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Abstract: Colonies of Candida parapsilosis on culture plates were probed directly in situ 

using Raman spectroscopy for rapid identification of specific strains separated by a given 

time intervals (up to months apart). To classify the Raman spectra, data analysis was 

performed using the approach of principal component analysis (PCA). The analysis of the 

data sets generated during the scans of individual colonies reveals that despite the 

inhomogeneity of the biological samples unambiguous associations to individual strains 

(two biofilm-positive and two biofilm-negative) could be made. 
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1. Introduction 

When characterizing yeast colonies or biofilms using spectroscopic techniques, and specifically 

Raman spectroscopy, one is normally faced with the problem of spatial inhomogeneity of the sample. 

On one hand, this allows one to evaluate the response of a bio-organism to slightly different 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 23925 

 

 

environmental conditions, as a function of position, but on the other hand it might hinder the clear 

identification of a particular biological specimen/molecular compound within a complex spectrum.  

Regardless of this complication, it has been shown that the technique of Raman spectroscopy 

(including Raman imaging) can be regarded as the method of choice for many studies of micro-organisms, 

cells and biological samples [1–13]. A recent review provides valuable information on Raman 

spectroscopy in biomedicine for the characterization of molecular complexes in living cells and tissues [7]. 

In addition, a reasonably detailed database of Raman features encountered in biological samples was 

published [5]. For the compositional analysis and the spatial visualization of microbial colonies or 

biofilms, experiments have recently been performed in which spectra were acquired point-by-point, at 

a few selected positions of individual colonies [12,13]. Both particular species and some relevant 

molecular complexes could be identified this way, with some spatial resolution. This type of spot 

investigation for species and/or compound identification collect sufficient or complete (multi-spectra) 

information about the whole colony and respective the likely inhomogeneous growth of micro-organisms 

over the dimension of the sample. 

We would like to note that because of a typical convex shape of a mature yeast colony (the colony 

height/elevation can be in order of hundreds of µm) it is difficult to apply commercial line-scan 

techniques (because of problems with re-focusing on the steep colony surface) where building up a 

spatial map can be achieved over relatively short time intervals. Near the periphery of a growing 

colony, the height rises steeply to a ridge and beyond the point of inflexion marking this ridge, the 

height rises less steeply to a flat center [14]. Thus, a possible solution to reliably apply Raman 

technique when large height differences between the periphery of a colony and its centre are 

introduced is spot measurement. In this way, a compositional map is build up from the significant part 

of a colony. 

Building up of a spatial map can be achieved over relatively short time intervals; for example,  

yeast colonies can be analyzed in a few minutes for analysis and identification using standard 

chemometric techniques. 

The investigation presented here expands on the findings from our earlier publication on Raman 

spectroscopy of bacterial strains, directly measured within the environment of the cultivation  

medium [8–10] in which we explored the ability of Raman spectroscopy for discriminating  

S. epidermidis to the level of different bacterial strains. 

In the present study, we exploit point-by-point recording for significant parts of yeast colonies for 

each strain. Specifically, we restricted the spot measurements to the central, middle and upper 

periphery of the colony surfaces with appropriate refocusing on the sample for each Raman spectra to 

stay within the focal depth of the laser excitation and imaging optics. In this way, biological 

heterogeneity of a particular colony could be measured and introduced to the Raman spectra, 

visualized and analyzed.  

We have analyzed colonies produced by four yeast strains identified as Candida parapsilosis  

(two biofilm-positive and two biofilm-negative) to evaluate the potential of Raman spectroscopy 

(Figure 1). Thus, distinction between biofilm positive and biofilm negative strains of the yeasts and the 

reproducibility of the measurement can be evaluated. Using the data sets, biofilm positive and negative 

strains could be unambiguously identified using principal component analysis (PCA). 
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Figure 1. (A) Image of Candida parapsilosis colonies cultivated on agar for 48 h (the 

arrow shows selected colony for Raman analysis). The colony size is about 2 mm;  

(B) SEM (Scanning electron microscopy) image of Candida parapsilosis (cultivation for 

48 h on a glass substrate), detailed image was obtained using combined preparation of the 

two techniques—chemical fixation and freeze drying (using ACE600 Leica microsystems). 

(A) (B) 

2. Results and Discussion 

As mentioned further in experimental section, in order to assess the reproducibility of Raman 

spectroscopy, we inoculated MH agar with four Candida parapsilosis strains—BC11, BC16, BC45 

and BC90 and, consequently, collected data from a minimum of 3 different colonies averaging at least 

three to four different points on each colony using the Renishaw inVia Raman system. Raw Raman 

spectra are shown in Figure 2, suggested assignment of lines is presented in Table 1. For comparison, 

in Figure 3 two closely related species of Candida orthopsilosis and Candida metapsilosis are shown. 

The incidence of fungal infection due to these species has increased in the last years and these species 

have not been widely explored using Raman spectroscopy. 

Figure 2. Raman spectra of Candida parapsilosis. 
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Table 1. Summary of prominent peaks/bands observed in the Raman spectra of yeast, 

together with suggested assignments of chemical compounds. The peak numbers of the 

table are used to identify features in the spectra shown at Figure 2. 

Peak No. Raman Feature, cm−1 Suggested Assignment [3,8–11] 

1 720 Adenine 

2 782–788 
782 cytosine, uracil, thymine. ring breathing 

788 O-P-O stretch of DNA 
3 813 O-P-O stretch of RNA 
4 880 C-C-N symmetric stretch of lipids 
5 1002 Symmetric-ring breathing of phenylalanine amino acid 
6 1033 C-H in-plane stretch of Phe 

7 1080–1095 
1080 C-C stretch of lipids 

1093 C-N stretch of proteins 
1095 vibration of phosphor dioxy (PO2) group 

8 1128 1128 C-N stretch of proteins 
9 1209 Proteins 
10 1267–1270 Lipids, Amide III 
11 1340–1350 Proteins, Carbohydrates 
12 1440–1460 Deformation vibration CH2 scissoring, Lipids 
13 1660–1670 Amide I, Lipids 

Figure 3. (a) Raman spectra of Candida orthopsilosis; and (b) Candida metapsilosis. 

 

Applied chemometric principal component analysis of these spectra sets generated clusters of data 

points, from which the reproducibility of the measurement could be analyzed. Data were recorded in 

three different days of measurement (Figures 4–6). This type of data could be used to compare yeast at 

both the species and strain level and allowed us to investigate the influence of successive principal 

components on the ability to differentiate between biofilm-positive and biofilm-negative strains. 

Moreover, PC-loading presentations constitute a valuable tool for estimating the relative 

contributions from different molecules present in the sample (Figure 7). Such presentations promise to 

possibly become a viable technique for interpreting overlapping Raman bands/peaks stemming from 

proteins, nucleic acids, as well as DNA/RNA complexes. However, further detailed work is needed to 

develop the potential of this approach, and studies are currently in progress to evaluate data sets 

obtained using point-by-point technique. 
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Figure 4. Scores plot of the first two principal components relation for four  

Candida parapsilosis strains (BC 11, BC 16, BC 45 and BC 90) cultured for 48 h. Using 

the two principle components, one can clearly separate the clusters of spectra associated 

with the biofilm-positive (BC 11, BC 16) and biofilm-negative (BC 45, BC 90) strains. 

Data sets were recorded on 30 July 2013. 

 

Figure 5. Scores plot of the first two principal components relation for four  

Candida parapsilosis strains (BC 11, BC 16, BC 45 and BC 90) cultured for 48 h. Using 

the two principle components, one can clearly separate the clusters of spectra associated 

with the biofilm-positive (BC 11, BC 16) and biofilm-negative (BC 45, BC 90) strains. 

Data sets were recorded on 19 December 2013. 
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Figure 6. 3-D-scores plot of principle component relation (PC1, PC2, and PC4) for four 

Candida parapsilosis strains (BC 11, BC 16, BC 45 and BC 90) cultured for 48 h. Using 

the three principle components, one can clearly separate the clusters of spectra associated 

with the biofilm-positive (BC 11, BC 16) and biofilm-negative (BC 45, BC 90) strains. 

Green data sets (on the left) and red (on the right side) include all the data measured at 

three different days (30 July, 19 December 2013 and 13 February 2014). Inspecting this 

data show that the clustering of the data sets—for two-biofilm positive and two  

biofilm-negative strains can be separated by the two clear clusters, although the first and 

the last data sets were recorded about six months apart (July 2013 and February 2014). 

This demonstrates the solid reproducibility in the Raman fingerprints of these biofilm-positive 

and negative strains. Explained variances of PC1 (97%), PC2 (2%), and PC4 (0.5%). 

 

Figure 7. Plot of loadings of (a) PC1; and (b) PC2 corresponding to Figure 5. Different 

features corresponding to the lipids, proteins and DNA can be identified having the  

largest variability within the data (see Table 1). This illustrates the contribution of the 

wavenumbers to PC1 and PC2. Thus, the loadings clarify what spectral bands can 

distinguish biofilm positive and biofilm negative strains. 
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Our previous findings strongly suggest that measurements should be taken after exactly the same 

time of colony incubation for each set of samples to minimise the effect of timing on the Raman 

spectra. In order to underline the statements made above, in Figures 4–6 we show PCA plots for the 

four Candida strains cultured for 48 (±0.5) h. Using just the two principle components one can clearly 

separate the clusters of spectra associated with the biofilm-positive and negative strains. Note that the 

data sets used in Figures 4–6 were recorded on three different days where the first and the last data 

collection were six months apart. Figure 6 shows all data obtained from the three measurements which 

were performed in July 2013, in December 2013 and in February 2014 (not shown in separate plot) in 

a 3-D plot using PC1, PC2 and PC4 components. Evidently, these three components seem to be 

sufficient to contain all variations in the two clear clusters. 

Not surprisingly, some scatter in the clustering for a given species is observed, suggesting variance 

within the yeast colonies. However, the observed variance is rather small—clustering of biofilm-positive 

and negative strains has completely separated the data. We would like to note that any culture will 

exhibit a certain amount of heterogeneity, and data might be slightly different for spectra associated 

with points at the edge of the measurement area. Thus, the spread in clustering is associated with the 

variability in the measurement of a biological sample and carries the requirement for multiple 

measurements to define a bacterial/yeast population within a species or strain. These findings are 

consistent with the research of Choo-Smith and co-workers who observed heterogeneity in micro-colony 

analysis [13]. 

Inspecting above mentioned figures further, it is remarkable that the clustering of the two data sets 

(biofilm positive and biofilm negative) shown for the four Candida strains, is nearly identical although 

they were recorded months apart. This demonstrates solid reproducibility in the Raman fingerprints of 

these Candida strains. Clearly this then puts a certain limit onto the time window during which one 

might be able to directly compare measurements for strain classification. As was mentioned, our 

previous experiments (not shown here) suggest that this measurement time window is at the most 

about 1 h, unless one accepts a less accurate overall region into which strain sample data have to 

cluster. That is why, we investigated our samples always after 48 h of cultivation. 

3. Species Selection, Sample Preparation and Instrumentation 

Candidaemia and invasive candidiasis significantly contribute to the mortality and morbidity of 

critically ill patients at intensive care units [15,16]. Although Candida albicans is the most frequently 

isolated speciemen from clinical material, the number of non-albicans isolates has dramatically 

increased in recent years [17,18]. 

Candida parapsilosis is a common part of human microflora—it is often isolated from skin, 

particularly subungal space of healthy individuals. However, it may act as an opportunistic agent 

causing nosocomial infections. Besides common infections like paronychia or infections of inner ear it 

can cause serious invasive infections such as endocarditis or bloodstream infections often leading to 

sepsis and death of the patient [17,19]. Although the most common source of infection still remains 

patient himself, hands of healthcare workers may also play the role in a transmission [20]. 

Patients most susceptible to C. parapsilosis infections are very-low-birthweight infants in neonatal 

intensive care units. Another high risk group are immunocompromised patients often requiring central 
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venous catheters, cannulas, having other foreign prosthetic material in their body (indwelling central 

venous catheter or other bloodstream implants, heart valves, joint prostheses, etc.) as well as 

undergoing prolonged broad-spectrum antibiotic treatment. [17,21]. 

The most important issue concerning the pathogenic potential and antifungal resistance of  

C. parapsilosis is biofilm formation. Ability to form strong, adherent layers enables the yeasts to 

colonise both native and artificial surfaces in the body [22]. It protects them from response of the host 

immunity system, too. Biofilm positive strains are more resistant to antifungal therapy [23] and as it 

was reported, they are associated with significantly higher mortality rates of patients with candidaemia 

than strains incapable of biofilm production [24]. Antifungal therapy alone is insufficient for the cure 

in this case; affected devices often need to be removed [25]. Therefore, detection of this virulence 

factor in a particular strain should help to choose an adequate therapy and to assess the prognosis of 

the patient [17]. 

3.1. Sample Preparation 

Two biofilm-positive and two biofilm-negative Candida parapsilosis strains (Table 2) were 

included in the study. All of them were isolated from blood-cultures of patients hospitalised at  

St. Anne’s Faculty Hospital in Brno [23,26]. The yeast strains included in this study were stored at −70 °C. 

Before each experiment, the strains were thawed quickly at 37 °C and cultivated on the Mueller-Hinton 

(MH) agar (Oxoid, Basingstoke, UK) at 37 °C for 48 h. 

Table 2. Biofilm-positive and negative Candida parapsilosis strains [23,26]. 

Sample Name Biofilm Positive/Negative

BC 11 + 
BC 16 + 
BC 45 − 
BC 90 − 

For biofilm formation testing of Candida parapsilosis strains we used modified adhesion assay 

described by Ruzicka et al. [26]. A 48 h yeast culture from Sabouraud dextrose agar (Merck, 

Schwalbach, Germany) was resuspended in sterile physiological saline solution to the suspension with 

optical density corresponding to 1 of the McFarland scale. Wells of a 96-well flat-bottomed 

polystyrene tissue culture microtiter plate (Nunc-Thermo Fisher Scientific, Rosklide, Denmark) were 

inoculated with 20 μL of the suspension and 180 μL of Yeast Nitrogen Base medium (Difco, Becton, 

Dickinson and Co., Franklin Lakes, NJ, USA) containing 50 mM glucose and incubated at 37 °C for 

24 h. The negative control wells were filled with sterile medium. After incubation, wells were washed 

and a biofilm layer on the wall and bottom of the wells was fixed by air drying. The adherent biofilm 

layer was stained with 1% crystal violet for 20 min, washed and air-dried. The bound dye was eluted 

with 200 μL 33% acetic acid per well and 100 μL of the eluate from each well was transferred to  

new sterile 96-well flat-bottomed polystyrene tissue culture microtiter plate (Nunc-Thermo Fisher 

Scientific) for spectrophotometric assessment. Absorbance (A595) of each well was measured using 

Multiscan EX, (A.A. Lab-Systems, Ramat-Gan, Israel) reader. The measurement was performed thrice 
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in 3 wells for each strain. Biofilm positive were considered those wells A595 of which was higher than 

the mean A595 of negative controls plus 3× Standard Deviation (SD). 

3.2. Experimental Setup 

The setup used for Raman microspectroscopy is commercial Renishaw Raman spectrometer 

(Renishaw inVia Raman Spectrometer, Renishaw plc., Wotton-under-Edge, UK), with 785 nm  

single-mode diode laser as the excitation source. In our experiments laser beam was focused onto the 

sample by microscope objective (Leica, Wetzlar, Germany, 50×, NA (Numerical aperture) 0.5),  

laser spot diameter was about 2 µm × 10 µm (note that such laser spot shape is characteristic for  

the Renishaw inVia instrument). For simulation of real environment (authentic formation of 

microorganism) laser was focused onto a surface of Candida colony, so we measured response of  

a small fraction of the colony (see Figure 8) directly on MH agar in Petri dishes. 

Figure 8. Excitation laser focused by 50× objective onto the central part of the  

C. parapsilosis colony. Note the steep decrease in colony height outside the flat center of 

growing colony visualized by unfocused colony surface. The vertical size of the laser spot 

is about 20 µm. 

 

Overview spectra were acquired in the range of 600–1700 cm−1. Each spectrum was measured 30 s 

from different part of a colony. The Raman spectra were treated with a Savitzky-Golay coupled 

advanced rolling filter background removal routine (see, e.g., [11]), and then analyzed using a standard 

multivariate principle component program written in-house using MatLab software (MathWorks, 

Natick, MA, USA). 

4. Conclusions 

In general, we performed repeated/control measurements for the selected Candida strains on 

colonies grown on the MH agar separated by a given time intervals. These resulted in clusters 

coinciding well with the biofilm-positive and biofilm-negative strains measurement of a particular 

sample dish, suggesting good reproducibility of our measurement procedure, even when the samples 

were prepared and measured days up to months apart. Of course, this holds only true if the preparation, 

the cultivation, the storage-until-measurement and the Raman analysis were kept within the  

pre-specified parameter range. 
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Thus, in principle, the methodology is deemed sufficiently good to conclude that the measurement 

and evaluation procedure exploited here might well lend itself for reliable diagnostics. 
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