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We build and study the transmission dynamics of a hand-foot-mouth disease model with vaccination. The reproduction number
is given, the existence of equilibria is obtained, and the global stability of disease-free equilibrium is proved by constructing the
Lyapunov function. We also apply optimal control theory to the hand-foot-mouth disease model. The treatment and vaccination
interventions are considered in the hand-foot-mouth disease model, and the optimal control strategies based on minimizing the
cost of intervention and minimizing the number of the infected people are given. Numerical results show the usefulness of the
optimization strategies.

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common
infectious disease caused by a group of viruses known as
enteroviruses (EVs) [1, 2]. HFMD usually affects children,
typically affecting children who are less than 10 years, but it
can also affect adults [2]. However, adults are immune to the
disease due to the antibodies in their bodies, although most
of them are exposed to the virus [3].

The virus of HFMD spreads easily through coughing,
sneezing, and infected stool. It usually takes 3 − 7 days for a
person to get symptoms ofHFMDdisease after being exposed
to the virus of HFMD. This is called the incubation period
of HFMD. Although many HFMD infected people remain
asymptomatic, the symptoms of HFMD include sores in or
on the mouth and on the hands, feet, and sometimes the
buttocks and legs. The sores may be painful, and these sores
may be eased with the use of medication [4]. In fact, there is
no specific treatment for HFMD, and many doctors do not
issue medicine for this illness since HFMD is a viral disease
that has to run its course [5].

Numerous large outbreaks of HFMD have occurred in
many areas of theworld, such as theUnited States of America,
Australia, Malaysia, Japan, and China since 1997, which have
caused death and neurological sequelae, and have become

a growing public health threat [6–10]. Fortunately, Chinese
scientists have developed the first vaccine to protect children
against enterovirus 71, or EV71, that causes the common and
sometimes deadly HFMD in 2013 [11]. However, the literature
on the mathematical modeling of the transmission of HFMD
is rather scant. In particular, there are fewer literatures on
mathematical models of HFMD with vaccination. Urashima
et al. and Wang and Sung tried to find the relationship
between the outbreak of HFMD with the weather patterns in
Taiwan and Tokyo, respectively [12, 13]. Tiing and Labadin
used a deterministic SIR model to predict the number of
infected cases and the duration of an outbreak when it occurs
in Sarawak [14]. Roy and Halder proposed a deterministic
SEIR model of HFMD and did numerical simulations [15].
Liu and Yang et al. used the SEIQRS model to take into
account the quarantine measure [5, 16]. Recently, Samanta
discussed a delay HFMD model with pulse vaccination
strategy [2].

In this paper, we only consider the children below the
age of 10 years since the children above the age of 10 years
are immune to the disease because their immune systems are
relatively perfect.The aim of our study is to use mathematical
modeling to gain some insights into the transmission dynam-
ics of HFMDwhen the population is vaccinated.The paper is
organized as follows. In Section 2, we formulate the HFMD
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model with vaccination and define the basic reproduction
number. In Section 3, we obtain the existence of equilibria of
model, prove the global stability of disease-free equilibrium,
and analyze the global stability of endemic equilibrium of
model by constructing the Lyapunov function. In Section 4,
we discuss the optimal control problemby adding two control
functions. At last, we display the numerical simulation and
give the conclusion.

2. Model Formulation

Enteroviruses (EVs) that are most frequently reported as
causing HFMD outbreaks include enterovirus 71 (EV71) and
coxsackievirus A16 (CVA16). Other human enteroviruses
serotypes, such as CVA4, CVA5, CVA6, and CVA10, have also
been reported in cases of HFMD [1]. Because only EV71 vac-
cine was on market which could prevent the HFMD induced
by EV71 infection, we will consider dividing the infectious
individuals into two classes, which are infectious individuals𝐼1 infected with EV71 and infectious individuals 𝐼2 infected
with CVA16 or other human enteroviruses serotypes.

Let 𝑁(𝑡) be total number of children below the age of 10
years at time 𝑡. We divide children below the age of 10 years
into five compartments, including susceptible individuals𝑆(𝑡), latent individuals 𝐸(𝑡), infectious individuals 𝐼1(𝑡) and𝐼2(𝑡), vaccination individuals 𝑉(𝑡), and recovery individuals𝑇(𝑡). It is clear that𝑁(𝑡) = 𝑆(𝑡)+𝐸(𝑡)+𝐼1(𝑡)+𝐼2(𝑡)+𝑉(𝑡)+𝑇(𝑡).
The dynamical model for HFMD transmission in children
below the age of 10 years is in the following:𝑑𝑆 (𝑡)𝑑𝑡 = (1 − 𝑝) 𝑏 − 𝛽1𝑆 (𝑡) 𝐼1 (𝑡) − 𝛽2𝑆 (𝑡) 𝐼2 (𝑡)− (𝜇 + 𝜔) 𝑆 (𝑡) + 𝜂1𝑉 (𝑡) + 𝜂2𝑇 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽1𝑆 (𝑡) 𝐼1 (𝑡) + 𝛽2𝑆 (𝑡) 𝐼2 (𝑡) − (𝜇 + 𝛼) 𝐸 (𝑡) ,𝑑𝐼1 (𝑡)𝑑𝑡 = 𝑞𝛼𝐸 (𝑡) − (𝜇 + 𝑑1 + 𝛾1) 𝐼1 (𝑡) ,𝑑𝐼2 (𝑡)𝑑𝑡 = (1 − 𝑞) 𝛼𝐸 (𝑡) − (𝜇 + 𝑑2 + 𝛾2) 𝐼2 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑝𝑏 − (𝜇 + 𝜔 + 𝜂1) 𝑉 (𝑡) ,𝑑𝑇 (𝑡)𝑑𝑡 = 𝛾1𝐼1 (𝑡) + 𝛾2𝐼2 (𝑡) − (𝜇 + 𝜔 + 𝜂2) 𝑇 (𝑡) ,

(1)

where 𝑏 > 0 is the birth rate of the population; 𝑝 ≥ 0 is the
vaccine rate of the population; 𝛽1 > 0 is the transmission
coefficient of the infectious individuals infected with EV71;𝛽2 > 0 is the transmission coefficient of the infectious indi-
viduals infected with CVA16; 𝜇 > 0 is the natural death rate;𝛼 > 0 is the per-capita rate of the progression from latent
individuals to infectious individuals; 𝑞 ≥ 0 is the percentage
of individuals infected with EV71 from latent individuals
to infectious individuals; accordingly, 0 < 1 − 𝑞 < 1 is
the percentage of individuals infected with CVA16 or other
human enteroviruses serotypes from latent individuals to
infectious individuals; 𝑑1, 𝑑2 > 0 is the disease induced

death rate of infectious individuals 𝐼1, 𝐼2, respectively; 𝛾1, 𝛾2 ≥0 is the treatment rate of the infectious individuals 𝐼1, 𝐼2,
respectively; 𝜔 ≥ 0 is the removal rate of population; 𝜂1 ≥ 0
and 𝜂2 ≥ 0 are the loss of immunity rate of vaccination
individuals and recovery individuals, respectively.

In our paper, in order to make the qualitative mathemat-
ical analysis, let 𝛽 = 𝛽1 = 𝛽2, 𝛾 = 𝛾1 = 𝛾2, 𝑑 = 𝑑1 = 𝑑2,
and 𝐼(𝑡) = 𝐼1(𝑡)+ 𝐼2(𝑡); we simplify model (1) to the following
model: 𝑑𝑆 (𝑡)𝑑𝑡 = (1 − 𝑝) 𝑏 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜔) 𝑆 (𝑡)+ 𝜂1𝑉 (𝑡) + 𝜂2𝑇 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛼) 𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝛼𝐸 (𝑡) − (𝜇 + 𝑑 + 𝛾) 𝐼 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑝𝑏 − (𝜇 + 𝜔 + 𝜂1) 𝑉 (𝑡) ,𝑑𝑇 (𝑡)𝑑𝑡 = 𝛾𝐼 (𝑡) − (𝜇 + 𝜔 + 𝜂2) 𝑇 (𝑡) .

(2)

In the next section, we will discuss dynamics of system
(2). It is obvious that any solution of system (2) with non-
negative initial values is nonnegative.

Lemma 1. Every forward solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑉(𝑡), 𝑇(𝑡))
of system (2) eventually enters Ω = {(𝑆, 𝐸, 𝐼, 𝑉, 𝑇) ∈ 𝑅+5 | 𝑆 +𝐸+𝐼+𝑉+𝑇 ≤ 𝑏/𝜇}, andΩ is a positively invariant set for (2).

Proof. By using𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) + 𝑇(𝑡), from
system (2), we have𝑑𝑁 (𝑡)𝑑𝑡 = 𝑏 − 𝜇𝑁 (𝑡) − 𝑑𝐼 (𝑡) − 𝜔 (𝑆 (𝑡) + 𝑉 (𝑡) + 𝑇 (𝑡))≤ 𝑏 − 𝜇𝑁 (𝑡) . (3)

It is obvious that lim sup𝑡󳨀→+∞𝑁(𝑡) ≤ 𝑏/𝜇, which implies that𝑁(𝑡) ≤ 𝑏/𝜇. That is, every solution of system (2) eventually
entersΩ, andΩ is positively invariant with respect to system
(2). This proves the lemma.

The dynamics of system (2) will be investigated in the
following bounded feasible region:Ω = {(𝑆, 𝐸, 𝐼, 𝑉, 𝑇) ∈ 𝑅+5 | 𝑆 + 𝐸 + 𝐼 + 𝑉 + 𝑇 ≤ 𝑏𝜇} . (4)

Using the relation 𝑉(𝑡) = 𝑁(𝑡) − 𝑆(𝑡) − 𝐸(𝑡) − 𝐼(𝑡) − 𝑇(𝑡),
we may reduce system (2) to the following equivalent system:𝑑𝑆 (𝑡)𝑑𝑡 = Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜔) 𝑆 (𝑡) + 𝜂2𝑇 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛼) 𝐸 (𝑡) ,



Computational and Mathematical Methods in Medicine 3𝑑𝐼 (𝑡)𝑑𝑡 = 𝛼𝐸 (𝑡) − (𝜇 + 𝑑 + 𝛾) 𝐼 (𝑡) ,𝑑𝑇 (𝑡)𝑑𝑡 = 𝛾𝐼 (𝑡) − (𝜇 + 𝜔 + 𝜂2) 𝑇 (𝑡) ,
(5)

with Λ = (1 − 𝑝)𝑏 + 𝑝𝑏𝜂1/(𝜇 + 𝜔 + 𝜂1), on the positively
invariant setΩ = {(𝑆, 𝐸, 𝐼, 𝑇) ∈ 𝑅+4 | 𝑆 + 𝐸 + 𝐼 + 𝑇 < 𝑏𝜇} . (6)

In the following, since system (5) has the same dynamic as
(2), we will discuss the dynamic of system (5) on Ω.

Following van den Diessche and Watmough [17, 18], we
can obtain the basic reproduction number:𝑅0 = 𝛼𝛽(𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾)× (1 − 𝑝) 𝑏 (𝜇 + 𝜔 + 𝜂1) + 𝑝𝑏𝜂1(𝜇 + 𝜔) (𝜇 + 𝜔 + 𝜂1)= 𝛼𝛽(𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) × Λ𝜇 + 𝜔.

(7)

Each term in 𝑅0 has clear epidemiological interpretation.𝛼/(𝜇 + 𝛼) is the proportion that latent individuals progress
to infectious class. 1/(𝜇 + 𝑑 + 𝑟) is the average infectious
period. Λ/(𝜇 + 𝜔) is the total amount of population in the
case that the infected individuals in population do not exist.
Thus, 𝛼𝛽/(𝜇 + 𝛼)(𝜇 + 𝑑 + 𝛾) × Λ/(𝜇 + 𝜔) are average new
cases generated by a typical infectious member in the entire
infection period.

The basic reproduction number 𝑅0, for model (2) in the
absence of controls, i.e., in the case 𝑝 = 𝛾 = 0, which means
thatmodel (2) does not have vaccination individuals𝑉(𝑡) and
recovery individuals 𝑅(𝑡), is proportional to the transmission
coefficient 𝛽 and is given by𝑅0󵄨󵄨󵄨󵄨𝑝=𝛾=𝜂1=0 = 𝛼𝛽(𝜇 + 𝛼) (𝜇 + 𝑑) × 𝑏(𝜇 + 𝜔) . (8)

It is clear that𝑅0 − 𝑅0󵄨󵄨󵄨󵄨𝑝=𝛾=𝜂1=0= 𝑏𝛼𝛽(𝜇 + 𝛼) (𝜇 + 𝜔)× −𝑝 (𝜇 + 𝑑) (𝜇 + 𝜔) − 𝛾 (𝜇 + 𝜔 + 𝜂1)(𝜇 + 𝑑 + 𝛾) (𝜇 + 𝜔 + 𝜂1) (𝜇 + 𝑑) ≤ 0, (9)

which implies that the vaccination and treatment have con-
tributed to decrease of the 𝑅0. That is, the vaccination and
treatment help to slow down the HFMD spread.

Three parameters have a high impact on 𝑅0: 𝑝 and 𝛾
decrease 𝑅0, respectively, and 𝛽 increases 𝑅0.

3. The Existence and Stability of Equilibria

We first discuss the existence of equilibria of system (5).
Directly calculating system (5), we obtain the disease-free
equilibrium 𝑃0 = (𝑆0, 𝐸0, 𝐼0, 𝑇0), where 𝑆0 = Λ/(𝜇 + 𝜔), and𝐸0 = 𝐼0 = 𝑇0 = 0. In addition, there exists a endemic equi-
librium 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗) when 𝑅0 > 1, where

𝑆∗ = (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾)𝛼𝛽 ,
𝐸∗ = (𝜇 + 𝑑 + 𝛾) 𝐼∗𝛼 ,𝑇∗ = 𝛾𝐼∗𝜇 + 𝜔 + 𝜂2 ,𝐼∗ = (𝜇 + 𝜔) (𝜇 + 𝜔 + 𝜂2)(𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) (𝜇 + 𝜔 + 𝜂2) − 𝛼𝜂2𝛾× (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾)𝛽 (𝑅0 − 1) .

(10)

Summarizing the above discussion, we can obtain the follow-
ing result.

Theorem 2. If 𝑅0 ≤ 1, system (5) has only the disease-free
equilibrium 𝑃0 = (𝑆0, 𝐸0, 𝐼0, 𝑇0) = (Λ/(𝜇 + 𝜔), 0, 0, 0). If𝑅0 > 1, besides the disease-free equilibrium 𝑃0, system (5) also
has a endemic equilibrium 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗).

In the following, we will discuss the stability of equilibria
of system (5). The stability of disease-free equilibrium of
system (5) firstly was proved.

Theorem 3. If 𝑅0 ≤ 1, the disease-free equilibrium 𝑃0 of
system (5) is globally asymptotically stable, while if 𝑅0 > 1,
the disease-free equilibrium 𝑃0 of system (5) is unstable.

Proof. The Jacobian matrix of system (5) at the disease-free
equilibrium 𝑃0 is
𝐽0
= (−(𝜇 + 𝜔) 0 −𝛽𝑆0 𝜂20 − (𝜇 + 𝛼) 𝛽𝑆0 00 𝛼 − (𝜇 + 𝑑 + 𝛾) 00 0 𝛾 − (𝜇 + 𝜔 + 𝜂2)). (11)

It is clear that 𝜆1 = −(𝜇 + 𝜔) < 0 and 𝜆2 = −(𝜇 + 𝜔 + 𝜂2) < 0
are the eigenvalues of matrix 𝐽0. The rest of the eigenvalues of
matrix 𝐽0 satisfy the following equation:𝜆2 + (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) 𝜆+ (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) (1 − 𝑅0) = 0. (12)
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Obviously, Δ = (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)2− 4 (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) (1 − 𝑅0)= [(𝜇 + 𝛼) − (𝜇 + 𝑑 + 𝛾)]2+ 4 (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) 𝑅0 > 0.
(13)

It implies that (12) has two real roots, 𝜆3 and 𝜆4, which satisfy𝜆3 + 𝜆4 = − (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) < 0,

𝜆3𝜆4 = (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) (1 − 𝑅0) .
(14)

If 𝑅0 < 1, we have 𝜆3𝜆4 > 0, which implies that the real
parts of 𝜆3 and 𝜆4 are both negative. That is, the disease-free
equilibrium 𝑃0 is locally asymptotically stable. Meanwhile if𝑅0 > 1, we obtain 𝜆3𝜆4 < 0. It implies that the real part of 𝜆3
or the real part of 𝜆4 is positive. Therefore, 𝑃0 is unstable.

For the critical case 𝑅0 = 1, the Jacobian matrix 𝐽0 has
three negative real eigenvalues −(𝜇 + 𝜔), −(𝜇 + 𝜔 + 𝜂2), and−(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾), and one zero eigenvalue.

We introduce the matrix of eigenvectors

𝑃 = ((((((((
(

𝜇+ 𝛼𝜇 + 𝜔 ( 𝛾𝜂2𝜇 + 𝜔 + 𝜂2 − 𝛽𝑆0) 1 −1 −𝛽𝑆0𝑝1 + 𝜂2𝛾𝜔 − (𝜇 + 𝛼 + 𝑑 + 𝛾)𝛽𝑆0 0 0 − (𝜇 + 𝛼) 𝑝1𝛼𝜇 + 𝛼 0 0 𝑝34(𝜇 + 𝛼) 𝛾𝜇 + 𝜔 + 𝜂2 0 1 𝛾
))))))))
)

(15)

with 𝑝34 = (𝜇 + 𝛼 + 𝑑 + 𝛾) − (𝜔 + 𝜂2), such that 𝐽0𝑃 = 𝑃𝐴,
where𝐴

= (0 0 0 00 − (𝜇 + 𝜔) 0 00 0 − (𝜇 + 𝜔 + 𝜂2) 00 0 0 − (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)) . (16)

We make the linear transformation (𝑢, V, 𝑤, 𝑥)𝑇 = 𝑃−1(𝑆 −𝑆0, 𝐸, 𝐼, 𝑇)𝑇, where

𝑃−1 = ((((((((
(

0 𝛼(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) (𝜇 + 𝛼) 1𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾 01 𝑝−122 𝑝−123 1
0 𝛾𝛼 (𝜇 + 𝜔 + 𝜂2 − 𝑝1)𝑝1 (𝜇 + 𝑑 + 𝛾 + 𝜇 + 𝛼) − (𝜇 + 𝛼)2 𝑝1𝛾𝛼 (𝜇 + 𝜔 + 𝜂2) − 𝛽𝑆0𝛾 10 −𝛼(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) 𝑝1 𝜇 + 𝑑 + 𝛾(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) 𝑝1 0

))))))))
)

(17)

with 𝑝−122 = 𝛾𝛼(𝜇 + 𝜔 + 𝜂2 − 𝑝1)/𝑝1(𝜇 + 𝑑 + 𝛾 + 𝜇 + 𝛼) +(𝜇 + 𝛼)(𝜂2𝛾 − 𝛽𝑆0𝑝1)/(𝜔 − 𝜇 − 𝛼 − 𝑑 − 𝛾) + ((𝜇 + 𝛼)2𝑝1/𝛼(𝜇 + 𝜔))(𝛾𝜂2/(𝜇 + 𝜔 + 𝜂2) − 𝛽𝑆0), 𝑝−123 = −𝛽𝑆0𝛾 − ((𝜇 +𝛼)2𝑝1/(𝜇 + 𝜔)𝛼)(𝛾 − 𝛽𝑆0) − 𝛽𝑆0(𝜂2𝛾 − 𝛽𝑆0𝑝1)/(𝜔 − 𝜇 − 𝛼 − 𝑑−𝛾).
The Jacobian matrix for the differential equations of(𝑢, V, 𝑤, 𝑥) about the zero equilibrium is exactly𝐴. To analyze

the local asymptotic stability of this zero equilibrium, we

need to calculate the restricted dynamical system on the
center manifold for 𝑢 sufficiently small and V = 𝑂(𝑢2),𝑤 = 𝑂(𝑢2), 𝑥 = 𝑂(𝑢2) [19]. Note that 𝑢 = 𝛼𝐸/(𝜇 + 𝛼+𝜇 + 𝑑 + 𝛾)(𝜇 + 𝛼) + 𝐼/(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾); from
the second, third, and forth equations of system (5), we
obtain(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) (𝜇 + 𝛼) 𝑢󸀠 = 𝛼𝛽 (𝑆 − 𝑆0) 𝐼. (18)
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Next, we make use of 𝑆−𝑆0 = (((𝜇+𝛼)/(𝜇+𝜔))(𝛾𝜂2/(𝜇+𝜔+𝜂2) −𝛽𝑆0))𝑢+𝑂(𝑢2), 𝐸 = 𝛽𝑆0𝑢+𝑂(𝑢2), 𝐼 = (𝜇+𝛼)𝑢+𝑂(𝑢2),
and 𝑇 = (𝜇 + 𝛼)𝛾𝑢/(𝜇 + 𝜔 + 𝜂2) + 𝑂(𝑢2) to obtain(𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) 𝑢󸀠

= −𝛼𝛽 (𝜇 + 𝛼)𝜇 + 𝜔
× (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) (𝜇 + 𝜔 + 𝜂2) − 𝛼𝛾𝜂2𝛼 (𝜇 + 𝜔 + 𝜂2) 𝑢2
+ 𝑂 (𝑢3) .

(19)

Since restricted system (19) is stable about 𝑢 = 0, original
system (5) is locally stable about the disease-free equilibrium𝑃0 when 𝑅0 = 1.

In the following, we study the global stability when 𝑅0 ≤1. Let 𝐿(𝐸(𝑡), 𝐼(𝑡)) = 𝐸(𝑡) + ((𝜇 + 𝛼)/𝛼)𝐼(𝑡); we have
𝑑𝐿 (𝑡)𝑑𝑡 = 𝑑𝐸 (𝑡)𝑑𝑡 + 𝜇 + 𝛼𝛼 𝑑𝐼 (𝑡)𝑑𝑡= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇 + 𝛼𝛼 (𝜇 + 𝑑 + 𝛾) 𝐼 (𝑡)

≤ (𝛽𝑆0 − 𝜇 + 𝛼𝛼 (𝜇 + 𝑑 + 𝛾)) 𝐼 (𝑡)= (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾)𝛼 (𝑅0 − 1) 𝐼 (𝑡)≤ (𝛽𝑆0 − 𝜇 + 𝛼𝛼 (𝜇 + 𝑑 + 𝛾)) 𝐼 (𝑡)= (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾)𝛼 (𝑅0 − 1) 𝐼 (𝑡) ≤ 0.
(20)

Furthermore, 𝑑𝐿/𝑑𝑡 = 0 if and only if 𝐼 = 0 or 𝑅0 = 1.
Therefore, the largest compact invariant set in {(𝑆, 𝐸, 𝐼, 𝑇) ∈Ω : 𝑑𝐿/𝑑𝑡 = 0} is the singleton {𝑃0}. LaSalle’s invariance
principle [20] then implies that 𝑃0 is globally stable inΩ.

Next, we discuss the global asymptotical stability of the
endemic equilibrium of system (5). The local stability of the
endemic equilibrium firstly was discussed, and the global
stability of the endemic equilibrium also was discussed by
constructing the Lyapunov function.

Theorem 4. If 𝑅0 > 1, the endemic equilibrium 𝑃∗ of system
(5) is locally asymptotically stable.

Proof. The Jacobian matrix of system (5) at the endemic
equilibrium 𝑃∗ is

𝐽∗ = ((
(

−𝛽𝐼∗ − (𝜇 + 𝜔) 0 −𝛽𝑆∗ 𝜂2𝛽𝐼∗ − (𝜇 + 𝛼) 𝛽𝑆∗ 00 𝛼 − (𝜇 + 𝑑 + 𝛾) 00 0 𝛾 − (𝜇 + 𝜔 + 𝜂2)
))
)

. (21)

It is clear that the eigenvalues of matrix 𝐽∗ satisfy the
following equation:𝜆4 + 𝐴1𝜆3 + 𝐴2𝜆2 + 𝐴3𝜆 + 𝐴4 = 0, (22)

where𝐴1 = (𝜇 + 𝜔 + 𝜂2) + (𝛽𝐼∗ + 𝜇 + 𝜔) + (𝜇 + 𝛼)+ (𝜇 + 𝑑 + 𝛾) ,𝐴2 = (𝜇 + 𝜔 + 𝜂2) (𝛽𝐼∗ + 𝜇 + 𝜔)+ (𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗ + 𝜇 + 𝜔) (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) ,𝐴3 = (𝜇 + 𝜔 + 𝜂2) (𝛽𝐼∗ + 𝜇 + 𝜔) (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)+ (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) 𝛽𝐼∗,

𝐴4 = 𝛽𝐼∗ [(𝜇 + 𝜔 + 𝜂2) (𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) − 𝛼𝛾𝜂2] .
(23)

By directly calculating, we have𝐴 𝑖 > 0, 𝑖 = 1, 2, 3, 4,𝐷1 = 𝐴1 > 0,
𝐷2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴1 𝐴31 𝐴2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝐴1𝐴2 − 𝐴3 = (𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗+ 𝜇 + 𝜔)𝐴2 + (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) ((𝜇 + 𝜔 + 𝜂2)⋅ (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾) + (𝛽𝐼∗ + 𝜇 + 𝜔) (𝜇 + 𝛼))+ (𝜇 + 𝑑 + 𝛾)2 (𝛽𝐼∗ + 𝜇 + 𝜔) + (𝜇 + 𝛼) (𝜇 + 𝜔) (𝜇+ 𝑑 + 𝛾) > 0,
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𝐷3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴1 𝐴3 01 𝐴2 𝐴40 𝐴1 𝐴3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝐴3𝐷2 − 𝐴21𝐴4
= 𝐴3 [(𝜇 + 𝜔 + 𝜂2) (𝛽𝐼∗ + 𝜇 + 𝜔)⋅ (𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗ + 𝜇 + 𝜔) + (𝛽𝐼∗ + 𝜇 + 𝜔)⋅ (𝜇 + 𝑑 + 𝛾)2 + (𝜇 + 𝛼) (𝜇 + 𝜔) (𝜇 + 𝑑 + 𝛾)]+ 𝛽𝐼∗ (𝜇 + 𝜔 + 𝜂2) (𝜇 + 𝛼)2 (𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗ + 𝜇+ 𝜔)𝐴1 + 𝛽𝐼∗𝛼𝛾𝜂2𝐴21 + (𝜇 + 𝜔 + 𝜂2) (𝜇 + 𝛼 + 𝜇+ 𝑑 + 𝛾) (𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗ + 𝜇 + 𝜔)2⋅ [(𝛽𝐼∗ + 𝜇 + 𝜔) (𝜇 + 𝑑 + 𝛾)+ (𝜇 + 𝜔) (𝜇 + 𝛼)] + (𝜇 + 𝜔) (𝜇 + 𝜔 + 𝜂2) (𝜇 + 𝛼+ 𝜇 + 𝑑 + 𝛾)2 [(𝜇 + 𝜔 + 𝜂2) (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)+ (𝜇 + 𝛼) (𝛽𝐼∗ + 𝜇 + 𝜔)] + 𝛽𝐼∗ (𝜇 + 𝜔 + 𝜂2) (𝜇+ 𝑑 + 𝛾) (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)2 + 𝛽𝐼∗ (𝜇 + 𝛼) (𝜇 + 𝑑+ 𝛾) (𝛽𝐼∗ + 𝜇 + 𝜔) (𝜇 + 𝛼 + 𝜇 + 𝑑 + 𝛾)⋅ [(𝜇 + 𝜔 + 𝜂2 + 𝛽𝐼∗ + 𝜇 + 𝜔)+ (𝜇 + 𝛼)] > 0,

𝐷4 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴1 𝐴3 0 01 𝐴2 𝐴4 00 𝐴1 𝐴3 00 1 𝐴2 𝐴4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝐴1𝐴2𝐴3𝐴4 − 𝐴21𝐴24
− 𝐴23𝐴4 = 𝐴4𝐷3 > 0,

(24)

The Routh-Hurwitz criterion [21] implies that all eigenvalues
of characteristic equation (22) have negative real part; that is,𝑃∗ is locally asymptotically stable when 𝑅0 > 1.

It is difficult to show the global stability of endemic
equilibrium 𝑃∗ by the theoretical methods. We will use
the numerical simulation to display the global stability of
endemic equilibrium 𝑃∗; see Figure 1. The parameters are
taken to be 𝑝 = 0.8, 𝑏 = 1, 𝛽 = 0.5, 𝜇 = 0.006, 𝜔 = 1/12,𝜂1 = 0.02, 𝜂2 = 0.03, 𝛼 = 0.01, 𝑑 = 0.002, and 𝛾 =0.7, respectively. Accordingly, the basic reproduction number𝑅0 = 1.7112 > 1. The simulation demonstrates that endemic
equilibrium 𝑃∗ may be globally stable when 𝑅0 > 1.
4. The HFMD Model with Optimal Controls

In this section, we present the optimal control problem by
adding to themodel (2) two control functions 𝑢1(𝑡) and 𝑢2(𝑡).

The HFMD model with controls is given by the following
equations:𝑑𝑆 (𝑡)𝑑𝑡 = (1 − 𝑢1 (𝑡)) 𝑏 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜔) 𝑆 (𝑡)+ 𝜂1𝑉 (𝑡) + 𝜂2𝑇 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛼) 𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝛼𝐸 (𝑡) − (𝜇 + 𝑑 + 𝑢2 (𝑡)) 𝐼 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑢1 (𝑡) 𝑏 − (𝜇 + 𝜔 + 𝜂1) 𝑉 (𝑡) ,𝑑𝑇 (𝑡)𝑑𝑡 = 𝑢2 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜔 + 𝜂2) 𝑇 (𝑡) .

(25)

The aim is to find the optimal values 𝑢∗1 and 𝑢∗2 of the
controls 𝑢1 and 𝑢2, such that the associated state trajectories𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑉(𝑡), and 𝑇(𝑡) are solution of system (25)
in the time interval [0, 𝑡𝑓] with initial conditions 𝑆(0), 𝐸(0),𝐼(0), 𝑉(0), and 𝑇(0) and minimize the objective functional.
Here the objective functional considers the number of latent
individuals 𝐸, the number of the infectious individuals 𝐼, and
the implementation cost of the strategies associated with the
controls 𝑢𝑖, 𝑖 = 1, 2. The controls are bounded between 0 and
1.

We consider state system (25) of ordinary differential
equations in 𝑅5 with the set of admissible control functions
given by 𝑈 = {(𝑢1 (𝑡) , 𝑢2 (𝑡)) ∈ (𝐿∞ (0, 𝑡𝑓))2 | 0≤ 𝑢1 (𝑡) , 𝑢2 (𝑡) ≤ 1, ∀𝑡 ∈ [0, 𝑡𝑓]} . (26)

The objective functional is given by𝐽 (𝑢1 (𝑡) , 𝑢2 (𝑡))= ∫𝑡𝑓
0

(𝐸 (𝑡) + 𝐼 (𝑡) + 𝐵12 𝑢21 (𝑡) + 𝐵22 𝑢22 (𝑡)) 𝑑𝑡, (27)

where the constants 𝐵1 and 𝐵2 are a measure of the relative
cost of the interventions associated with the controls 𝑢1 and𝑢2, respectively.

We consider the optimal control problem of determin-
ing (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑉(𝑡), 𝑇(𝑡)), associated with an admissible
control pair (𝑢∗1 , 𝑢∗2 ) ∈ 𝑈 on the time interval [0, 𝑡𝑓], satisfy-
ing (25) and the initial conditions 𝑆(0), 𝐸(0), 𝐼(0), 𝑉(0), and𝑇(0) and minimizing cost functional (27); that is,𝐽 (𝑢∗1 , 𝑢∗2 ) = min {𝐽 (𝑢1, 𝑢2) | (𝑢1, 𝑢2) ∈ 𝑈} . (28)

Theorem 5. There exists an optimal control pair (𝑢∗1 , 𝑢∗1 ) such
that 𝐽 (𝑢∗1 , 𝑢∗2 ) = min {𝐽 (𝑢1, 𝑢2) | (𝑢1, 𝑢2) ∈ 𝑈} , (29)

subject to state system (25) with initial conditions 𝑆(0), 𝐸(0),𝐼(0), 𝑉(0), and 𝑇(0).
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Figure 1: The global stability of 𝑃∗ of system (2) when 𝑅0 > 1.
Proof. The integrand of the objective functional 𝐽 given by
(27) is convex on the closed, convex control set 𝑈. The
conditions for the existence of optimal control are satisfied
as the model is linear in the control variables and is bounded
by a linear system in the state variables [22].

According to the Pontryagin Maximum Principle [23],
we now derive the necessary conditions that a pair of
optimal controls and corresponding states must satisfy. To
this purpose, we define the Hamiltonian function for the
system:𝐻 = (𝐸 + 𝐼 + 𝐵12 𝑢21 + 𝐵22 𝑢22) + 𝜆1 𝑑𝑆𝑑𝑡 + 𝜆2 𝑑𝐸𝑑𝑡+ 𝜆3 𝑑𝐼𝑑𝑡 + 𝜆4 𝑑𝑉𝑑𝑡 + 𝜆5 𝑑𝑇𝑑𝑡 , (30)

where 𝜆𝑖, 𝑖 = 1, 2, 3, 4, 5, are the adjoint variables.
Theorem 6. Given an optimal control 𝑢∗ = (𝑢∗1 , 𝑢∗2 ) on [0, 𝑡𝑓]
and corresponding state solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑉(𝑡), 𝑇(𝑡)) of
corresponding state system (25) with initial conditions 𝑆(0),𝐸(0), 𝐼(0), 𝑉(0), and 𝑇(0), there exist adjoint variables 𝜆𝑖,𝑖 = 1, 2, 3, 4, 5, satisfying𝑑𝜆1 (𝑡)𝑑𝑡 = (𝜆1 − 𝜆2) 𝛽𝐼 + 𝜆1 (𝜇 + 𝜔) ,

𝑑𝜆2 (𝑡)𝑑𝑡 = (𝜆2 − 𝜆3) 𝛼 + 𝜆2𝜇 − 1,𝑑𝜆3 (𝑡)𝑑𝑡 = (𝜆1 − 𝜆2) 𝛽𝑆 + (𝜆3 − 𝜆5) 𝑢2 + 𝜆3 (𝜇 + 𝑑)− 1,𝑑𝜆4 (𝑡)𝑑𝑡 = (𝜆4 − 𝜆1) 𝜂1 + 𝜆4 (𝜇 + 𝜔) ,𝑑𝜆5 (𝑡)𝑑𝑡 = (𝜆5 − 𝜆1) 𝜂2 + 𝜆5 (𝜇 + 𝜔) .
(31)

with transversality conditions (or boundary conditions) being𝜆𝑖 (𝑡𝑓) = 0, 𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4, 5. (32)

Furthermore, the optimal controls 𝑢∗1 and 𝑢∗2 are given by𝑢∗1 = min{max{0, (𝜆1 − 𝜆4) 𝑏𝐵1 } , 1} ,
𝑢∗2 = min{max{0, (𝜆5 − 𝜆3) 𝐼𝐵2 } , 1} . (33)



8 Computational and Mathematical Methods in Medicine

＂1=100,＂2=10

5 10 15 200
time (day)

5 10 15 200
time (day)

0

0.01

0.02

0.03

Ｏ
1
(Ｎ
)

0
0.2
0.4
0.6
0.8

1
Ｏ
2
(Ｎ
)

Figure 2: The optimal control variables 𝑢∗1 and 𝑢∗2 when 𝑅0 > 1.
Proof. The adjoint system results from Pontryagin’s Principle
[23]: 𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝑆 ,𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝐸 ,𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝐼 ,𝜆󸀠4 (𝑡) = −𝜕𝐻𝜕𝑉 ,𝜆󸀠5 (𝑡) = −𝜕𝐻𝜕𝑇

(34)

with zero transversality. To get the characterization of the
optimal control given by [23], we solve the equations on the
interior of the control set:𝜕𝐻𝜕𝑢𝑖 = 0, 𝑖 = 1, 2. (35)

Using bounds on the controls, we obtain the desired charac-
terization.

5. Numerical Results and Discussion

In this section, the numerical simulation results of the opti-
mized control measures for HFMDmodel (25) with vaccina-
tion are presented. First, we solve system (25) over the time
interval (0, 𝑡𝑓] using a forward fourth-order Runge-Kutta
scheme and transversality conditions 𝜆𝑖(𝑡𝑓) = 0, 𝑖 = 1, . . . , 5.
Then, system (31) is solved by a backward fourth-order
Runge-Kutta scheme using the current iteration solution of
(25).The controls are updated by using a convex combination

of the previous controls and the values from (33). The itera-
tion is stopped when the values of unknowns at the previous
iteration are very close to the ones at the present itera-
tion.

We first compare the number of the susceptible indi-
viduals, latent individuals, infectious individuals, vaccination
individuals, and the recovery individuals with and without
controls, respectively. Take 𝑏 = 2, 𝑝 = 0.5, 𝛽 = 0.04, 𝜇 =0.0017, 𝜔 = 0.125, 𝜂1 = 0.5, 𝜂2 = 0.2, 𝛼 = 1.75, 𝑑 = 0.0034,𝛾 = 0.4, 𝐵1 = 100, 𝐵2 = 10, and the initial conditions(𝑆(0), 𝐸(0), 𝐼(0), 𝑉(0), 𝑇(0)) = (2, 0.7, 0.2, 0.1, 1) × 103, we
have the basic reproduction number 𝑅0 = 1.3997 > 1,
and the numerical results are depicted in Figures 2 and 3.
Figure 2 shows the control variables 𝑢1 and 𝑢2 when 𝑅0 >1. By Figure 2, we see that, to minimize the number of
infectious and latent individuals, the control 𝑢1 keeps the
increasing trend during 5 days; during the remaining 15 days,
it decreases to the lower bound. The control 𝑢2 is at the
upper bound during 17 days; during the remaining 3 days,
it decreases to the lower bound. Figure 3 shows that the
number of the susceptible individuals is higher, the numbers
of the latent individuals, infectious individuals, and recovery
individuals are lower, and the number of the vaccination indi-
viduals is with almost no change when controls are consid-
ered.

We discussed the influence of immune loss rate on the
spread of disease. That is, we discuss the influence of 𝜂1 on
the basic regeneration number 𝑅0 in the following. Because
of 𝜕𝑅0𝜕𝜂1 == 𝛽𝛼(𝜇 + 𝛼) (𝜇 + 𝑑 + 𝛾) × 𝑝𝑏(𝜇 + 𝜔 + 𝜂1)2 > 0, (36)

we know the basic reproduction number 𝑅0 increases as 𝜂1
increases. In order to control the basic regeneration number
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Figure 3: The dynamics of HFMD with and without optimal control when 𝑅0 > 1.
𝑅0 less than 1, we need the immune loss rate 𝜂1 to satisfy𝜂1 < 𝜂∗1 , under the condition 𝛼𝛽𝑏(1 − 𝑝)/(𝜇 + 𝛼)(𝜇 + 𝑑 +𝛾)(𝜇 + 𝜔) < 1 < 𝛼𝛽𝑏/(𝜇 + 𝛼)(𝜇 + 𝑑 + 𝛾)(𝜇 + 𝜔), where𝜂∗1 = [(𝜇 + 𝜔)(𝜇 + 𝛼)(𝜇 + 𝑑 + 𝛾) − 𝛼𝛽𝑏(1 − 𝑝)](𝜇 + 𝜔)/(𝛼𝛽𝑏 −(𝜇 + 𝜔)(𝜇 + 𝛼)(𝜇 + 𝑑 + 𝛾)) > 0. Let 𝜂1 = 0, 2, 0.5, 0.8,
respectively; other parameter values are the same as those in
Figure 3.We obtain Figure 4.The higher the immune loss rate𝜂1, the greater the number of infections and latent individuals.
At the same time, higher immunization loss rate 𝜂1 indicates
that the immunization control measures 𝑢1 are weakened.
Accordingly, the treatment control measures 𝑢2 need to be
strengthened.

We also compared the number of infections and latent
individuals under different control measures (see Figure 5).
In Figure 5, the red dots indicate that control measures𝑢1 and 𝑢2 are implemented simultaneously, the blue dots
indicate that only control measure 𝑢1 is implemented, and
the black dotted line indicates that only control measure𝑢2 is implemented. The numerical simulation results show
that the number of infections is minimal when the control
measures 𝑢1 and 𝑢2 are implemented simultaneously. If only
one control was implemented, the treatment control 𝑢2would

be more effective than vaccination control 𝑢1 in controlling
the number of infectious and latent individuals. The trend of
the controls 𝑢1 and 𝑢2 is displayed in Figure 6 under different
control measures.
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Figure 4: 𝐸 + 𝐼 with and without control for 𝜂1 = 0, 2, 0.5, 0.8, respectively.
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