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Abstract: Prohibition of Ot (organotin) compounds was introduced in Japan in 1997 and 

worldwide from September 2008. This meant that the production of paints containing TBT 

compounds was stopped and alternatives to the available Ot antifoulants had to be 

developed. It has been claimed that the degradation by-products of these alternative 

antifoulants were less toxic than those of Ot compounds. Since the introduction of the 

alternative antifoulants, the accumulation of these compounds has been reported in many 

countries. However, the toxicity of these compounds was still largely unreported. In this 

research, the toxicity of the alternative Ot antifoulants TPBP (triphenylborane pyridine) 

and TPBOA (triphenylborane octadecylamine) and their degradation products on 

Crassostea gigas and Hemicentrotus pulcherrimus were tested. The results showed that 

toxic effects in Crassostea gigas was higher for each antifouling biocide than that in 

Hemicentrotus pulcherrimus. Also, while the toxicity of the Organoboron antifoulants and 

the Ots were the same, the former’s degradation products were much less harmful. 
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1. Introduction 

Organotin compounds (Ots), used for many years as antifouling biocides on ships, marine structures, 

and fishing nets, became a problem because of their toxicity and accumulation characteristics. 

The movement toward the global regulation of these compounds began in October 2001 when the 

International Maritime Organisation (IMO) adopted the International Convention on the Control of 

Harmful Antifouling Systems (AFS Convention), which prohibited the use of Ots as active ingredients 

in antifouling agents for marine vessels. This convention came into effect on 17 September, 2008. 

Currently, Irgarol 1051®, Diuron, Sea-nine 211®, copper pyrithione, and other organic booster 

biocides are the major antifoulants used worldwide. In Tsunemasa and Okamura [1], a toxicity 

evaluation method on fertilized oyster egg was developed, and the toxicity of organotin alternative 

antifoulants (Irgarol 1051, Diuron and Sea-Nine 211) and organotin compounds (TBT and TPT) was 

evaluated. From these results, it was clear that Sea-Nine 211 was as toxic as organotin compounds to 

fertilized oyster eggs.  

Some organoboron antifoulants such as TPBP and TPBOA are only used in Japan and some other 

Asian countries, but there is little data available on their impact, bioaccumulation, and environmental 

toxicity. Only the research on Artemia salina and Skeletonema costatum [2] and that on  

Anthocidaris crassispina [3] have looked at organoboron antifoulants. 

The first biological examination of sea urchins was started by Kobayashi et al. [4], followed by 

Loenning and Hagstroem [5], Dinnel et al. [6], Pagano et al. [7], and Beiras et al. [8]. The government 

agencies Environment Canada [9], US EPA [10], ASTM [11] and APHA [12] conducted their own 

research based on earlier test methods used on fertilized sea urchin eggs. In the research for this report, 

the revised Kobayashi method [13] was used to determine the effects on embryonic development of 

sea urchins. 

Oysters and sea urchins were used in this research due to their high sensitivity to chemical 

compounds [14–16], as well as the fact that oysters and sea urchins can be found globally. 

First, the rate of fertilization, development after fertilization, rate of deformity in the embryos, and 

number of underdeveloped embryos were measured. Then the effects of alternative Organoboron 

antifoulants on Crassostea gigas and Hemicentrotus pulcherrimus embryos were evaluated. The 

toxicity of Crassostea gigas and Hemicentrotus pulcherrimus were compared. 

2. Results 

The alternative Ot antifoulants (TPBP and TPBOA) and the degradation products from TPBP and 

TPBOA (e.g., DPB, MPB, biphenyl, phenol, pyridine, benzene and boric acid), at concentrations 

ranging from 0.1 to 1000 μg/L, were used in the toxicity test on the fertilized Crassostea gigas and 

Hemicentrotus pulcherrimus eggs. The photograph of Crassostea gigas embryo development after  

24 h at 25 °C is shown in Figure 1. Using these images, the toxicity of antifouling biocides was 

evaluated by examining cell division at 2 h after fertilization and checking embryology (i.e., for  

D-shaped embryos) at 24 h after fertilization. The photograph of Hemicentrotus pulcherrimus embryo 

development after 48 h at 20 °C is shown in Figure 2. Using these images, the toxicity of antifouling 

biocides was evaluated by examining cell division at 10 h after fertilization and checking embryology 
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(i.e., for two-armed echinopluteus embryos) at 48 h after fertilization. Controls after 24 h of 

Crassostea gigas and controls after 48 h of Hemicentrotus pulcherrimus were normal. Controls after 

24 h of Crassostea gigas and controls after 48 h of Hemicentrotus pulcherrimus are shown in  

Figures 1G and 2G, respectively.  

Figure 1. Effects of TPBP and TPBOA on Crassostea gigas embryo development after  

24 h. (A) TPBP at 10 μg/L; (B) TPBP at 1 μg/L; (C) TPBP at 0.1 μg/L; (D) TPBOA at  

10 μg/L; (E) TPBOA at 1 μg/L; (F) TPBOA at 0.1 μg/L; (G) Control. 
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Figure 2. Effects of TPBP and TPBOA on Hemicentrotus pulcherrimus embryo 

development after 48 h. (A) TPBP at 100 μg/L; (B) TPBP at 50 μg/L; (C) TPBP at  

20 μg/L; (D) TPBOA at 100 μg/L; (E) TPBOA at 50 μg/L; (F) TPBOA at 20 μg/L;  

(G) Control. 

 

2.1. Effects of Organoboron Antifoulants on Crassostea gigas Embryo  

2.1.1. TPBP and TPBOA 

In this report, the survival rate of fertilized eggs and the occurrence of deformity in D-shaped 

embryos were investigated. Survival rate and deformity rates of Crassostea gigas embryo after a 

period of 24 h are shown in Figure 3. In the report by His et al. [17], four types of deformity were 
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shown: convex hinge, indented shell margin, incomplete shell, and protruding mantle. In our 

experiments, only protruding-mantle deformities were observed. 

Figure 3. Survival and protruding-mantle deformity rates on Crassostea gigas embryo 

after a period of 24 h. 

 

In the case of TPBP, all of Crassostea gigas eggs in the 100 μg/L treatment died after 2 h, before 

any cell division could take place. Approximately 25% of Crassostea gigas eggs in the 10 μg/L 

treatment died before any cell division had occurred. Approximately 5% of the embryos which 

survived showed signs of deformity or delayed development. Approximately 10% of Crassostea gigas 

eggs in the 1 μg/L treatment died before any cell division. A small percentage of the embryos which 

survived showed signs of deformity or delayed development. 

Approximately 50% of Crassostea gigas eggs in the 10 μg/L treatment died after 24 h. Half of the 

eggs showed no signs of cell division, but in the case of the other half, cell division had occurred 

before death. All of the surviving embryos, which became D-shaped embryos, developed  

protruding-mantle deformity (Figure 1A). Approximately 85% of Crassostea gigas eggs in the 1 μg/L 

treatment survived. Half of the embryos became D-shaped embryos but half showed signs of delayed 

development. Almost all of the D-shaped embryos developed protruding mantle deformity (Figure 1B). 

Almost all of Crassostea gigas eggs in the 0.1 μg/L treatment survived. Approximately 70% of 

embryos became a D-shaped embryo, while the other 30% of the embryos showed signs of delayed 

development. Most D-shaped embryos were normal, but slightly less than 10% developed  

protruding-mantle deformity (Figure 1C). 

In the TPBOA samples, approximately 85% of Crassostea gigas eggs in the 100 μg/L treatment 

died after 2 h, before any cell division could take place. Slightly less than 20% of Crassostea gigas 

eggs in the 10 μg/L treatment died before any cell division took place. A small percentage of the 

embryos which survived showed signs of deformity or delayed development. Slightly less than 10% of 
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Crassostea gigas eggs in the 1 μg/L treatment died before any cell division had taken place. A small 

percentage of the embryos which survived showed signs of deformity or delayed development. 

Slightly more than 30% of Crassostea gigas eggs in the 10 μg/L treatment died after 24 h. Most 

eggs showed no signs of cell division, but in a few cases, cell division had occurred before death. Half 

of the embryos became D-shaped embryos and half showed signs of delayed development. Almost all 

of the D-shaped embryos developed protruding-mantle deformity (Figure 1D). Slightly less than 10% 

of Crassostea gigas eggs in the 1 μg/L treatment died. Approximately 10% of the embryos which 

survived showed signs of delayed development, the other embryos became D-shaped embryos. Almost 

all of the D-shaped embryos developed protruding-mantle deformity (Figure 1E). Most of the eggs in 

the 0.1 μg/L treatment survived. All the surviving embryos became D-shaped embryos. Most D-shaped 

embryos were normal with slightly less than 10% of the D-shaped embryos developed  

protruding-mantle deformity (Figure 1F). 

2.1.2. Degradation Products from TPBP and TPBOA 

Crassostea gigas eggs had developed favorably after 2 and 24 h, and no evidence of any influence 

on the development of the embryos was found, even at the maximum concentration of degradation 

products (DPB, MPB, Biphenyl, Phenol, Pyridine, Benzene, Boric acid) studied (1000 μg/L). 

2.1.3. LC10 and LC50 Values 

The LC10 and LC50 values of each compound were calculated from the survival rate of the fertilized 

Crassostea gigas eggs after the exposure times of 2 and 24 h using the Ecotox-Statics software 

package. The results are listed in Table 1. It can be seen that the toxicity of the degradation products 

was not influential on Crassostea gigas embryos at high concentrations (1000 μg/L). In the case of the 

other compounds, at 2 h the LC10 and LC50 values of TPBP and TPBOA were 1.1 (3.4) and  

2.7 (5.1) μg/L (nM), 7.5 (23) and 23 (44) μg/L (nM), respectively. At 24 h, the LC10 and LC50 values of 

these compounds were 0.58 (1.8) and 2.2 (4.2) μg/L (nM), 6.3 (20) and 10 (19) μg/L (nM), respectively. 

Table 1. Lethal concentrations of antifouling compounds to oyster Crassostea gigas embryos. 

 2 h 24 h 

LC10 LC50 LC10 LC50 

TPBP 1.1 (1.0–1.1) 7.5 (6.7–8.5) 0.58 (0.55–0.60) 6.3 (5.4–7.4) 

TPBOA 2.7 (2.6–2.8) 23 (20–26) 2.2 (2.1–2.8) 10 (9.5–12) 

DPB >1000 >1000 >1000 >1000 

MPB >1000 >1000 >1000 >1000 

Biphenyl >1000 >1000 >1000 >1000 

Phenol >1000 >1000 >1000 >1000 

Pyridine >1000 >1000 >1000 >1000 

Benzene >1000 >1000 >1000 >1000 

Boric acid >1000 >1000 >1000 >1000 

LC50: 50% lethal concentration (μg/mL); LC10: 10% lethal concentration (μg/mL); () 95% confidence interval. 
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2.2. Effects of Organoboron Antifoulants on Hemicentrotus pulcherrimus Embryos  

2.2.1. TPBP and TPBOA 

In this report, the survival rate of fertilized eggs and the occurrence of deformity in  

Hemicentrotus pulcherrimus embryos were investigated. Survival and deformity rates of the 

Hemicentrotus puldherrimus embryo after a period of 48 h are shown in Figure 4. In the report by  

His et al. [18], six types of deformity were shown: unequal length of postoral arms, twisted right oral 

rod, parts of right body rod missing, left body rod doubled, additional crossbarred body rod and 

apically “crossed” body rod. In our experiments, slight unequal length of postoral arms deformity  

was observed. Deformity embryos are shown in Figure 5. 

Figure 4. Survival and unequal length of postoral arms deformity rates on  

Hemicentrotus pulcherrimus embryo after a period of 48 h. 

 

Figure 5. Deformity embryo (A) Hemicentrotus pulcherrimus (B) Crassostea gigas. 
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In the case of TPBP, all of Hemicentrotus puldherrimus eggs in the 100 μg/L treatment died after  

10 h before any cell division could take place. Approximately 10% of Hemicentrotus puldherrimus 

eggs in the 50 μg/L treatment died before any cell division had occurred. In the eggs which survived, 

there were no signs of deformity or delayed development. Approximately 5% of  

Hemicentrotus puldherrimus eggs in the 20 μg/L treatment died before any cell division. The surviving 

embryos showed no signs of deformity or delayed development. 

All of Hemicentrotus puldherrimus eggs in the 100 μg/L treatment died after 48 h before any cell 

division could take place (Figure 2A). Almost all of Hemicentrotus puldherrimus eggs in the 50 μg/L 

treatment died. Except for the eggs which died before any cell division took place, almost all of the 

embryos reached the blastula stage. A few of them developed signs of reaching the gastrula stage 

(Figure 2B). Almost all of Hemicentrotus puldherrimus eggs in the 20 μg/L treatment survived. All 

surviving embryos became normal two-armed echinopluteus embryos (Figure 2C).  

In the TPBOA samples, all of Hemicentrotus puldherrimus eggs in the 500 μg/L treatment died after 

10 h before any cell division could take place. Approximately 10% of Hemicentrotus puldherrimus 

eggs in the 200 μg/L treatment died before any cell division took place. In the embryos which survived, 

there were no signs of deformity or delayed development. Approximately 5% of  

Hemicentrotus puldherrimus eggs in the 100 μg/L treatment died. No cell division had taken place. 

There were no signs of deformity or delayed development in the surviving embryos. 

All of Hemicentrotus puldherrimus embryos in the 100 μg/L treatment died after 48 h. Almost all of 

them reached the gastrula stage (Figure 2D). Almost all of the embryos in the 50 μg/L treatment 

survived. All surviving embryos became two-armed echinopluteus embryos. All of the echinopluteus 

developed short arms (Figure 2E). Almost all of the embryos in the 20 μg/L treatment survived. All 

surviving embryos became normal two-armed echinopluteus embryos (Figure 2F). 

2.2.2. Degradation Products from TPBP and TPBOA 

Hemicentrotus puldherrimus eggs had developed favorably after 10 and 48 h, and no evidence of 

any influence on the development of the embryos was found, even at the maximum concentration of 

degradation products (DPB, MPB) studied (1000 μg/L). 

2.2.3. LC10 and LC50 Values 

The LC10 and LC50 values of each compound were calculated from the survival rate of the fertilized 

Hemicentrotus pulcherrimus eggs after exposure times of 10 and 48 h using the  

Ecotox-Statics software package. The results are listed in Table 2. It can be seen that the toxicity of the 

degradation products was not influential on Hemicentrotus pulcherrimus embryos at high 

concentrations (1000 μg/L). In the case of the other compounds, at 10 h the LC10 and LC50 values of 

TPBP and TPBOA were 22 (68) and 130 (250) μg/L (nM), 73 (230) and 290 (550) μg/L (nM), 

respectively. At 48 h, the LC10 and LC50 values of these compounds were 6.4 (20) and 30 (57) μg/L 

(nM), 31 (96) and 73 (140) μg/L (nM), respectively. 
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Table 2. Lethal concentrations of antifouling compounds to sea urchin  

Hemicentrotus pulcherrimus embryos. 

2 h 48 h 
LC10 LC50 LC10 LC50 

TPBP 22 (21–23) 73 (67–80) 6.4 (5.7–6.6) 31 (27–36) 
TPBOA 130 (120–130) 290 (270–320) 30 (28–32) 73 (68–79) 

DPB >1000 >1000 >1000 >1000 
MPB >1000 >1000 >1000 >1000 

LC50: 50% lethal concentration (μg/mL); LC10: 10% lethal concentration (μg/mL); () 95% confidence interval. 

3. Discussion 

At 24 h, the LC50 values of TBT, triphenyltin (TPT), Sea-Nine 211, Diuron and Irgarol 1051 in 

Crassostea gigas embryos were 3.9, 3.7, 17, >1000, and >1000 μg/L, respectively [1]. TPBP, TBT and 

TPT had almost the same toxicity in Crassostea gigas embryos. TPBOA and Sea-Nine 211 also had 

similar levels of toxicity as one another in Crassostea gigas embryos. 

The results of our laboratory tests showed that organoboron antifoulants are as toxic as Ots to the 

oysters and sea urchins. According to the results of this research and previous research [1], the effects 

of antifouling biocides on oysters are shown as follows: 

TBT = TPT = TPBP > Sea-Nine 211 > TPBOA >> Diuron = Irgarol 1051 

Previous toxicity data of Ot alternative antifoulants on Hemicentrotus pulcherrimus could not be 

found, so the results of this research were compared with previously reported no observed-effect 

concentration (NOEC) data on Zinc pyrithione, Chlorothalonil and Sea-Nine 211 from the sea urchin 

(Paracentrotus lividus). The values for Paracentrotus lividus were 11 nM (3.49 μg/L), 15 nM  

(3.98 μg/L) and 23 nM (6.49 μg/L), respectively [19]. Therefore, the toxicity of TPBP in the 

Hemicentrotus pulcherrimus (in this case, the LC10 value at 48 h was used) was almost the same level 

as the Paracentrotus lividus. However, that of TPBOA in the Hemicentrotus pulcherrimus was a little 

lower than the Paracentrotus lividus. 

According to the results of this research and previous researches [20], the effects of antifouling 

biocides on sea urchins are shown as follows:  

TBT > TPBP = Sea-Nine 211 > TPBOA >> Irgarol 1051 

The toxicity test in the Anthocidaris crassispina showed that the toxicity of TPBP and Sea-Nine 211 

was high and that of Irgarol 1051 and Diuron was low [3].  

These results showed almost the same pattern. However, the toxicity of each antifouling biocide 

showed that the toxicity in oysters was higher than that in sea urchins. At first, it was thought that this 

tendency was due to the presence of a fertilization membrane in sea urchins which oysters do not have. 

However, the fertilization membrane is less dense than the cell membrane, so it is difficult to believe 

that the fertilization membrane can prevent any materials passing through that the cell membrane could 

not. Therefore, the difference of the toxicity in oysters and sea urchins could not be explained from this 

study’s results. 
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4. Experimental Section  

4.1. Reagents and Materials  

Triphenylborane pyridine (TPBP) and triphenylborane octadecylamine (TPBOA) were used as the 

antifoulants in this study. The chemical structures of TPBP and TPBOA are shown in Figure 6. 

Diphenylborane hydroxide (DPB), phenylborane dihydroxide (MPB), biphenyl, pyridine, phenol, 

benzene, and boric acid were used as the degradation products from TPBP or TPBOA [2,21]. The 

TPBP, DPB, and MPB were donated by Hokko Chemical Industry (Tokyo, Japan). The TPBOA was 

donated by Benny-Toyama (Osaka, Japan). The phenol, benzene, biphenyl (pesticide grade), and 

pyridine (spectroscopy grade) were purchased from Wako Pure Chemical Industries (Osaka, Japan). 

The boric acid was obtained from Nakarai Chemical K.K. (Ibaraki, Japan). Dilute stock solutions 

(1000 mg/L) were prepared by dissolving the standard materials in dimethyl sulfoxide (DMSO). The 

standard solutions (0.1, 0.5, 1.0, 2.0, 5.0, 10, 20, 50, 100, 200, 500, 1000 μg/L) were formed by 

diluting these solutions with artificial seawater which was prepared by diluting Daigo’s artificial 

seawater SP purchased from Nihon Seiyaku Kogyo (Niigata, Japan). The dimethyl sulfoxide (for 

biochemistry) and 10% formalin solution (for tissue fixation) were purchased from Wako Pure 

Chemical Industries (Osaka, Japan). An alkaline formalin solution was prepared by further diluting 

these solutions with the artificial seawater stock. The oysters were gathered from the breakwater in 

Itsukaichi Nishi Ward, Hiroshima, Japan. Professor Kenji Torigoe, who is affiliated with the 

Department of Education at Hiroshima University, identified the oysters used in the experiments. All 

the oysters used were Crassostrea gigas. The sea urchins were purchased from Taguchi Educational 

Laboratory. All the sea urchins used were Hemicentrotus pulcherrimus from the Miura Peninsula. 

Figure 6. Chemical structures of triphenylborane compounds tested. (A) TPBP (B) TPBOA. 

 

4.2. Equipment  

An Olympus CK40 biological microscope with a magnification of 100× was used to photograph the 

oyster and sea urchin eggs, and the Motic Images Plus 2.2S image editing software package was used 

to count the number of oyster and sea urchin eggs. 

4.3. Oyster Toxicity Tests 

After some initial trial and error tests, it was decided to use the procedure performed at the Fisheries 

Experimental Station in Hiroshima Prefecture, which simulates the conditions in a nursery. The 
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artificial seawater was bubbled for 1–2 h to oxygenate the solution. The oyster’s shell was cut open 

with a scalpel, and the sex organs were removed. Then a slight incision was made in the sex organs and 

a sample collected; the sample was observed under the microscope; and the sex of the oyster was 

determined. The scalpel used in the experiment was washed under running water each time a sample 

was removed. The male oysters were placed in a laboratory dish and kept in a refrigerator. This cold 

storage preservation stage was a new stage introduced in the experiments. Because of this, it was 

possible to use these oysters in the experiments for >1 day. As in many cases, it was important to use 

samples freely.  

In the case of female oysters, beakers filled with artificial seawater were covered with a fine net; the 

sex organs were placed on top of the beaker; and then the sex organs were dissected. The eggs were 

collected in the beakers and then washed in artificial seawater. The eggs were washed with artificial 

seawater several times to separate the mature eggs from the immature eggs. Only the mature eggs that 

settled at the bottom of the beaker were used, unlike the reports by His et al. [17,18], who used the 

ASTM process to select the eggs [22]. A volume of 10 mL of standard solution was placed into a  

six-hole microplate. The controls were adding DMSO to the artificial seawater at 0.1%. Three wells 

with the same concentration were prepared. Approximately 200 mature eggs were added to each well 

along with a volume of 25 μL artificial seawater. The sperm, which was preserved in a refrigerator, 

was diluted with artificial seawater 1000 times; a volume of 100 μL of artificial seawater was added to 

each well; and then the well was used to fertilize the samples. This marked the beginning of the 

toxicity tests. A constant temperature tank, maintained at 25 °C, was used for six-well microplates 

during cultivation. Each well was observed under the microscope at 2 and again at 24 h. The 

development stages of 200 oyster eggs or embryos (normal and abnormal) were identified and 

photographed. After the experiments were concluded, the 10% lethal concentration (LC10) and the 50% 

lethal concentration (LC50) values were calculated using the Ecotox-Statics software program 

developed by the Japanese Society of Environmental Toxicology.  

4.4. Sea Urchin Toxicity Tests 

The sea urchin’s body fluid was drained after removing a part of their mouth. The gonad’s color was 

then confirmed. If the color was orange, it was identified as an ovary. If the color was light yellow or 

white, it indicated a testis. And then, they were injected with 1 mL of 0.5 M KCL in a part of the 

mouth. The male sea urchins were placed on their backs in a laboratory dish and kept in a refrigerator 

and a high density of sperm was collected. In the case of female sea urchins, a volume of 100 mL of 

the Erlenmeyer flask was filled with artificial seawater, the sea urchins were placed on their backs on 

top of the flask. The eggs were collected in the flask and then washed in artificial seawater several 

times to separate the mature eggs from immature eggs. A constant temperature tank, maintained at  

20 °C, was used for six-well microplates during cultivation. Each well was observed under the 

microscope at 10 and again at 48 h. The development stages of 200 sea urchin eggs or embryos 

(normal and abnormal) were identified and photographed. The other operations were performed the 

same as the oysters toxicity test. 
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5. Conclusions  

The effect before degradation of TPBP on oyster and sea urchin eggs and embryos was high but its 

degradation products showed no evidence of any influence. 

24 h-LC50 of TPBP on oyster embryos had almost the same level of toxicity as that of TBT and TPT. 

48 h-LC50 of TPBP on sea urchin embryos had almost the same level of toxicity as Sea-Nine 211 

but was lower than TBT. 

The effect of TPBOA on oyster and sea urchin eggs and embryos was lower than TPBP. 

The toxicity of TPBP and TPBOA caused protruding-mantle deformity in the oyster embryos, and 

caused unequal length of postoral arms deformity in the sea urchin embryos. 
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