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Purpose: To design a robust and automated hyperreflective foci (HRF) segmenta-
tion framework for spectral-domain optical coherence tomography (SD-OCT) volumes,
especially volumes with low HRF-background contrast.

Methods: HRF in retinal SD-OCT volumes appear with low-contrast characteristics that
results in the difficulty of HRF segmentation. Therefore to effectively segment the HRF
we proposed a fully automatedmethod for HRF segmentation in SD-OCT volumes with
diabetic retinopathy (DR). First, we generated the enhanced SD-OCT images from the
denoised SD-OCT images with an enhancement method. Then the enhanced images
were cascaded with the denoised images as the two-channel input to the network
against the low-contrast HRF. Finally, we replaced the standard convolution with slice-
wise dilated convolution in the last layer of the encoder path of 3DU-Net to obtain long-
range information.

Results: We evaluated our method using two-fold cross-validation on 33 SD-OCT
volumes from 27 patients. The average dice similarity coefficient was 70.73%,whichwas
higher than that of the existing methods with significant difference (P < 0.01).

Conclusions: Experimental results demonstrated that the proposed method is faster
and achieves more reliable segmentation results than the current HRF segmentation
algorithms. We expect that this method will contribute to clinical diagnosis and disease
surveillance.

Translational Relevance: Our framework for the automated HRF segmentation of
SD-OCT volumes may improve the clinical diagnosis of DR.

Introduction

Diabetic retinopathy (DR), a common microvascu-
lar complication of diabetes, not only has impact on
vision but also increases the risk of life-threatening
systemic vascular complications.1 The hyperreflec-
tive foci (HRF) are one of the manifestations of
diabetes in the retina. HRF are morphological signs of

accumulation of lipid extravasation, proteinaceous
material, and inflammatory cells, and consequently
precursors of hard exudates.2,3 They are small in size
and scatter throughout all retina layers but mainly
locate in the outer retina layers around fluid accumula-
tion in the intraretinal cystoid spaces.1 Previous work
indicated that the potential number and location of
HRF may be predictors of the ultimate treatment
outcome for diabetic disease.4,5 Recent studies have
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Figure 1. (a) One B-scan of an SD-OCT volume. The HRF are located between the NFL/GCL and the IS/OS. (b) Scaled-up local region with
HRF. The HRF have high and nonuniform intensities, irregular shapes, and varying sizes. (c) Scaled-up local region with HRF. The HRF have
blurry boundaries. Two retinal layers (NFL/GCL and IS/OS) are marked with yellow arrows, and HRF are marked with red arrows.

shown that the number of HRF increased significantly
as the severity of DR increased, and HRF are reduced
in diabetic patients after treatment and are positively
correlated with visual acuity results.6–8 In addition, it
has been reported that quantitative changes in HRF
can be used to evaluate the effectiveness of medica-
tions.9 The correlation between the average number of
HRF and the severity of DR indicates that quantify-
ing the number of HRF may be used to estimate the
severity of DR, and identify eyes that require further
tests or treatments.8 Therefore accurate HRF segmen-
tation has great significance for disease progression
and treatment response.

Spectral-domain optical coherence tomography
(SD-OCT) has gradually become the main imaging
modality because of its fast scanning, high resolu-
tion, and high signal-to-noise ratio.10,11 As shown
in Figure 1, HRF present speckles with the follow-
ing characteristics in SD-OCT images: (1) high and
nonuniform intensities, (2) irregular shapes, (3) varying
sizes, (4) blurry boundaries, and (5) scattering between
the nerve fiber layer/ganglion cell layer (NFL/GCL)
and the inner segments/outer segments (IS/OS).
Considering the earlier mentioned characteristics
of HRF in SD-OCT volumes, manual segmentation
can be very error-prone and time-consuming. Thus it
is necessary to develop automated HRF segmentation
methods to assist the clinical diagnosis.

To the best of our knowledge, there is little
prior work that focuses on the HRF segmentation
in SD-OCT retinal volumes using a fully automated
method. Okuwobi et al.12 apply an automated grow-
cut algorithm to segment and quantify HRF. It is
difficult to perform accurate HRF segmentation based
on the traditional automated methods because of
the blurry boundaries and the nonuniform intensi-

ties. Another component tree-based HRF segmenta-
tion method is proposed by Okuwobi et al.,13 which
consists of two parallel processes: region of interest
generation, and HRF estimation. The processes are
complicated, and it is not robust enough because it
relies on handcrafted features. Yu et al.14 modify the
GoogLeNet and train a patch-based classifier to distin-
guish one pixel into HRF or non-HRF. The HRF
makes up only a small part of the images, which
leads to an extreme imbalance between the positive
samples and the negative samples. However, they only
partially handle the class imbalance problem by a
random undersampling method. The results have a
significant number of false positives, which are reduced
in a manually tuned separate postprocessing step. Also,
the time cost of patch-based classification is expensive.
Schlegl et al.15 utilize a ResUNet for HRF segmen-
tation. Varga et al.16 apply image processing methods
and Artificial Neural Networks, Deep Rectifier Neural
Networks, and Convolutional Neural Networks to
learn from the annotation of medical doctors and
carry out the HRF segmentation. Most HRF cross
two to four B-scans in three-dimensional (3D) cubes.
What is more, the HRF with low intensities and low
contrast increase the segmentation difficulty, as shown
in Figure 2b. However, these two methods15,16 do not
take this into account.

In this article, we proposed a fully automated deep
learning method for HRF segmentation in SD-OCT
volumes with DR. To improve the HRF segmenta-
tion in the low-contrast images, we generated the
additional enhanced images by an image enhancement
algorithm and cascaded the enhanced images with
denoised images as the input to the network. To obtain
long-range information and capture more robust
feature representation, we modified the 3D U-Net17 by
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Figure 2. (a) One B-scan with high HRF-background contrast. (b) One B-scan with low HRF-background contrast. HRF are marked with red
arrows.

Figure 3. Overview of the proposed method.

replacing the standard 3D convolution with slice-wise
dilated convolution in the last layer of the encoder
path.

Our proposedmethod provides more accurate HRF
segmentation results than the existing methods. Specif-
ically, the main contributions of our article can be
summarized as follows:

• The low-contrast HRF segmentation was improved
by combining the enhanced images.

• The integration of 3D U-Net architecture and two-
dimensional (2D) dilated convolution captured not
only spatial information but also multiscale and
long-range information, which improved the HRF
segmentation accuracy.

• Our methods achieved the highest segmentation
accuracy and the least time cost than the state-of-
the-art methods.

Methodology

Overview

The aim of this study was to build a deep learning
model to segment HRF in SD-OCT volumes, which
can perform well in low-contrast images. Figure 3
shows an overview of the proposed method. The raw
images were denoised and enhanced, and then the
denoised and enhanced images were cropped into small
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Figure 4. Pipeline of the enhancement algorithm.

voxel tiles to establish training and validation datasets.
The denoised images were regarded as the first channel
of inputting tensors, and the corresponding enhanced
images were the second channel. After the inference of
a cube from the test dataset, all outputs were recom-
posed to form a complete HRF segmentation result.
Final results were obtained through eliminating the
false targets outside the NFL/GCL and the IS/OS
layers.

Materials

An SD-OCT cube covers a 6 (horizontal) × 6
(vertical) × 2 (axial) mm3 area centered on the fovea,
which corresponds to a 512 × 128 × 1024 voxel
tile. A total of 33 SD-OCT cubes from 27 patients
diagnosed with varying degrees of retinopathy sever-
ity were included in the study. All the SD-OCT cubes
were acquired by a Cirrus SD-OCT device (Carl Zeiss
Meditec, Inc., Dublin, CA). The ground truth was
generated by two annotators, and the quality was
assessed by an expert. This study was conducted in
conformity with the institutional review board of the
First Affiliated Hospital of Nanjing Medical Univer-
sity research ethics. The research was approved by an
institutional human subjects committee and followed
the tenets of the Declaration of Helsinki.

Image Enhancement

At first, the raw images were denoised based on
bilateral filter to reduce image noise. Some images
showed low HRF-background contrast, which lead
to the severe undersegmentation. Thus we applied
an enhancement algorithm over the whole dataset to
enhance HRF in SD-OCT images. The enhancement
algorithm is shown in Figure 4. The sigmoid trans-
fer function controls the range compression of the
input image. Histogram equalization is applied to the
output image from the sigmoid function. The resultant
image from the histogram equalization is processed
with orthogonal transform and log transform. At
the same time, the parallel process is operated using
the two aforementioned transform domain functions.
Histogram matching is applied to combine the two

parallel processes through data mapping. The inverse
log and inverse orthogonal are used to transform the
data of the mapped data. The results after enhance-
ment are shown in Figure 5.

Dataset Preparation

To reduce overfitting problem, our models were
trained on small voxel tiles, which were extracted from
the cubes by a sliding window. In the horizontal and
axial directions, the stride of sampling was set to 32
in the training phase, and 128 in the test phase. In the
vertical direction, the stride was set to 3 (the last stride
was set to 2 because 128 is not evenly divisible by 3).We
set the size of the voxel tiles to 128 × 128 × 3 through
contrast experiments. The first channel of the input was
the denoised voxel tile, and the second channel was the
corresponding enhanced voxel tile. It is worthmention-
ing that because the HRFmade up only a small part of
the whole cube, we eliminated the voxel tiles without
any HRF in the training dataset to balance the positive
and negative samples.

We tested all 33 SD-OCT cubes by a two-fold
cross experiment to make the experiment results more
sufficient and convincing. In experiment 1, 16 cubes
(18,245 voxel tiles) were used for training and valida-
tion, and 17 cubes (23,392 voxel tiles) were used for test.
In experiment 2, 17 cubes (24,499 voxel tiles) were used
for training and validation, and 16 cubes (22,016 voxel
tiles) were used for test. The rates of the training data
and the validation data were 50:1. None of the images
for test appeared in the training set, which ensured the
independence of cubes.

Network Architecture

Most HRF cross two to four B-scan images in the
3D cube. The 3D U-Net can build spatial correla-
tion, which has shown its excellence in medical imaging
tasks. Thus we utilized the 3DU-Net as the basic archi-
tecture to perform the HRF segmentation. It has an
encoder and a decoder path each with four resolu-
tion steps. In the encoder path, each layer except the
last one consists of two 3 × 3 × 3 convolutions each
followed by a rectified linear unit (ReLu), and then a
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Figure 5. (a) Raw image. (b) Denoised image. (c) Enhanced image.

2 × 2 × 2 max pooling with stride of one in depth
dimension and strides of two in other dimension. In
the decoder path, each layer contains an upconvolu-
tion of 4 × 4 × 4 by stride of one in depth dimen-
sion and strides of two in other dimension, followed by
two 3 × 3 × 3 convolutions each followed by an ReLu.
Shortcut connections from layers of equal resolution in
the encoder path provide the essential high-resolution
features to the decoder path. In the last layer, a
1 × 1 × 1 convolution reduces the number of output
channels to 2.

In this study, we believe that the high complexity
of the HRF bring difficulties for 3D U-Net. Given
the limited amount of data, increasing the depth of
the network may not improve the segmentation results
accompanied with the increase of the number of
parameters and the amount of computation. Therefore
we integrated the dilated convolutions to capturemulti-
scale and long-range information instead of adding
pooling layers and upsampling layers. However, replac-
ing all the standard convolutions with dilated convo-
lutions was unrealistic. To enlarge the receptive field
while reducing the calculation complexity as possible,
we added the dilated convolutions in the last layer
of the encoder path. Because the 3D U-Net architec-
ture captured the spatial information already and the
depth of input was only three, we used three different
2D dilated convolutions to convolve each depth of the
voxel tile separately, namely slice-wise dilated convolu-
tion, and then stacked the outputs in the depth direc-
tion. The dilation rate was set to 2. With this structure,
our network had more robust feature representations
than other models by extracting 3D and 2D features.

Experimental Results and Analysis

We systematically compared our input with input 1
(only denoised voxel tiles) and input 2 (only enhanced

voxel tiles) on our network to assess the performance
of the enhancement algorithm. Second, we compared
our network with 3D U-Net to evaluate the perfor-
mance of the slice-wise dilated convolution. Finally, we
compared our approach with some publishedmethods,
most of which were under a deep neural network
framework, and the other was a traditional segmenta-
tion method. Experiments were conducted under the
tensorflow frameworks using an NVIDIA GeForce
GTX 1080Ti GPU (The manufacturer name and
loaction for GPU is Kunqian in Nanjing.). We used
Adam as the optimizer with a learning rate of 1e-5,
and Softmax with weighted cross-entropy as the loss
function and set the batch size to 8, total iteration to
10,000.

Qualitative Analysis

Comparison of Different Inputs to Our Network
To assess the performance of the enhancement

algorithm, we compared our input with input 1 (only
denoised images) and input 2 (only enhanced images)
on our network. We can observe from the first column
of Figure 6 that all the input performedwell in the high-
contrast images. As for the low-contrast images, our
method achieved the best performance, and the results
of input 2 surpass that of input 1. It indicates that
the enhancement algorithm improved the performance.
However, the method of input 2 still cannot segment
the HRF completely because of the destruction of the
retinal structure and information loss.

Comparison of Our Input to Different Network
To evaluate the performance of the slice-wise dilated

convolution, we compared our network with 3DU-Net
using our input. The segmentation results are shown
in Figure 7. The results of 3D U-Net have more under-
segmentation and more oversegmentation in serious
lesions.With dilated convolutions, our network obtains
multiscale and long-range information so that it is able
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Figure 6. Segmentation results using different input to our network. Yellow arrows represent the regions of undersegmentation.

to segment HRF of varying size, distinguish different
lesions, and obtain a better performance than 3D U-
Net.

Comparison Against Existing Methods
To explore the performance of the proposed frame-

work, we compared our approach with some published
methods. Figure 8 shows the comparison of the
proposed method, two of the Okuwobi et al.12,13
methods (namely grow-cut-based method and compo-
nent tree-based method), GoogLeNet based on patch-
based classification,14 ResUNet,15 DUNet,18 FCN,19
and U-Net++.20 The input of the Okuwobi et al.
methods12,13 and GoogLeNet14 are only input 1
because the Okuwobi et al. methods are traditional
methods and GoogLeNet is based on patch-based

classification under the Caffe framework. The input of
the other methods was our input. In the high-contrast
images as shown in column 1 of Figure 8, the results
of method12 and GoogLeNet have obvious under-
segmentation. The component tree-based method13
has obvious oversegmentation because it makes two
HRF to one HRF. Other methods have similar perfor-
mance. As for the low-contrast images, our method
performed better than other methods except for grow-
cut-based method.12 However, the results of the grow-
cut-based method12 exist excessive oversegmentation
before postprocessing when the images have serious
lesions or low contrast. The significant number of false
positives cannot even be reduced in the postprocess-
ing step. Other methods under deep neural network
framework aremore prone to undersegmentation when
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Figure 7. Segmentation results using our input to different network. Yellow arrows represent the regions of undersegmentation.

the images have low contrast, and oversegmentation
when the images are seriously damaged. Experimen-
tal results prove that our proposed method has a more
desirable performance in dealing with complicated and
weak HRF structures among the methods mentioned
earlier.

Although our method can accurately segment HRF
in most of the SD-OCT DR volumes, it has the
problem of excessive segmentation caused by edemas
and vessels, as shown in Figure 9.However, ourmethod
achieves the best performance in comparison with
other methods in these regions.

Qualitative Analysis

The dice similarity coefficient (DSC) was used to
quantitatively evaluate ourmethod, which is defined as:

DSC (A,B) = 2 (|A ∩ B|)
|A| + |B|

where A is the automated segmentation result, and B
is the corresponding ground truth. We also used Preci-

sion and Recall to evaluate our method, which are
defined as:

Precision = TP
TP + FP

Recall = TP
TP + FN

where TP, FP, and FN are the true positive, false
positive, and false negative, respectively. Paired and
two-tailed t-test was employed to test for significant
differences.

To make the experiment results more sufficient and
convincing, we tested all 33 SD-OCT cubes by a two-
fold cross experiment. The results of these two indepen-
dent experiments are shown in Table 1. The similar
results indicate that our method can achieve good
accuracy.

Table 2 summarizes the quantitative results of the
three comparison mentioned earlier. Additionally, we
compared our input with input 1 and input 2 on
3D U-Net. Our input performs better than input 1
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Figure 8. Comparison between the proposed method and other methods. Yellow and green arrows represent the regions of underseg-
mentation and oversegmentation, respectively.
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Figure 9. Examples of the oversegmentations with our method. (a) Oversegmentation caused by edemas, (b) oversegmentation caused
by vessels.

Figure 10. Comparison of the results on 33 eyes obtained by our network with different input.

Table 1. HRF Segmentation Results Obtained with our
Method by a Two-Fold Cross Experiment (unit: %)

DSC Precision Recall

Experiment 1 71.88 70.91 72.88
Experiment 2 69.45 73.83 65.56

and input 2, and a significant difference was observed
for DSC between our input and input 1/input 2 on
our network (P < 0.0001), which proves the effective-
ness of enhancement algorithm and denoised images.
The difference was also statistically significant between
input 1 and input 2 on our network (P < 0.05). Also,
our network using input 2 and our input performs
better than 3D U-Net, which indicates the effective-
ness of slice-wise dilated convolution. However, our
network using input 1 performs similar to 3D U-Net
using input 1. The possible explanation for this might

be that the information of denoised images is limited. It
has been sufficiently captured by 3D U-Net. Enlarging
the receptive field can only capture useless long-range
information.

In fact, some cubes in our dataset are dark,
especially the 14th eye in Figure 10. Figure 10
and Table 2 show the evaluation results of 33 eyes
achieved by denoised images (input 1), enhanced
images (input 2), and a combination of the first two
(proposed method) as the input to our network. We
can find that our method is almost superior to others
on all cubes. Our method performs best with DSC of
70.73%, and the method of enhanced images as input
performs subpar with DSC of 70.00%. The method of
denoised images as input performs worst especially in
the 14th, 23rd and 31st eye, which indicates that image
enhancement can overcome the low-contrast problem
effectively, and our method can retain the original
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Table 2. Comparisons of Different Methods (unit: %). The highest DSC is in bold.

Method DSC (mean ± SD) Precision (mean ± SD) Recall (mean ± SD)

Input 1 + 3D U-Net 66.05± 11.52 72.33± 15.51 60.78± 12.26
Input 2 + 3D U-Net 67.86± 9.42 74.11± 13.57 62.58± 10.01
Our input + 3D U-Net 69.62± 9.27 73.88± 14.54 65.82± 8.53
Input 1 + our network 65.68 ± 13.85 66.64± 19.70 64.74± 9.47
Input 2 + our network 70.00± 10.31 68.79± 14.13 71.25± 8.95
Proposedmethod 70.73± 10.19 72.68± 14.51 68.89± 10.00
Grow-cut-based method12 57.01 ± 17.39 68.99± 21.31 53.01± 15.97
Component tree-based method13 69.20± 10.26 70.29± 15.21 66.43± 12.05
GoogLeNet14 63.67± 12.25 78.25± 20.24 53.66 ± 9.61
Input 1 + ResUNet15 63.93± 13.86 66.24± 18.30 61.78± 11.47
Our input + ResUNet15 67.12± 11.50 68.72± 16.32 65.60± 7.29
Input 1 + DUNet18 60.64± 14.18 71.62± 22.06 52.58± 13.69
Our input + DUNet18 65.23± 14.57 59.19± 17.72 72.64± 7.59
Input 1 + FCN19 64.47± 14.31 63.87± 19.72 65.08± 8.51
Our input + FCN19 64.49± 14.03 63.15± 18.62 65.89± 8.52
Input 1 + U-Net++20 66.29± 12.42 76.53± 18.39 58.47± 10.90
Our input + U-Net++20 70.67± 12.45 68.35± 16.70 73.16 ± 8.35

Table 3. Mean Computational Time of Various Methods for HRF Segmentation. The least time is in bold.

Method12 Method13 GoogLeNet14
Our input +
ResUNet15

Our input +
DUNet18

Our input +
FCN19

Our input +
U-Net++20

Proposed
method

Time (per
volume)

20 min 2 min >5 hours 3.12 min 10.94 min 7.57 min 3.54 min 0.83min

information and overcome information loss caused by
the image enhancement.

Table 2 show the evaluation results of 33 cubes
obtained by the proposed method and seven other
methods.12–15,18–20 To further evaluate the performance
of the enhanced algorithm and our framework, we
also added the contrast experiments using input 1
as the input to other methods. As it can be seen
from Table 2, our proposed method performs best
with DSC of 70.73%, and a significant difference
(P < 0.0001) was observed for DSC between our
proposed method and other methods, which indicates
that our proposed method exhibits the state-of-the-art
performance and robustness. Generally speaking, the
traditional methods12,13 relied on handcrafted features
to a great extent and were not robust enough. The
performance of the grow-cut-based method12 was the
worst among all the methods. The component tree
method13 performed well. However, the processes of
this method13 were complicated and the results existed
more oversegmentation. Yu et al.14 treat the segmen-
tation task as a patch-based classification problem.
Although this method reached the best performance
with Precision, it took a long time to predict a new

B-scan, which was not practical for real appli-
cation. The residual block of ResUNet and the
deformable convolution block of DUNet might make
feature extraction of complicated HRF more difficult.
Although the performance of U-Net++ was desirable
and similar to ours, the number of the parameters
of the U-Net++ was huge, and the test procedure to
obtain more accurate results was complicated. Also,
we can see from Table 2 that the results and robust-
ness of ResUNet, DUNet, and UNet++ were signif-
icantly improved by our input, which proved the effec-
tiveness of our input. However, our proposed method
still performed the best, which proved the effectiveness
of our network at the same time. The FCN was not
a good choice for medical imaging segmentation. The
results did not improve even though it used our input
as input. In summary, our proposed method is simple
to train and test while it reaches the best overall perfor-
mance comparing to those listed methods.

Most importantly, the mean running time of our
method is 0.83 minutes per volume, which is the least
in comparison with the methods mentioned earlier,
as shown in Table 3. The time cost of method13 and
U-Net++, which has the close segmentation results to
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our proposed method, is two and four times longer
than ours, respectively, and the speed of other methods
are much slower.

Conclusions

We proposed a robust segmentation algorithm for
HRF segmentation in SD-OCT volumes with DR. The
main idea of the proposed method is to segment HRF
completely in the low-contrast images. To achieve this,
we utilized the enhancement algorithm to compensate
for the contrast of the low-contrast images, and then
took the enhanced images as the second channel of
input to the network. We also introduced the dilated
convolution in the last layer of the encoder path to
enlarge the receptive field. The quantitative and quali-
tative comparison of the 33 SD-OCT volumes from
27 patients diagnosed with DR demonstrates that the
proposed method is more effective for HRF quantifi-
cation than other methods, and also performs well
on low-contrast images. Therefore we expect that this
method will contribute to clinical diagnosis and disease
surveillance.
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