but ς ϖ∉ ( )k ), then reappear in a later window ϖl, 
then disappear again, and so forth (Fig. 2B). The midpoint tk of the window in which the maximal simplex ς has 
(re)appeared defines the moment of ς’s (re)birth, and the midpoints of the windows where it disappears, are 

Figure 2.  Place cell assemblies and flickering coactivity complexes. (A) Functionally interconnected groups 
of place cells (place cell assemblies) are schematically represented by fully interconnected cliques. The place 
cells (small disks) in a given assembly ς are synaptically connected to the corresponding readout neuron nς 
(pentagons below). An assembly ς ignites (red clique/tetrahedron in the middle) when its place cells elicit 
jointly a spiking response from the readout neuron nς (active cells have red centers). A cell assembly may be 
active at a certain moment of time, then deactivate, then become active again, and so forth. If a certain cell 
assembly ceases to ignite and another combination of place cells begins to exhibit frequent coactivity, the old 
cell assembly is replaced by new one. (B) Formation and disbanding of the cell assemblies in the hippocampal 
network is schematically represented by appearance and disappearance of the maximal simplexes of the 
“flickering” coactivity complex. The sequence of figures illustrates fluctuations in a small part of the coactivity 
complex shown on Fig. 1A. Since the large-scale topological information encoded by the hippocampal network 
should persist, one would expect that the flickering complex should retain a certain skeletal structure, capable of 
representing such information.
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viewed as the times of its deaths. Indeed, one may use the left or the right end of the shifting integration window, 
which would affect the endpoints of the navigation, but not the net results discussed below. As a result, the life-
time δtς,,k of a cell assembly ς between its k-th consecutive appearance and disappearance can be as short as one 
discrete time step Δt (if ς appears within a window ϖk and disappears at the next step, within ϖk + 1), or as long as 
Ttot - ϖ in the case if ς appears at the first step and never disappears. However, a typical maximal simplex exhibits 
a spread of lifetimes that can be characterized by a half-life, as we will discuss below.

It is natural to view the coactivity complexes  ϖ( )i  as instances of a single flickering coactivity complex ϖ , 
ϖ = ϖ t( ) ( )i i  , with appearing and disappearing maximal simplexes (Fig. 2B). In the following, we will use ϖ  

as a model of the transient cell assembly network and study whether such a network encodes a correct and stable 
topological map of the environment on a moment-by-moment basis.

Results
Flickering cell assemblies.  We studied the dynamics of flickering cell assemblies produced by a neuronal 
ensemble containing Nc = 300 simulated place cells. First, we built a simulated cell assembly network as described 
above that contains, on average, about Nς ≈ 320 finite lifetime, or transient, cell assemblies (Fig. 3A). As shown in 
Fig. 3B, the order of the maximal simplexes that represent these assemblies, ranges between |ς| = 2 and |ς| = 14, 
with the mean of about |ς| = 7, implying that a typical simulated cell assembly includes |ς| = 7 ± 2 cells.

The distribution of the maximal simplexes’ lifetimes δtς,,k as a function of their dimensionality shows that 
higher-dimensional simplexes (and thus the higher-order cell assemblies) are shorter-lived than the low-order 
cell assemblies (Fig. 3C). The histogram of the mean lifetimes tς = 〈δtς,,k〉k is closely approximated by the exponen-
tial distribution (Fig. 3D), which suggests that the duration of the cell assemblies’ existence can be characterized 
by a half-life τϖ. The individual lifetimes δtς,k, the number of appearances nς, and net existence time ΔTς = ∑k δtς,,k 
of the maximal simplexes are also exponentially distributed (see Fig. 3E and Suppl. Fig. 2). As expected, the mean 
net existence time approximately equals the product of the mean lifetime and the mean number of the cell assem-
bly’s appearances 〈ΔTς〉 ≈ 〈nς〉 〈δtς,,k〉.

Figure 3F shows how these parameters depend on the width of the integration window. As ϖ widens, the 
mean lifetime tς of maximal simplexes (and thus its half-life and the net lifetime) grows linearly, whereas the mean 
number of simplexes’ appearances 〈nς〉 remains nearly unchanged. The latter result is natural since the frequency 
with which the cell assemblies ignite is defined by how frequently the animal visits the respective cell assem-
bly fields (the domains where the corresponding sets of place fields overlap42). This frequency does not change 
significantly if the changes in ϖ do not exceed the characteristic time required to turn around the maze and 
revisit cell assembly fields, in this case ca. 1–2 min. Thus, the model produces a population of rapidly changing 
cell assemblies; in the simulated case τϖ ≈ 9 seconds, which is close to the experimental range of values22. These 
results allow us to address our main question: can a network of transient cell assemblies encode the topology of 
the environment?

Flickering coactivity complex.  We next studied the properties of the flickering coactivity complex ϖ  
formed by the pool of fluctuating maximal simplexes. First, we observed that the size of ϖ does not fluctuate 
significantly across the rats’ navigation time. As shown in Fig. 4A, the number of maximal simplexes ς ϖN t( ( )) 
fluctuates within about 4% of its mean value. The fluctuations in the number of coactive pairs ϖN t( ( ))2  is even 
smaller: 3% of the mean, and the variations in number of the third order simplexes ϖN t( ( ))3  are about 7% of the 
mean. To quantify the structural changes in ϖ , we computed the number of maximal simplexes that are present 
at time ti and missing at time tj, yielding the matrix of asymmetric distances, = ς ϖ ϖd N t t( ( )\ ( ))ij i j   for all pairs 
ti and tj (see Methods and Fig. 4B). The result suggests that as temporal separation |ti − tj| increases, the differences 
between ϖ t( )i  and ϖ t( )j  rapidly accumulate, meaning that the pool of maximal simplexes shared by ϖ t( )i  and 

ϖ t( )j  rapidly thins out. After about 2 minutes (over 50 window shifts, |i − j| > 50) the difference is about 95% 
(Fig. 4B).

Since the coactivity complexes are induced from the pairwise coactivity graph G as clique complexes, we also 
studied the differences between the coactivity graphs at different moments of time by computing the normalized 
distance between the coactivity matrices (see Methods). The results demonstrate that the differences in G, i.e., 
between G(tj) and G(ti), accumulate more slowly with temporal separation than in ϖ : after about two minutes 
the connectivity matrices differ by about 10–15% (Fig. 4C).

Figure 4D shows the asymmetric distance between two consecutive coactivity complexes ϖ t( )i  and ϖ +t( )i 1 , 
and the asymmetric distance between the starting and a later point ϖ t( )1  and ϖ t( )i , normalized by the size of 
ϖ t( )1  as a function of time. The results suggest that, although the sizes of the coactivity complexes at consecutive 
timesteps do not change significantly, the pool of the maximal simplexes in ϖ is nearly fully renewed after about 
two minutes (see Suppl. Movie 1). In other words, although the coactivity complex changes its shape slowly, the 
integrated changes across long periods are significant (compare Fig. 4E with Fig. 2B). Biologically, this implies 
that the simulated cell assembly network, as described by the model, completely rewires in a matter of minutes 
(see Suppl. Movies 2 and 3).

Topological analysis of the flickering coactivity complex exhibits a host of different behaviors. First, we start 
by noticing that the 0th and the higher-order Betti numbers always assume their physical values b0 = 1, bn>4 = 0, 
whereas the intermediate Betti numbers b1, b2, b3 and (for small ϖs) b4 can fluctuate (Fig. 5A and Suppl. Fig. 3). 
In other words, despite the fluctuations of its simplexes, the flickering complex ϖ  does not disintegrate into 
pieces (i.e., b0 > 1 is never observed) and and produces no noncontractible topological loops in dimensions D > 4 
(i.e., bn>4 = 0). Biologically, this implies that the topological fluctuations in the simulated hippocampal map are 
limited to 1D loops, 2D surfaces and 3D bubbles. For example, an occurrence of b1 = 2 value indicates the appear-
ance of an extra (non-physical) 1D loop that surrounds a spurious gap in the cognitive map (Fig. 1A). On the 
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other hand, at the moments when b1 = 0, all 1D loops in ϖ  are contractible, i.e., the central hole is not repre-
sented in the simulated hippocampal map52. The moments when bn>2 > 0 indicate times when the flickering 
complex ϖ contains non-physical, non-contractible multidimensional topological surfaces. One can speculate 
about the biological implications of these fluctuations, as illustrated in Suppl. Fig. 5.

As the coactivity window increases, the fluctuating topological loops become suppressed and vice versa, as the 
integration window shrinks, the fluctuations of the topological loops intensify (Fig. 5). This tendency could be 

Figure 3.  Fluctuating simplexes. (A) Each strike represents a timeline of a particular maximal simplex ς, 
computed for the coactivity window ϖ = 4 min. There are about Nς = 320 maximal simplexes at every given 
timestep (first 200 are enumerated along the y-axis), whereas the total number of maximal simplexes observed 
during the entire navigation period is about 11,000. The color of the timelines marks the order of ς (colorbar 
on the right). Notice that the simplexes of lower orders generally persist over longer intervals. (B) Number of 
maximal simplexes as a function of their order has a Gaussian shape with the mean d = 7 and standard deviation 
Δd ≈ ±2, suggesting that a typical cell assembly contains about seven neurons and about two neurons may 
appear or disappear from it at a given moment. (C) Average existence time of the maximal simplexes tends to 
decay with increasing order. (D) Histogram of the maximal simplexes’ individual average lifetimes tς fit with 
the exponential distribution with mean τϖ = 9 s, defining the half-life of the simulated cell assemblies for this 
ϖ. (E) Histogram of the maximal simplexes’ lifetimes tς,,k, i.e., of the lengths of all intervals between consecutive 
appearance and disappearance of the maximal simplexes, the histogram of the number of simplex-births nς 
and the histogram of the total existence periods Tς fit with their respective exponential distributions. The mean 
number of simplex’ appearances 〈nς〉 ≈ 1.5 shows that most maximal simplexes appear only once or twice, 
though some maximal simplexes may appear 20 times or more. Notice that the mean net existence period 
〈Tς〉 ≈ 14.57 s is approximately equal to the product of the mean lifetime and the mean number of appearances 
〈Tς〉 ≈ 〈nς〉 〈tς,,k〉. (F) As the size of the memory window ϖ increases, the lifetimes, half-lives, and net existence 
periods of the maximal simplexes grow linearly with ϖ.
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expected, since the cell assembly lifetimes reduce as the integration window shrinks and increase as the coactivity 
integration window grows (Fig. 3F). However, a nontrivial result suggested by Fig. 5 is that the topological param-
eters of the flickering complex can stabilize completely, even though its maximal simplexes keep appearing and 
disappearing, or “flickering.” At ϖ ≈ 6 minutes, the Betti numbers of ϖ  remain unchanged (Fig. 5A), whereas the 
lifetime of its typical simplex is about 10 seconds (Fig. 3F). Biologically, this implies that a stable hippocampal 
map can be encoded by a network of transient cell assemblies, i.e., that the ongoing synaptic plasticity in the hip-
pocampal network does not necessarily compromise the integrity of the large-scale representation of the 
environment.

Local learning times.  If information about the detected place cell coactivities is retained indefinitely, the 
time required to produce the correct topological barcode of the environment Tmin may be computed only once, 
starting from the onset of the navigation, and used as the low-bound estimate for the learning time40, 41, 44. In the 
case of a rewiring (transient) cell assembly network, the pool of encoded spatial connectivity relationships is con-
stantly renewed. As a result, the time required to extract the large-scale topological signatures of the environment 
from place cell coactivity becomes time-dependent and its physiological interpretation also changes. Tmin(tk) 
now defines the period over which the topological information emerges from the ongoing spiking activity at 
every stage of the navigation, i.e., defines a local span of the learning period. Thus, the process of extracting the 
large-scale topology of the environment should be quantified in terms of the mean learning time Tmin = 〈Tmin(tk)〉k 

Figure 4.  Behavior of the flickering coactivity complex computed for the memory window width ϖ = 4 min, 
shifted over Δt = 2.5 secs steps, i.e., at the discrete times tk = kΔt. (A) The number of maximal simplexes in ϖ  
(blue trace) fluctuates within 4% of the mean value of Nς = 320. The number of the 1D simplexes ϖN ( )1   (red 
trace) and the number of the 1D simplexes appearing in consecutive windows (i.e., links shared by ϖ t( )i  and 

ϖ −t( )i 1 , green trace) fluctuate within a 3% bound. The fluctuations in the number of 2D subsimplexes ( ϖN ( )2  , 
light blue trace) and the number of 2D simplexes shared by two consecutive windows (purple trace) do not 
exceed 7% of the mean. ϖN ( )1   and ϖN ( )2  are scaled down by a factor of 10 to fit the scale of the figure. (B) The 
asymmetric distance dij between ϖ t( )i  and ϖ t( )j  is defined as the number of the maximal simplexes at moment 
ti that are missing at the moment tj. As the timestep separation |i − j| grows, dij rapidly increases. (C) The matrix 
of similarity coefficients rij between the weighted coactivity graphs at different timesteps. For close timesteps i 
and j, the differences between the corresponding coactivity graphs G(ti) and G(tj) are small, but as time 
separation grows, the differences accumulate, though not as rapidly as with the coactivity complexes. (D) At 
each moment, ti, the blue line shows the proportion of maximal simplexes present at the previous time, ti − 1. The 
green line shows the proportion of maximal simplexes contained at the start (in ϖ t( )1 ) that remain in the 
coactivity complex at the later time ϖ t( )i . The population of simplexes changes by about 95% in about 2 min. 
(E) A schematic illustration of the changes of the coactivity complex’s shape: rather than exhibiting fluctuations 
around a certain “mean” shape (Fig. 2B), the coactivity complex continuously restructures.
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and its variance ΔTmin/Tmin, which does not exceed 40% (typically ΔTmin/Tmin ≈ 20%). This suggests that Tmin 
provides a statistically sound characteristic of the information flow across the simulated cell assembly network.

As shown in Fig. 5B, the proportion ξ of “successful” coactivity integration windows (those windows in 
which Tmin assumes a finite value) depends on their width ϖ. For small ϖ, the coactivity complex frequently 
fails to reproduce the topology of the environment (Fig. 5A). As ϖ grows, the number of failing points, i.e., those 
for which Tmin(tk) > ϖ (red asterisks on Fig. 5A), reduces due to the suppression of topological fluctuations. 
Moreover, the domains previously populated by the divergent points are substituted with the domains of rela-
tively high but still finite Tmin(tk). For sufficiently large coactivity windows (ϖ > 6 minutes), such divergent points 
become exceptional or disappear entirely: the correct topological information is recaptured within all memory 
windows.

Of note, the time dependence of Tmin(tk) exhibits abrupt increases and decreases, with characteristic 45° slants 
in-between. The rapid rises of Tmin(tk) correspond to appearances of obstructions in the coactivity complex ϖ  
(and possibly higher-dimensional surfaces) that temporarily prevent certain spurious loops from contracting. As 
more connectivity information is supplied by the ongoing spiking activity, the coactivity complex ϖ  may acquire 
a combination of simplexes that eliminates these obstructions, allowing the unwanted loops to contract and yield-
ing the correct topological barcode. Thus, Fig. 5B suggests that the dynamics of the coactivity complex is con-
trolled by a sequence of coactivity events that produce or eliminate topological loops in ϖ, while the 45° slants 
in Tmin(tk) represent “waiting periods” between these events (since with each window shift over Δt, the local 
learning time decreases by exactly the same amount).

To better understand how the learning time depends on the coactivity integration window width, we tested the 
dependence of Tmin on ϖ by fixing the position of several coactivity integration windows ϖk and expanding their 
right side, ϖ ϖ ϖ> > … >k k k

q(1) (2) ( ) (Fig. 6 and Suppl. Fig. 4). As one would expect, small values of ϖ generated 
many failing points, whereas the learning times Tmin(tk) computed for the successful trials remained nearly equal 
to ϖ, i.e., the width of the narrow integration windows was barely sufficient for producing the correct barcode 
b( ). However, as ϖ grows further, Tmin stops increasing and, as ϖ exceeds a certain critical value ϖc (typically 

Figure 5.  Stability of large-scale topological information. (A) The low-dimensional Betti numbers b1, b2, b3 as a 
function of discrete time, computed for three coactivity integration windows, ϖ = 6 minutes, ϖ = 4 minutes and 
ϖ = 2 minutes. The 0th Betti number, b0 = 1, remains stable at all times and is therefore not shown. At 
sufficiently large coactivity windows, ϖ ∼ −4 6 minutes, the topological fluctuations become suppressed and 
the large-scale topological information remains stable, even though the characteristic lifetime of a maximal 
simplex in the coactivity complex ϖ  is about 10 secs (Fig. 4C). As the integration window narrows, the 
topological fluctuations intensify (Suppl. Fig. 2). (B) The variation in the time required to extract the topological 
information increases as the coactivity integration window shrinks. At ϖ = 6 min, there are no failing points. 
Notice that the starting learning time corresponds to the Tmin value computed for the “perennial” case ϖ = ∞, 
illustrated on (Fig. 1B). As the memory window shrinks to ϖ = 4 min, the topological mapping fails in only 1% 
of the cases—just one point over 8 minute interval, when a spurious 1D loop appears. At ϖ = 2 min, the complex 

ϖ  fails to produce the correct topological information in 24% of the cases (convergence score ξ = 0.76). The 
failing moments are marked by red dots. Here we compute the most conservative estimate for the learning time 
Tmin to be the time required to establish the correct topology only in the dimensions that may contain physical 
obstructions, 0D and 1D. Therefore, the points where Tmin diverges are marked by appearances of spurious 1D 
loops (encapsulated into red dashed boxes across panels). The points where the learning time rapidly changes 
are often accompanied by the appearance or disappearance of higher dimensional topological loops (blue 
dashed boxes).
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about five or six minutes), the learning time begins to fluctuate around a mean value Tmin = 〈Tmin(tk)〉 of about two 
minutes. In other words, for sufficiently large coactivity windows ϖ > ϖc, the learning times become independent 
of the model parameter ϖ, and therefore the model provides a parameter-free characterization of the time 
required by a network of place cell assemblies to represent the topology of the environment, whereas ϖc defines 
the time necessary to collect the required spiking information (Suppl. Fig. 5).

Discussion
Fundamentally, the mechanism of producing the hippocampal map depends on two key constituents: on the 
temporal relationships among the action potentials produced by the place cells and by the way in which spiking 
information is processed by the downstream networks. A key determinant for the latter is the synaptic archi-
tecture of the cell assembly network, which changes constantly due to various forms of synaptic and structural 
plasticity: place cell assemblies may emerge in cell groups that exhibit frequent coactivity or disband due to lack 
thereof. The latter phenomenon is particularly significant: since the hippocampal network is believed to be one 
of the principal memory substrates, frequent recycling of synaptic connections could compromise the integrity 
of its net function. For example, the existence of many-to-one projections from the CA3 to the CA1 region of the 
hippocampus suggests that the CA1 cells may serve as readout neurons for the assemblies formed by the CA3 
place cells8, 53. Electrophysiological studies suggest that the recurrent connections within CA3 and the CA3–CA1 
connections rapidly renew during the learning process and subsequent navigation54, 55. On the other hand, it is 
also well known that lesioning these connections disrupts the animal’s performance in spatial56–58 and nonspa-
tial59, 60 learning tasks, which suggests that an exceedingly rapid recycling of functional cell groups impairs the 
formation of the hippocampal map61–64.

The proposed model allows us to investigate whether a dynamically rewiring network of place cell assemblies 
can sustain a stable topological representation of the environment. The results suggest that if the intervals between 
consecutive appearance and disappearance of the cell assemblies are short (or, in an alternative interpretation, if 
the readout neurons have short memory retention span), the hippocampal map exhibits strong topological fluc-
tuations. However, if the cell assemblies rewire sufficiently slowly, the information encoded in the hippocampal 
map remains stable despite the transience of connections in its neuronal substrate. Thus, the plasticity of neuronal 
connections, which is ultimately responsible for the network’s ability to incorporate new information65–68, does 
not necessarily degrade the information that is already stored in the network. Moreover, Fig. 5 suggests that the 
network’s failure to produce a topological barcode at a particular moment (within a particular integration window 
ϖk) is typically followed by a period of successful learning. This implies that the forgetting mechanism incorpo-
rated into the model, whereby the removal of older connectivity relationships from ϖ as newer relationships are 
acquired, allows correction of some of the accidental connections that may have been responsible for producing 
persistent spurious loops at previous steps. In other words, a network capable of not only accumulating, but also 
forgetting information, exhibits better learning results. These results present a principal development of the 
model outlined in refs 40–42, 44 from both a computational and a biological perspective.

Physiological vs. schematic learnings.  The schematic approach proposed in ref. 23 allows us to describe 
the process of spatial learning from two perspectives: as training of the synaptic connections within the cell 
assembly network—referred to as physiological learning in ref. 23—or as the process of establishing large-scale 
topological characteristics of the environment, referred to as cognitive learning. The difference between these 
two concepts is particularly apparent in the case of the rewiring cell assembly network, in which the synaptic 
configurations may remain unsettled due to the rapid transience of the connections. On the other hand, cognitive 

Figure 6.  Stability the large-scale topological information. (A) A schematic illustration of the growing 
coactivity window ϖ, superimposed over a fragment of the maximal simplex’ timeline diagram on Fig. 4A. (B) 
The learning times Tmin(tk) computed within the growing coactivity window are shown by the blue line. For 
narrow coactivity windows, the learning times either diverge (Tmin(tk) > ϖ) or converge barely (Tmin(tk) ≈ ϖ). As 
ϖ exceeds a certain critical value ϖc (for the simulated place cell ensemble, ϖc ≈ 4–6 minutes), the learning time 
Tmin(tk) stops increasing and begins to fluctuate around a certain mean value Tmin = 〈Tmin(tk)〉k. This value is 
independent of the coactivity window width and hence represents a parameter-free characterization of the 
mean time required to extract topological information from place cell coactivity. (C) The low-dimensional Betti 
numbers b1, b2, b3 and b4 as a function of the coactivity integration window width ϖ. As ϖ exceeds a critical 
value ϖc, the Betti numbers bn stabilize, indicating suppression of the topological fluctuations in ϖ.
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learning is perfectly well defined since the large-scale topological characteristics of the environment can be 
achieved reliably.

In fact, the model outlines three spatial information processing dynamics at the short-term, intermediate-term, 
and long-term memory timescales69. First, local spatial connectivity is represented in transient cell assemblies 
within several seconds. This timescale corresponds to the scope of memory processes that involve tempo-
rary maintenance of information produced by the ongoing neural spiking activity, commonly associated with 
short-term memory69, 70. The short-term memory capacity is around seven (7 ± 2) items71, corresponding in the 
model to the order of the simulated cell assemblies (Fig. 3B). Information about the large-scale connectivity of 
the environment is acquired and updated at the timescale of the mean learning time Tmin (Figs 5 and 6), at the 
order of minutes, corresponding to intermediate-term memory timescale72, 73. Persistent topological information, 
represented by the stable Betti numbers, may represent long-term memory about the connectivity of the envi-
ronment as a whole.

Methods
The rat’s movements were modeled in a small planar environment, similar to the arenas used in electrophysio-
logical experiments (bottom of Fig. 1A). The trajectory simulates non-preferential exploratory behavior, without 
favoring of one segment of the environment over another. In particular, this allows us to avoid inducing artificial 
topological loops in the coactivity complexes.

Place cell spiking activity is modeled as a stationary temporal Poisson process with a spatially localized Gaussian 
rate characterized by the peak firing amplitude fc and place field size sc

74. The results are based on a simulated 
ensemble of Nc = 300 place cells, with log-normally distributed peak firing amplitudes (mode f = 14 Hz) and place 
field sizes (mode s = 17 cm). The place cell spiking probability is modulated by the θ-component of the extracellu-
lar field oscillations (mean frequency of ~8 Hz75) recorded in wild-type Long Evans rats (see Methods in ref. 17).  
These values, selected based on our previous studies of topological maps encoded by place cell ensembles, guar-
antee the existence of a correct topological map in a population of “perennial” cell assemblies (ϖ = ∞). For more 
computational details and a discussion of the range of behavioral and physiological parameters see refs 40, 41, 44.

The activity vector of a place cell c is constructed by binning its spike trains into an array of consecutive 
coactivity detection periods w. If the time interval T splits into Nw such periods, then the activity vector of a cell c 
over this period is mc(T) = [mc;1, …, mc;Nw], where mc;k specifies how many spikes were fired by c into the k-th time 
bin42. The activity vectors of Nc cells, combined as rows of a Nc × Nw matrix, form the activity raster R. A binary 
raster B is obtained from the activity raster R by replacing the nonzero elements of R with 1.

Place cell spiking coactivity is defined as firing that occurs over two consecutive θ-cycles, which is an opti-
mal coactivity detection period w both from the computational41 and from the physiological48 perspective. 
Coactivity ρ of a pair of cells c1 and c2 can be computed as the formal dot product of their respective activity 
vectors ρc1c2 = mc1(T)mc2(T).

Shifting coactivity window.  The spiking activity confined within the k-th coactivity integration window of 
size ϖ produces a local binary raster Bk of size Nc × Nϖ/w, where ϖ=ϖ ⌊ ⌋N w/w/ . The coactivity integration win-
dow was shifted by the discrete timesteps Δt = 10w ≈ 2.5 s. Thus, in ns = ϖ/Δt steps, the local rasters Bk and Bk + 

ns cease to overlap. During the four-minute-long coactivity integration window ns = 96.
Within each coactivity integration window ϖk, the most frequently activated connections give rise to a local 

set of cell assemblies, which may replace some of the previously existing assemblies. The mean recycling rate of 
the cell assemblies is characterized by the decay constant τϖ.

Coactivity distances.  For each window ϖn, we compute the coactivities of every pair of cells
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where indexes i,j run over all the cells in the ensemble, illustrated in Fig. 3C.
Topological analyses were implemented using the JPlex package76.
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