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Abstract: Microalgae are a source of numerous compounds that can be used in many 

branches of industry. Synthesis of such compounds in microalgal cells can be amplified 

under stress conditions. Exposure to various metals can be one of methods applied to  

induce cell stress and synthesis of target products in microalgae cultures. In this review, the  

potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, 

phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to 

various metals, is evaluated. Additionally, different methods to alter microalgae response 

towards metals and metal stress are described. Finally, possibilities to sustain high growth 

rates and productivity of microalgal cultures in the presence of metals are discussed. 
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1. Introduction 

Microalgae are photosynthetic microorganisms, using solar light to convert CO2 from the atmosphere 

into organic carbon. There are eukaryotic microalgae such as green microalgae [1], red microalgae [2], 

diatoms [3] and dinoflagellates [4] or prokaryotic cyanobacteria [5]. Some of them are capable of 

growing mixotrophically or heterotrophically because they use sugars, glycerol or organic acids as  

their carbon source [6]. The optimal temperature for microalgae growth is usually 20–30 °C, but it is 

also reported that some strains are able to grow at much lower [7] or higher [8] temperature conditions. 

Microalgae are a source of valuable compounds such as lipids, pigments, carbohydrates, vitamins, and 

proteins, with potential applications in many branches of industry. Nowadays, research is focused on 

improving synthesis and maximizing production of valuable compounds from microalgae cultures. 

Microalgal cells are able to synthetize numerous compounds in higher amounts, as a response to stress 

conditions such as high temperature, high salinity, nutrient starvation, and also metal stress. However, 

stress conditions can also have negative effects on microalgae growth [9,10]. 

Human activity, development of industry and natural Earth processess lead to release of numerous 

metals (Fe, Zn, Cu, Cd, Cr, Ni, Hg, Pb, La, Li, V), metalloids (As, Te) and metallic nanoparticles  

(Ag, Pt, TiO2, ZnO, CeO2, NiO, BaTiO3, Y2O3, Al2O3) [11–16] that can act as stressors or modulators 

for microalgae growth and metabolism. This review presents advantages and disadvantages of metal 

stress, as a possible method to produce industrial compounds from microalgae cultures. 

2. Effect of Metals on Microalgae: Growth Inhibition vs. Growth Enhancement 

Metals at small concentrations are indispensable for microalgae cells to perform cellular functions. 

They act as components for photosynthetic electron transport proteins (Cu, Fe) and photosynthetic  

water oxidizing centres (Mn) or are constituents of vitamins (Co) [17]. They also serve as cofactors for 

enzymes participating in CO2 fixation (Zn in carbonic anhydrase) [18], DNA transcription (Zn in RNA 

polymerase) and phosphorus acquisition (Zn in alkaline phosphatase) [19] or N2 assimilation (Mo, Fe, 

V in nitrogenase) [20] and nitrate reduction (Mo in nitrate and Fe in nitrite reductase) [21]. However, 

high concentrations of these metals, and other non-essential heavy metals (Hg, As, Cd, Pb, Cr) cause 

negative effects (impairment of photosynthetic mechanism, blockage of cell division, inhibition of 

enzyme activity) in microalgae cells [12]. Metals also influence the morphology of microalgal cells. 

Accumulation of cadmium (Cd) in Chlamydomonas acidophila cells resulted in the increase in cell size 

and decomposition of polyphosphate bodies [22]. The presence of lead (Pb) in Chlorella sorokiniana 

culture resulted in the formation of colonies of Chlorella cells possessing cytoplasm lipid droplets and 

misshaped chloroplasts [23]. Fragmentation of thylakoid membranes was observed in Synechocystis sp. 

cells upon exposure to thallium (Tl) [24]. Mitochondria in Desmidium swartzii cells became enlarged 

and bloated, upon cell exposure to Zn [25]. Synergistic effect of aluminum (Al) and lead on Dunaliella 

tertiolecta caused cell membrane lysis [26]. Cerium (Ce)-associated cell damage in Anabaena flosaquae, 

can additionally lead to the release of toxins [27]. Lithium (Li) can alter the length and form of flagella 
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in Chlamydomonas reinhardtii [28] or affect the structure of polysaccharide sheath around 

Ankistrodesmus gracilis cells [29], and can also at various concentrations inhibit other microalgae  

strains [30,31]. Cultivation of diatom Synedra acus in the presence of germanium (Ge), titanium (Ti), 

zirconium (Zr) or tin (Sn) caused alterations in shape, size and mechanical strength of silica valves in 

Synedra frustules [32]. 

Although heavy metals generally have negative effect on microalgae cultures, some reports  

suggest also their positive role during microalgae cultivation (Table 1). Lead, aluminum [26] and  

cobalt [33] at low concentrations had stimulatory effect on growth of Dunaliella tertiolecta [26] and 

Monoraphidium minutum [33]. Arsenic (As(V)) was reported to improve the growth of cyanobacterium 

Nostoc minutum [34] and microalgae Chlorella salina [35] and Chlorella sp. [36]. What is more, 

inorganics can support microalgae growth in case of nutrient deficiency. For instance, 20 µg/L vanadium 

(VO3
−) increased growth of Scenedesmus obliquus grown in iron (Fe3+) deficient medium up to six times. 

Vanadium was almost entirely consumed by Scenedesmus cells under photoautotrophic cultivation 

conditions [37]. In another study, addition of 0.01–1 µg/L vanadium (VO3
−) resulted in up to 67% growth 

enhancement in photoautotrophic Chlorella pyrenoidosa culture, even with iron (Fe3+) supplementation 

in the growth media [38]. However, vanadium (VO3
−) at concentrations above 1 mg/L was inhibitory 

for Chlorella pyrenoidosa [38]. Vanadium, in a form of VO4
3− [39] and V2O5 [40], was also reported to 

be inhibitory to Haematococcus lacustris [39] and Scenedesmus quadricauda [40]. 

Furthermore, elements from the lanthanide group such as lanthanum (La), cerium (Ce), neodynium 

(Nd), europium (Eu) or gadolinium (Gd) were reported to constitute a good replacement for calcium 

deficiency in Desmodesmus quadricauda culture, with Gd, La or Nd supplementation leading to  

nearly the same culture dry weight when compared to Ca supplemented media. Moreover, addition of  

cerium at low concentration to standard medium increased Desmodesmus cell number in culture. 

However, lanthanide elements increased growth suppression of Desmodesmus, when added into 

manganese deficient medium [41]. Also lanthanum at higher concentration inhibited growth of 

Scenedesmus quadricauda [42] or Sceletonema costatum [43], and inhibitory concentration of La was 

the same as for other lanthanides: cerium (Ce), neodymium (Nd), samarium (Sm), europium (Eu), 

gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium 

(Yb) and lutetium (Lu) [43]. Cerium (Ce) was stimulatory at lower concentration and inhibitory at higher 

concentration towards cyanobacterium Anabaena flosaquae [27]. 

Cd2+ at small concentrations was reported to stimulate growth and maintain activity of carbonic 

anhydrase in Thalassiosira weissflogii cells, cultivated in Zn-limited medium [44]. Recently, a novel 

carbonic anhydrase naturally possesing Cd2+ as a catalytic metal ion, has been discovered in 

Thalassiosira weissflogii [45]. 

Ni2+ is an essential metal for cultivation of marine diatoms such as Phaeodactylum tricornutum [46], 

Cyclotella cryptica [47], Thalassiosira weissflogii and Thalassiosira pseudonana [48], in the presence 

of urea as a sole nitrogen source. Nickel serves as a cofactor in an enzyme urease, but Ni at higher 

concentations was inhibitory for diatom growth [47,48]. A lack of Ni can be partially substituted by 

cobalt [46]. 

In addition to metals and metalloids, also metallic nanoparticles (NPs) exert activity towards 

microalgae. Inhibitory effects of TiO2, ZnO, CeO2, NiO, BaTiO3, Y2O3, Al2O3, Ag and Pt nanoparticles 

were reported towards numerous freshwater and marine microalgae strains and their inhibitory  
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activity was suggested to be due to Reactive Oxygen Species (ROS) generation [49,50] or mechanical  

damage caused by nanoparticles themselves [51], but also due to metal ions released from  

nanoparticles [50,52,53], light shading effect [54], interactions with growth media components [55] or 

simultaneous effect of various factors [56]. Inhibitory activity of nanoparticles also depends on their  

size [49] and aged suspension [55] or growth medium composition [53]. On the other hand, metal ions 

released from nanoparticles can also stimulate growth of cyanobacteria and microalgae [57]. 

Table 1. Effect of metals, metalloids and metallic nanoparticles on growth of microalgae. 

Metal Microalgae Strain 
Cultivation 

Time 
Concentration 

Effect on 
Growth 

Ref. 

Hg 
Chlorella sp.  

Scenedesmus acutus 
8 days 2.5–5 mg/L 

100% growth 
inhibition 

[58] 

Hg Selenastrum capricornutum – 0.027 mg/L 50% inhibition [59] 
Pb Phaeocystis antarctica 10 days 0.57 mg/L 50% inhibition [60] 

Pb Dunaliella tertiolecta 
48 h 1.5–6.4 mg/L 20% stimulation 

[26] 
48 h 7.29 mg/L 25% inhibition 

Cr(III) 
Dyctiosphaerium 

chlorelloides 
72 h 13–17 mg/L 50% inhibition [61] 

Cr(III) 
Scenedesmus sp. 9 days 0.75 µM 

MMC [62] 
Geitlerinema sp. 9 days 0.25 µM 

Cr(VI) Chlorella pyrenoidosa 72 h 2 mg/L 50% inhibition [63] 
Cr(VI) Chlorella vulgaris 96 h 5 µmol/L ~40% inhibition [64] 

As(III) 
Chlorella sp. 72 h 25.2 mg/L 50% inhibition 

[65] 
Monoraphidium arcuatum 72 h 14.6 mg/L 50% inhibition 

As(III) Chlorella sp. 72 h 27 mg/L 50% inhibition [66] 
As(V) Chlorella sp. 72 h 1.1 mg/L 50% inhibition [66] 

As(V) 
Chlorella sp. 72 h 25.4 mg/L 50% inhibition 

[65] 
Monoraphidium arcuatum 72 h 0.254 mg/L 50% inhibition 

As(V) 
Oscillatoria tenuisa 72 h 3.8 mg/L 50% inhibition 

[67] Anabaena affinis 72 h 2.6 mg/L 50% inhibition 
Microcystis aeruginosa 72 h 1.2 mg/L 50% inhibition 

As(III) Nostoc minutum 7 days 5 mg/L Cell death [34] 
As(V) Nostoc minutum 7 days 1000 mg/L 66% stimulation [34] 

Cu Isochrysis galbana 72 h 0.01–0.018 mg/L T 50% inhibition [68] 
Cu Phaeocystis antarctica 10 days 0.0059 mg/L 50% inhibition [60] 
Cd Phaeocystis antarctica 10 days 1.5 mg/L 50% inhibition [60] 

Cd Scenedesmus armatus 24 h 
~15–18 mg/L + or 
0.46–0.54 mg/L +x 

50% inhibition [69] 

Cd Thalassiosira weissflogii – 4.6 pM 
~30%–92% 

stimulation ZnL 
[44] 

Ni Selenastrum capricornutum – 0.125 mg/L 50% inhibition [59] 
Ni Synechococcus sp. 15 day 25 mg/L ~42% inhibition [70] 
Li Chlorella vannielii 12 h 1000 mg/L 48% inhibition [30] 
Li Cyanothece sp. 28 days 70 mg/L Cell death [31] 
Tl Chlorella sp. 72 h 80 nmol 100% inhibition [71] 
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Table 1. Cont. 

Metal Microalgae Strain 
Cultivation 

Time 
Concentration 

Effect on 
Growth 

Ref. 

Tl Synechocystis sp. 72 h 1 µM 50% inhibition [72] 

Co Monoraphidium minutum 11 days 
0.5 ppm 12% stimulation 

[33] 
3 ppm 44% inhibition 

Zn Phaeocystis antarctica 10 days 1.11 mg/L 50% inhibition [60] 
Zn Anabaena sp. 96 h 0.38 mg/L 50% inhibition [73] 

Al Dunaliella tertiolecta 
48 h 2.6–14.9 mg/L 20% stimulation 

[26] 
48 h 22.42 mg/L 25% inhibition 

Al Isochrysis galbana 72 h 2.57–3.23 mg/L T 50% inhibition [68] 

V Met Scenedesmus obliquus 7 days 20 µg/L 
534%  

stimulation * 
[37] 

V Met Chlorella pyrenoidosa 7 days 1 µg/L 67% stimulation [38] 

V Met Chlorella pyrenoidosa 7 days >1 mg/L 
Inhibitory 
threshold 

[38] 

V Ort Haematococcus lacustris 4 days 2.5–5 mM Full inhibition [39] 
V Oxi Scenedesmus quadricauda 12 days 2.23 mg/L 50% inhibition [40] 
Ce Desmodesmus quadricauda 3 days 6 µmol/L 16% stimulation A [41] 
Ce Desmodesmus quadricauda 3 days 94 µmol/L ~19% inhibition A [41] 

Ce Desmodesmus quadricauda 3 days 5.74 µmol/L 
20% inhibition B 

[41] 
60% stimulation C 

Ce Desmodesmus quadricauda 3 days 1.14 µmol/L 40% inhibition D [41] 

Ce Anabaena flosaquae 17 days 
0.1 mg/L ~16% stimulation 

[27] 
5–10 mg/L ~33% inhibition 

La Desmodesmus quadricauda 3 days 5.72 µmol/L 
10% inhibition B 

[41] 
80% stimulation C 

La Desmodesmus quadricauda 3 days 1.13 µmol/L No change D [41] 
La Scenedesmus quadricauda 22–23 days 72 µmol/L 50% inhibition [42] 

La, Ce, Nd, 
Sm, Eu, 
Gd, Tb, 

Dy, Ho, Er, 
Tm, Yb, Lu 

Skeletonema costatum 96 h 28–29 µmol/L 50% inhibition [43] 

Nd Desmodesmus quadricauda 3 days 5.76 µmol/L 
10% stimulation B 

[41] 120%  
stimulation C 

Nd Desmodesmus quadricauda 3 days 1.09 µmol/L ~5% inhibition D [41] 
TiO2-NPs Nitzschia closterium 96 h 88–118 mg/L 50% inhibition [49] 

TiO2-NPs 
Pseudokirchneriella 

subcapitata 
72 h 2.53 mg/L 50% inhibition [52] 

TiO2-NPs Chlorella vulgaris – 2.5–5 g/L 42% inhibition [74] 
ZnO-NPs Chlorella vulgaris 72 h 200 mg/L 35% cell viability [50] 
ZnO-NPs Dunaliella tertiolecta 96 h 2.4 mg/L 50% inhibition [56] 

ZnO-NPs 
Pseudokirchneriella 

subcapitata 
72 h 0.1 mg/L 80% inhibition [52] 



Int. J. Mol. Sci. 2015, 16 23934 

 

 

Table 1. Cont. 

Metal Microalgae Strain 
Cultivation 

Time 
Concentration 

Effect on 
Growth 

Ref. 

ZnO-NPs 
Phaeodactylum tricornutum 

– 
100 mg/L 80% inhibition 

[51] Alexandrium minutum 100 mg/L 80% inhibition 
Tetraselmis suecica 100 mg/L No effect 

ZnO-NPs Scenedesmus rubescens 96 h  
14.27 mg/L or  
>810 mg/L CM 

50% inhibition [53] 

CeO2-NPs 
Pseudokirchneriella 

subcapitata 
72 h 4.1–6.2 mg/L AS 50% inhibition [55] 

NiO-NPs Chlorella vulgaris 120 h 44 mg/L 50% inhibition [75] 

Y2O3-NPs 
Phaeodactylum tricornutum 

– 
100 mg/L ~40% inhibition 

[51] Alexandrium minutum 100 mg/L ~40% inhibition 
Tetraselmis suecica 100 mg/L 70% inhibition 

BaTiO3-
NPs 

Chlorella vulgaris 72 h 1 mg/L ~57% inhibition [76] 

Al2O3-NPs 
Chlorella sp. 72 h 45.4 mg/L 50% inhibition 

[54]  
Scenedesmus sp. 72 h 39.35 mg/L 50% inhibition 

Ag-NPs 
Pseudokirchneriella 

subcapitata 
72 h 1.63 mg/L 50% inhibition [77] 

Pt-NPs 
Pseudokirchneriella 

subcapitata 
72 h 16.9 mg/L 50% inhibition [77] 

nZVI-
Nanofer 25 

Arthrospira maxima 216 h 5.1 mg/L 19% stimulation [57] 

nZVI-
Nanofer 25 

Desmodesmus subspicatus 216 h 5.1 mg/L 73% stimulation [57] 

nZVI-
Nanofer 25 

Parachlorella kessleri 216 h 5.1 mg/L 38% stimulation [57] 

MMC, Minimum Metal Concentration significantly affecting Chlorophyll a intensity; T, depending on 

temperature applied; +, depending on Cd salt used; x, including complex abilities of media mineral elements;  

*, when compared to Scenedesmus growth in Fe deficient medium; ZnL, at low Zn concentrations; Met, added as 

metavanadate; Ort, added as orthovanadate; Oxi, added as vanadium pentoxide; A, in standard medium and 

compared to a control in standard medium without Ce; B, in Ca deficient medium and compared to a control in 

standard medium without tested metal; C, in Ca deficient medium and compared to a control in Ca deficient 

medium without tested metal; D, in Mn deficient medium and compared to a control in Mn deficient medium 

without tested metal; NPs, nanoparticles; CM, depending on culture medium; AS, depending on aged suspension; 

nZVI, zero-valent iron nanoparticles; Ref., Reference. 

3. Metal Stress as a Method for Stimulation of Bioproduct Synthesis 

Accumulation of metals in microalgae cells consists of two mechanisms: metal adsorption on the cell 

wall surface containing functional groups (carboxyl, hydroxyl, phosphate, amino, sulfhydryl) and 

absorption of metals inside cells via metal transport systems [12,19,78]. Metals in microalgae cells can 

cause formation of reactive oxygen species (ROS) such as hydroxyl radical (·OH), superoxide anion 

(O2·−), singlet oxygen (O2*) and hydrogen peroxide (H2O2) that interact with lipids, proteins and nucleic 

acids, resulting in their degradation. As a protective response to metal induced oxidative stress, 
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microalgae cells synthetize chelating agents such as phytochelatin or exopolymers in higher  

amounts [12,79,80]. Chelating agents are organic compounds that form two or more bonds with a metal 

ion, thereby creating a coordination complex chelate–metal and preventing metal ions from interaction 

with biological macromolecules [81]. Another defense mechanism againsts oxidative stress is the 

synthesis of antioxidant compounds (pigments, glutathione, ascorbate) or enzymes (superoxide 

dismutase, catalase) that are responsible for quenching reactive oxygen species (ROS) and also reducing 

metal ions into their less reactive forms [12,79,80]. Therefore, oxidative stress can be considered as a 

trigger mechanism to induce production of target compounds by metal-exposed microalgae cells, under 

conditions where the detrimental effect of metals on microalgal culture is avoided. 

3.1. Pigments 

Chlorophylls, carotenoids and phycobilins are microalgal pigments that harvest light in the process 

of photosynthesis. Chlorophylls are primary photosynthic pigments that contain tetrapyrrole macrocycle 

rings and are present in various forms (a, b, c1, c2, c3, d, f), in different microalgae or cyanobacteria 

species (Table 2). Green microalgae possess chlorophyll content up to 6.7% [82], and upon chemical 

modifications, to phaeophytin [83] or Cu2+-chlorophyllin [84], can be used as a biomordant [83] to 

enchance the dyeing process of textile products or as a textile dye [84] with antimicrobial properties. 

Additionally, an Mg2+ ion in a chlorophyll centre can be substituted with Zn2+, Ni2+, Cd2+, Pb2+, Co2+ or 

Pt2+ [85–90]. Carotenoids–accessory photosynthetic pigments, are fat-soluble tetraterpenoid molecules 

that are divided into no oxygen-containing carotenes (β-carotene) and oxygen-containing xanthophylls 

(lutein, astaxanthin, zeaxanthin) [91]. Phycobiliproteins are water-soluble proteins that serve as accessory 

pigments in blue-green or red microalgae, giving a blue (c-phycocyanin, allophycocyanin) [34,92]  

or pink, red (b-phycoerythrin, c-phycoerythrin) [93,94] colour. Chlorophylls, carotenoids and 

phycobiliproteins can find applications in food, cosmetic and pharmaceutical products as coloring, 

antioxidant, food additive or therapeutic agents [95–97]. 

Table 2. Types of chlorophyll present in eukaryotic microalgae and cyanobacteria. 

Chlorophyll Type Microalgae Strain Taxonomy Reference 

a, b Chlorella vulgaris Green microalgae [98] 
a, c1, c2 Phaeodactylum tricornutum Diatoms [99] 
a, c1, c2 Kryptoperidinium foliaceum Dinoflagellates [100] 
a, c2, c3 Karenia mikimotoi Dinoflagellates [100] 

a, d Acaryochloris marina Cyanobacteria [101] 
a, f Halomicronema hongdechloris Cyanobacteria [102] 

The presence of metals can have an enchancing effect on pigment content in microalgae or 

cyanobacteria cells. Copper (Cu2+) at concentration between 0.05–0.2 g/L induced β-carotene production 

in Chlamydomonas acidophilla [103]. The change in iron (Fe2+) medium concentation resulted in a 

growth improvement and an increase in lutein, zeaxanthin and β-carotene content in Coccomyxa 

onubensis cells [104]. Also, β-carotene content in Dunaliella salina cells was increased seven times in 

the presence of 450 µM Fe2+ and 67.5 mM acetate, however at the expense of four-fold reduction in 

Dunaliella cell number [105]. Cyanobacterium Nostoc minutum cultivated photoautotrophically in 
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medium containg 1 g/L arsenic(V) was reported to posses chlorophyll, carotenoid and allophycocyanin 

content higher by 75%, 40% and 25%, respectively, when compared to control culture [34]. Similarly, 

small concentrations of Ni (0.1–10 µM) increased chlorophyll content and c-phycocyanin production 

even by 47% and up to 4.35 times, respectively, in Anabaena doliolum culture [92]. The content of  

c-phycocyanin, phycoerythrin and allophycocyanin in cyanobacterium Phormidium tenue culture 

increased considerably in the presence of As, but the uplift profiles were strongly dependent on As 

dosage (0.1–100 ppm) and exposure time [106]. In other studies, cultivation of Synechocystis sp. in the 

presence of Pb and Cd, and Spirulina platensis in the presence of Pb, showed a decrease in biomass and 

pigment (chlorophyll, carotenoid, phycocyanin) concentration, in the culture volume. Nevertheless, 

pigment content in cyanobacteria biomass increased at some metal concentrations and cyanobacteria 

growth was stimulated at low Pb concentrations [107,108]. Lead (Pb) and cadmium (Cd) at 

concentrations up to 10 mg/L increased chlorophyll concentration in cultures of metal resistant 

Scenedesmus quadricauda and Pseudochlorococcum typicum [109]. Tellurium (TeO3
2−), added into 

Spirulina platensis growth media, was accumulated and incorporated into peptides in Spirulina cells. As 

a result, production of Te-phycocyanin and Te-allophycocyanin possessing enhanced antioxidant 

activity, was reported in Spirulina platensis cells [110]. 

3.2. Lipids 

Microalgal cells are a source of lipids including triacyloglycerols (TAGs) and fatty acids [111], but 

also phytosterols [112] and sphingolipids [113], with potential applications as biofuels, nutraceuticals 

and food additives. It is reported that nutrient deficiency such as nitrogen deprivation results in oxidative 

stress and lipid accumulation in microalgal cells [114]. Cultivation of Chlorella minutissima in the 

presence of Cd (0.2–0.4 mM) or Cu (0.2–1 mM) leads to the increase in both biomass density and cell 

lipid content, providing lipid productivity improved 2.17-fold with 0.4 mM Cd or by 34% with 0.4 mM 

Cu [115]. Euglena gracilis cultivated photoautotrophically or mixotrophically in the presence of  

low chromium (Cr6+) concentration exhibited higher total lipid content, although lipid stimulation  

(10%–100%) was dependent on Euglena strain used and medium composition tested [116]. Addition of 

0.1 g/L TiO2 nanoparticles with UV-A irradiation applied, slightly increased production of fatty acids  

in Chlorella vulgaris cells, without growth reduction [74]. Recently, zero-valent iron nanoparticles  

(5.1 mg/L) were reported to increase lipid productivity in Arthrospira maxima, Desmodesmus subspicatus 

and Parachlorella kessleri cultures, respectively by 40%, 2.75-fold and by 66% [57]. Metal stress also 

causes the alteration of fatty acid profile in microalgae cells. The effect of As(III) on Nannochloropsis sp. 

cells resulted in a slight increase in cell lipid content and a change in lipid profile, as the decrease in 

polyunsaturated fatty acids and the increase in short-chain saturated (C16:0, C18:0) and monounsaturated 

(C16:1, C18:1) fatty acids, was depicted [117]. Nickel at 0.5 mg/L caused a shift of fatty acid profile 

towards saturated fatty acids (C14:0, C16:0, C20:0) in Dunaliella salina and Nannochloropsis salina 

cells, also with the upshift of saturated C18:0 and unsaturated C18:2 for Nannochloropsis and C22:0 

behenic acid for Dunaliella [118]. Composition of fatty acids (chain length, number of double bonds) 

defines the biodiesels produced from corresponding triglycerides in terms of their quality and properties 

(including cetane number, density, viscosity, lubricity, calorific value, NOx emissions) [119–121]. 

Therefore, metal stress can be applied to alter composition of fatty acids in microalgal cells and produce 
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biodiesel of desirable quality and properties [117]. As a contrary, cultivation of Nannochloropsis 

limnetica and Trachydiscus minutus in the presence of zero-valent iron nanoparticles (nZVI) caused the 

decrease in saturated fatty acids (C14:0, C16:0, C18:0) and the increase in eicosapentaenoic acid 

(C20:5ω3) content in Nannochloropsis and Trachydiscus biomass [57]. Eicosapentaenoic acid (EPA) 

can be used as a nutraceutical or pharmacological agent for the treatment of heart and inflammatory 

diseases [122]. 

3.3. Exopolymers 

Extracellular polymeric substances (EPS), consisting of exopolysaccharides and exoproteins, are 

excreted by microalgae and cyanobacteria upon exposure to stress factors such as nutrient (N, P) 

imbalance, but the release mechanism can also depend on cultivation conditions (light intensity, 

temperature, salinity, microelement availability) and the stage of microalgal growth [123–128]. 

Exopolysaccharides can be of linear or branched structure and contain C6 (glucose, galactose, fructose, 

rhamnose, fucose) and C5 (xylose, arabinose) sugars, as well as uronic (glucuronic, galacturonic) acids, 

aromatic, pyruvate, acetate, sulphate and halide groups. Additionally, extracellular polysaccharides can 

be also coupled with peptides, lipids and nucleic acids [129,130]. 

Metals were reported to stimulate the release of exopolymers by microalgal cells. A considerable 

increase in the release of exopolysaccharides and extracellullar proteins was observed in the culture of 

cyanobacterium Lyngbya putealis, as a response to the presence of Cu and Co [131]. Increased release 

of extracellular polymers from Thalassiosira weissflogii [132], and Thalassiosira pseudonana [133]  

in the presence of Ag [132] and Cd [133] ions released from engineered nanoparticles (ENPs),  

was also reported. Extracellular polymeric substances possess antiviral, antitumor, anticoagulant, 

antiinflammatory and immunostimulant activity, but they can also serve as biosurfactants, biolubricants, 

bioemulsifiers [130] and a source of sugars for biofuels [134]. 

3.4. Phytochelatin 

Phytochelatins are (oligo)peptides synthetized in plants, yeast, algae and cyanobacteria  

for detoxification of heavy metals. The structure of phytochelatin is (γ-Glu-Cys)n-Gly with γ-Glu-Cys  

n being between 2 to 11. Phytochelatin is synthetized by phytochelatin synthase (glutathione-γ-

glutamylcysteinyltransferase), by firstly adding γ-Glu-Cys from glutathione (γ-Glu-Cys-Gly) to another 

glutathione molecule forming (γ-Glu-Cys)2-Gly (PC2) and further incorporates new γ-Glu-Cys units into 

PC2 [135]. Synthesis of short chain phytochelatins (2 to 6 of γ-Glu-Cys units) was reported in cells of 

microalgae (Table 3) such as Scenedesmus vacuolatus [136], Phaeodactylum tricornutum [137–139], 

Scenedesmus armatus [140], Stichococcus bacillaris [141], Micrasterias denticulata [142] and 

cyanobacterium Anabaena doliolum [143] exposed to increasing concentration of Cd, Pb, Cu and/or As. 

Phytochelatin content in Scenedesmus armatus and Stichococcus bacillaris cells exposed to constant 

(Const.) concentration of Cd and As respectively can be also further elevated, with the upshift of CO2 

supplementation for Scenedesmus [140] and decrease of pH for Stichococcus [141]. Also synthesis of 

iso-phytochelatins such as Cys(GluCys)nGly and (GluCys)nAla was reported in Chlamydomonas 

reinhardtii upon Cd exposure [144]. Phytochelatins, obtained from microalgae cultures, can become a 
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component for biosensors, designed for detection of heavy metals in samples of environmental, 

biological or pharmaceutical origin [145,146]. 

Table 3. Synthesis of phytochelatin in microalgae exposed to heavy metals. 

Strain Metal 
Metal 
Uplift 

Phytochelatin Uplift PCN A Growth Rate C Reference 

Scenedesmus 
vacuolatus 

Cd 
0.3→ 
79 nM 

~3→25 amol/cell PC2 
Reduced by 

37% 
[136] ~1→44 amol/cell PC3 

~0→17 amol/cell PC4 

Phaeodactylum 
tricornutum 

Cd 
0→ 

0.45 µM 

~0.16→3.6 amol/cell PC2 
No change [137] ~0.5→1.3 amol/cell PC3 

~0.05→1.5 amol/cell PC4 

Phaeodactylum 
tricornutum 

Cu 
0.068 pM→ 

0.4 µM 

~0.16→1.7 amol/cell PC2 
No change [137] ~0.5→1.5 amol/cell PC3 

~0.05→0.8 amol/cell PC4 

Phaeodactylum 
tricornutum 

Cd 0→10 µM 
~0→12.5 amol/cell PC2 

Toxic effect 
avoided 

[138] ~0→25 amol/cell PC4 
~0→5 amol/cell PC5 

Phaeodactylum 
tricornutum 

Pb 0→10 µM 
~0→50 amol/cell PC2 

Toxic effect 
avoided 

[138] ~0→13 amol/cell PC3 
~0→3 amol/cell PC5 

Phaeodactylum 
tricornutum 

Cu 0→10 µM 
~2→18 amol/cell PC2 

– [139] ~0→38 amol/cell PC3 
~0→5 amol/cell PC6 

Scenedesmus  
armatus 

Cd 
Const.  

93 µM * 

~40→200 nmol-SH/g PC2 
Reduced by 

26% 
[140] ~80→1300 nmol-SH/g PC3 

~20→280 nmol-SH/g PC4 

Stichococcus 
bacillaris 

As(III) 
Const.  

100 µM ** 
0.07→0.15 µmol-SH/g PC2 

Reduced by 
20% 

[141] 
As(V) 

Const.  
100 µM ** 

0.14→0.38 µmol-SH/g PC2 
Reduced by 

30% 
A Phytochelatin with N number of γGlu-Cys units; C when compared to control; * increase of CO2 

supplementation from 0.1% to 2%; ** pH shift from 8.2 to 6.8. 

3.5. Phytohormones 

Zeatin, indoleacetic acid and abscisic acid are phytohormones that can be used as growth regulators 

for plants [147,148], and yeast [149], but also as anti-aging agents [150] and potential drugs for  

neural [151] or cancer [152] diseases. Phytohormones can be found in microalgae [153] and their content 

can be amplified in the presence of heavy metals. The content of indoleacetic acid, zeatin and abscisic 

acid increased in Chlorella vulgaris cells grown in the medium containing 10−4 M Cd, Pb or Cu, however 

at the expense of decreased cell number in the culture. Interestingly, addition of 10−8 M brassinolide into 

metal-containing Chlorella culture enabled to achieve cell number comparable to control culture, 

together with further stimulation of zeatin, indoleacetic acid and abscisic acid production [154]. 
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3.6. Organoarsenical Compounds 

Accumulation of As in microalgae cells has been recently extensively summarized [155]. In essence, 

the uptake of As(V) from surroundings into microalgae cells is accomplished by means of phosphate 

transport system, while As(III) is transported by aquaglyceroporins and hexose permeases [155]. 

Subsequently, As(V) is reduced to As(III) via As reductase action, with simultaneous oxidation of glutathione 

(GSH). As(III) undergoes methylation via As methyltransferase action into monomethylarsonate (MMA) 

and dimethylarsinate (DMA). Arsenic(III) can also undergo bio-oxidation to As(V) or be extruded from 

cells [156–158]. Arsenic(V) can be incorporated into cellular components such as sugars and lipids.  

In microalgae, dimethylarsinate (or its reduced form: dimethylarsinous acid) can combine with the  

adenosyl group from S-adenosyl methionine, leading to formation of a dimethylarsinyladenosine,  

which further undergoes glycosidation to dimethylarsenoribosides [159,160]. In cyanobacteria, 

dimethylarsinate undergoes reduction, ribose-coupling and glycosidation [161]. Some varieties of 

arsenosugars containing glycerol, sulphate, sulphonate and phosphate groups were detected for 

microalgae [160,162]. Arsenolipids in microalgae were determined as dimethylarsenoriboside 

phospholipids (Figure 1), although phospholipids containing single As(V) or DMA groups were also 

reported [163]. Content and compositions of arsenoorganics formed in microalgae Chlorella and 

Monoraphidium [65], Dunaliella and Phaeodactylum [163], Chlamydomonas [160] or cyanobacteria 

Synechocystis [157,161] and Nostoc [161] cells depends on microalgae strain used, as well as on 

arsenic(V) concentration applied, exposure time and phosphate availability. Arsenolipids and 

arsenosugars are currently evaluated as possible therapeutic agents [164]. However, application of  

As-containing compounds is limited due to high toxicity and so far, only derivatives of arsenolipids have 

been reported to possess any medical applications [159]. 

 

Figure 1. Chemical structure of dimethylarsenoriboside phospholipids (R—a carbon chain 

of fatty acid). 

3.7. Nanoparticles and Nano-Needles 

Nanoparticles are particles with sizes ranging between 1–100 nm [165]. Nanoparticles possess 

antiviral, antibacterial, antifungal, anticancer and antiparasite activity. They also find application in the 

field of catalysis or photonics or can serve as drug carriers and components of chemical sensors [166]. 

Methods applied for manufacturing nanoparticles range from mechanical, laser and UV irradiation 

treatment to microemulsion system, hydrothermal process, sol–gel process, chemical vapor 

condensation, sonochemical treatment and microbial biosynthesis [165,167]. Synthesis of nanoparticles 

by microorganisms (bacteria, yeast, fungi and microalgae) can constitute a green and environmentally 

friendly method for nanoparticles production [168,169]. Formation of nanoparticles: Au, Ag or Pd 
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(Table 4) from metal ions solutions takes place inside microalgae cells (intracellularly) or in the media 

(extracellularly) via interactions with molecules of microalgal cell metabolism (NADH, pigments, 

peptides, proteins and polysaccharides) [170–176]. The size of synthetized nanoparticles depends on 

microalgal strain and metal type used, but place of synthesis, initial metal loading, light and temperature 

are also crucial factors influencing formation of nanoparticles. Additionally, synthesis of Cd 

nanoparticles in a form of CdS [177] or Ni nanoparticles as a product of reduction of other nanoparticles 

(NiO) [75], was also reported. Besides nanoparticles, biosynthesis of nanoneedles by microalgae also 

occurs; such nanoneedles, composed of zinc and phosphorous, were detected in Scenedesmus obliquus 

cells as a result of exposure to high Zn concentration [178]. 

Table 4. Synthesis of nanoparticles (NP) in microalgae and cyanobacteria cultures. 

Element NP Source Strain 
Place of 

Synthesis 
Average Particle 

Size (nm) 
Reference 

Gold (Au) HAuCl4·3H2O Chlorella vulgaris Intracellularly 40–60 [170] 
Gold (Au) KAuCl4 Eolimna minima Intracellularly 5–100 [171] 

Silver (Ag) AgNO3 
Parachlorella 

kessleri 
Extracellularly 9, 14 or 18 [172] 

Silver (Ag) AgNO3 
Botryococcus 

braunii 
Extracellularly 15.67 [173] 

Silver (Ag) AgNO3 Scenedesmus sp. Intracellularly 15–20 [174] 

Palladium (Pd) Na2(PdCl4) Chlorella vulgaris 
Microalga 

culture 
7 [175] 

Palladium (Pd) PdCl2 Chlorella vulgaris Intracellularly 5–12 [170] 

Palladium (Pd) PdCl2 
Plectonema 
boryanum 

Extracellularly ≤30 [176] 

Cadmium 
sulphide (CdS) 

Cd(NO3)2·4H2O Scenedesmus Intracellularly 
120–175 

(described as 
nanoparticles) 

[177] 

Nickel (Ni) NiO–NPs Chlorella vulgaris 
Microalga 

culture 
– [75] 

4. Influence of Growth Conditions on Microalgal Resistance Towards Metals 

Metals at low concentration can be stimulatory for growth and production of target compounds, but 

metal overdose has detrimental and lethal effects on microalgae cultures. Hence, microalgal cultivation 

in metal polluted wastewaters should be designed in such a way to limit cell–metal interactions to the 

level at which metal concentration exerts only beneficial effects on microalgae growth and biosynthesis 

of crucial products. Microalgal cell response to metal presence depends on many factors such as 

conditions of cultivation, nutrient availability, presence of organic compounds and tolerance ability of 

particular strains. 

4.1. Growth Media Composition and Cultivation Conditions 

Composition of growth media is a crucial factor regarding microalgae response towards heavy metals, 

such as arsenic, cadmium or nickel. 
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Arsenate (AsO4
3−) and phosphate (PO4

3−) are mutual competitors for the uptake by microalgal  

cells [155]. A 10–fold increase in phosphate concentation resulted in a 18 times higher resistance of 

Monoraphidium arcuatum against As(V). On the other hand, a 10-fold decrease in medium nitrate  

NO3
− content at ordinary (PO4

3−) concentation, decreased by 28% Monoraphidium resistance towards  

arsenic [65]. In another study, a 131-fold phosphate uplift improved 516 times resistance of  

Chlorella salina against As(V) [35]. Indeed, increasing concentration of As(V) stimulated growth of 

arsene tolerant Chlorella sp. at low phosphate (P) concentration, although cell yields obtained were 

lower than in experiments with high P concentration [36]. Concentration of PO4
3− in medium in  

relation to dissolved lead content can be also important, as Pb2+ can precipitate in a form of  

Pb3(PO4)2, thereby removing available phosphate from solution and inhibiting growth of 

Chlamydomonas reinhardtii [179]. 

Sulphur is a component of cysteine that participates in the defense mechanisms against heavy metals. 

The resistance of Chlamydomonas moewusii exposed to 4 mg/L cadmium can be improved five times 

and cysteine cell content can be raised 10 times, when sulphate (SO4
2−) concentration in medium is 

increased 100 times [180]. In another study, a 10-fold increase in SO4
2− supply resulted in a  

Chlamydomonas reinhardtii resistance improved by up to 77% towards Cd. Improved Chlamydomonas 

resistance was accompanied with an increased activity of cysteine desulfhydrase, an enzyme responsible 

for the cleavage of cysteine into pyruvate, NH3 and sulfide, the latter one reported to react with Cd to 

form CdS [181]. 

A 20-fold increase in ammonium (NH4
+) concentration increased five times the accumulation of 

PO4
3− in Chlorella vulgaris cells and caused a 50% alleviation in inhibition of Chlorella growth exerted 

by chromium (Cr) [182]. Increase in magnesium (Mg2+) and hydrogen (H+) concentration reduced nickel 

toxicity towards Pseudokirchneriella subcapitata, as Mg2+ and H+ compete with Ni2+ for the uptake by 

the cell transport system [183]. In other studies, an increase in H+ concentration was reported to improve, 

even up to 23 times [184], Chlorella sp. resistance against Cu. 

Zn alleviated detrimental effects of Cr on the photosynthetic mechanism in Micrasterias denticulata 

cells and Fe ameliorated inhibitory effect of Cd and Cr on Micrasterias cell development. Ca and Gd 

were reported to prevent alterations in cell morphology caused by Pb and Cd, thereby nullifying negative 

effects of Pb and Cd on Micrasterias cells [185]. 

Finally, toxicity of thallium towards Chlorella sp. was completely alleviated, when concentration of 

K+ in media was increased 20 times, presumably due to competive uptake in Chlorella cell transport 

systems [71]. 

Cultivation parameters such as light intensity and CO2 concentration are also important factors 

affecting microalgae response towards metals. Alterations in ligh irradiance had influence on inhibition 

or stimulation of Chlamydomonas reinhardtii growth under different Cu concentrations, and also 

affected accumulation of Cu in Chlamydomonas cells [186]. Increase of CO2 supply enabled the 

alleviation of the inhibitory effect of Cd towards Scenedesmus armatus, although growth inhibition was 

not entirely overcome [140]. 
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4.2. Supportive Compounds 

Another modulating approach could be supplementation of microalgae cultures with organic 

compounds such as phytohormones or chelating agents. 

4.2.1. Phytohormones: Modulating Effect 

Phytohormones—spermidine (polyamine), gibberellin and many representatives of auxin and 

cytokinin groups—were reported to prevent inhibition of Chlorella vulgaris culture exposed to cadmium 

(Cd), copper (Cu) or lead (Pb) at a concentration of 0.1 mM. What is more, addition of compounds  

from the cytokinin group such as benzyladenine, zeatin, kinetin, 2-isopentenyladenine, diphenylurea, 

forchlorphenuron and thidiazuron not only enabled restoration of the Chlorella culture, but also 

increased cell number by up to 77%, when compared to control. Supplementation of spermidine, 

gibberellin, auxins or cytokinins generally increased not only the content of chlorophyll, carotenoid, 

protein, ascorbate and glutathione in Chlorella cells, but also activity of superoxide dismutase and 

catalase [187]. In earlier studies, it was stated that the inhibitory effect of 0.1 mM Cd, Cu and Pb on 

Chlorella vulgaris culture can be also nullified in the presence of brassinolide [154]. 

4.2.2. Chelating Agents: Modulating Effect 

Chelating agents are synthetized by microalgae for intracellular (phytochelatin, glutathione) or 

extracellular (exopolymers) detoxification of metals, but can also be added artificially into growth media 

to bind metals and modulate cell–metal interactions. Such agents can be low-molecular organic acids 

(ethylenediamine tetraacetic acid, nitrilotriacetic acid, citrate) or humic substances: humic acid or fulvic 

acid (Table 5). 

Addition of 34 µM ethylenediamine tetraacetic acid (EDTA) into Scenedesmus subspicatus culture 

enabled a ~55% reduction in growth inhibition exerted by ~40 µM Cu [188]. Also EDTA, as well as 

nitrilotriacetic acid (NTA) and citrate (Cit), were reported to prevent accumulation of lanthanum (La), 

gadolinum (Gd) and yttrium (Y) in Chlorella vulgaris cells, with reduction in accumulation  

around 10- to 30-fold higher for EDTA, when compared to NTA and Cit [189]. On the other  

hand, citrate was reported to enhance Cd (0.25 µM/L) accumulation and growth inhibition of  

Selenastrum capricornutum, due to the occasional uptake of Cd-citrate by cells [190]. With the absence 

of EDTA in growth medium, cadmium (Cd) exerted much stronger inhibitory effects on Scenedesmus 

armatus, when compared to the growth in EDTA-containing medium [69]. Growth of Scenedesmus 

quadricauda or Microcystis aeruginosa in the presence of lanthanum (0.72–72 µM) and EDTA  

(0.269–26.9 µM) was inhibited or enhanced, depending on La and EDTA concentrations. EDTA  

(2.69–13.4 µM) vastly alleviated the inhibitory effect of La on Microcystis growth, although  

EDTA alone and at higher concentration had strong inhibitory effects towards Microcystis [42].  

EDTA [37,191,192] or citrate [37,193] increased Fe availability to microalgae, although high 

concentration of chelating agent can have opposite effects [42,191]. Additionally, EDTA that fails to 

maintain availabilily of Fe at high pH during Spirulina cultivation, can be replaced by alternative 

chelating agents such as Fe complexes of N,Nʹ-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid 
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(HBED), ethylenediamine-N,N'-bis((2-hydroxyphenyl)acetic acid) (EDDHA) or ethylenediamine-N,N'-

bis((2-hydroxy-4-methylphenyl)acetic acid) (EDDHMA) [194]. 

Humic acid was reported to protect Dunaliella salina and Nannochloropsis salina cells against Ni2+ 

stress, by means of forming humic acid–Ni2+ complexes and/or by adsorbing on cell surface and thus, 

creating an additional barrier for Ni2+ uptake [118]. Similarly, humic acids reduced toxicity of Cd2+ and 

Zn2+ towards Pseudokirchneriella subcapitata [195], Hg2+ towards Isochrysis galbana [196] and ZnO 

nanoparticles towards Anabaena sp [197]. Humic acid itself at 7 and 2.5–10 mg/L stimulated growth of 

Isochrysis galbana [198] and Stichococcus bacillaris [141], presumably due to improved nutrient uptake 

via humic acid–cell membranes interaction [198]. However, an opposite effect, enhanced toxicity of Pb 

towards Isochrysis in the presence humic acid, was also observed [198], because the formation of a 

ternary complex between Pb, humic acid and microalga cell surface, enhances internalization of  

Pb [199]. Humic acid was also reported to be inhibitory (0.3 mg/L) and lethal (1 mg/L) for  

Anabaena circinalis, probably due to its chelating activity towards Fe3+, leading to the decrease in 

availability of Fe necessary for Anabaena growth [200]. It is also noteworthy, that humic acid  

can undergo degradation under high light irradiance, leading to the decreased capacity for metal 

complexation [201]. Fulvic acid contributed to protection of Scenedesmus subspicatus against Cu2+ [188], 

but no protective effect against Cd2+ and Zn2+ was found for Pseudokirchneriella subcapitata [195]. 

Fulvic acid was also reported to serve as a source of phosphorus to nullify toxic effects of aluminum 

(Al) on P-metabolism in Chlorella pyrenoidosa [202]. 

Table 5. Effect of humic and fulvic acids on microalgae response towards metals. 

Chelating Agent Metal 
Uplift of 

Chelating Agent 
Concentration 

Strain 
Reduction of 

Growth 
Inhibition 

Reference 

Humic acid (Soil) 
Ni2+  

(0.5 mg/L) 
0→0.2 mg/L 

Dunaliella salina  
Nannochloropsis 

salina 

40% A→25% C 
30% A→15% C 

[118] 

Humic acid (Soil) 
Cd2+  

(0.2 mg/L) 
0→5 mg/L 

Pseudokirchneriella 
subcapitata 

52% A→28% C [195] 

Humic acid (Soil) 
Zn2+  

(0.39 mg/L) 
0→5 mg/L 

Pseudokirchneriella 
subcapitata 

55% A→4% C [195] 

Humic acid (Peat) 
Cd2+  

(0.2 mg/L) 
0→5 mg/L 

Pseudokirchneriella 
subcapitata 

52% A→8% C [195] 

Humic acid (Peat) 
Zn2+  

(0.39 mg/L) 
0→5 mg/L 

Pseudokirchneriella 
subcapitata 

55% A→30% C [195] 

Humic acid 
As(III)  

(100 µM) 
0→10 mg/L 

Stichococcus 
bacillaris 

52% A→33% C [141] 

Humic acid 
(Sediment) 

Hg2+  
(10 ppb) 

0→10 ppm Isochrysis galbana 

Complete 
reduction in 

growth inhibition 
plus stimulation 

[196] 

Humic acid 
ZnO–NPs  
(1 mg/L) 

0→3 mg/L Anabaena sp. 70% A→40% C [197] 
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Table 5. Cont. 

Chelating Agent Metal 
Uplift of 

Chelating Agent 
Concentration 

Strain 
Reduction of 

Growth 
Inhibition 

Reference 

Fulvic acid 
(Sediment) 

Cu2+  
(~5 µM) 

1→5 mg/L 
Scenedesmus 
subspicatus 

56% A1→30% C1 [188] 

Fulvic acid 
(Suwannee River) 

Cd2+  
(0.2 mg/L) 

0→5 mg/L 
Pseudokirchneriella 

subcapitata 
52% A→45% C [195] 

Fulvic acid 
(Suwannee River) 

Zn2+  
(0.39 mg/L) 

0→5 mg/L 
Pseudokirchneriella 

subcapitata 
No reduction in 

growth inhibition 
[195] 

Fulvic acid (Soil) 
Al i+o  

(6 µM) 
0→11 mg/L 

Chlorella 
pyrenoidosa 

Complete 
reduction in 

growth inhibition 
plus stimulation 

[202] 

A growth inhibition in the absence of chelating agent; A1, growth inhibition in the presence of decreased amount 

of chelating agent; C growth inhibition in the presence of chelating agent; C1, growth inhibition in the presence 

of increased amount of chelating agent; i+o, a sum of inorganic and organic aluminum. 

4.2.3. Nanoparticles: Modulating Effect 

The presence of metallic and non-metallic nanomaterials can alter the effect of metals on microalgae. 

For instance, the presence of graphene oxide (GO) increased toxicity of Cd towards Microcystis 

aeruginosa [203], while Cd toxicity towards Chlamydomonas reinhardtii was reduced in the presence 

of titanium dioxide engineered nanoparticles (ENPs) [204]. TiO2 nanoparticles and Zn ions in the 

mixture exerted the enhanced or decreased toxicity towards Anabaena sp., depending on mutual 

interactions between different concentrations of TiO2 and Zn [73]. Finally, the presence of engineered 

nanoparticles was reported to decrease intracellular content of Cu and Pb in Chlorella kesslerii and  

wall-possessing Chlamydomonas reinhardtii, as metal binding to nanoparticles reduces availability of 

Cu and Pb to these microalgal strains [205]. 

4.2.4. Macrocycles: Modulating Effect 

Supramolecular water soluble compounds such as cyclodextrins, calixarenes and resorcinarenes can 

possibly change interactions between microalgae and metals. 

Cyclodextrins (CDs) are macrocyclic oligosaccharides composed of six, seven, or eight (α 1–4) 

glucosidic units and called: α,β and γ-CDs, respectively. They are produced from enzymatic hydrolysis 

of starch, with cycloglycosyl transferase amylases (CGTases) [206,207]. CDs are ring molecules, either 

toroidal or cone shaped, but not cylindrical [208]. The primary hydroxyl groups are situated on the 

narrow side while, the secondary groups are located on the wider side. The central cavity of CDs is 

hydrophobic, while the outer part is hydrophilic due the presence of hydroxyl groups [209].  

β-cyclodextrins can possess methyl, carboxymethyl or hydroxypropyl moieties [210,211] and form 

complexes with metals [212], phytosterols [213] and carotenoids [214]. Carboxymethyl-β-cyclodextrin 

(3.3 mM) was successfully harnessed for reduction of metal (Cd, Co, Cu) toxicity towards naphthalene-

degrading bacterium Burkholderia sp. [215]. On the other hand, alhough hydroxypropyl-β-cyclodextrin 
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up to 20 mM did not itself cause inhibition of microalga Selenastrum capricornutum growth, it failed to 

protect this microalga strain against Zn toxicity [216], because hydroxypropyl-β-cyclodextrin does not 

possess metal-binding substituents [215]. 

Calix[n]arenes and resorcin[4]arenes are macrocyclic compounds consisting of phenol or resorcinol 

units, respectively, which are cyclically linked by aliphatic bridges [217]. Calix[n]arenes (n = 4, 5, 6,  

7 and 8) are obtained as a result of condensation of p-tert-butylphenol with formaldehyde under alkaline 

catalysis [218–220], whereas resorcin[4]arenes are formed as a result of acid-catalysed reaction  

between resorcinol and aliphatic or aromatic aldehydes [221]. Water-soluble calix[4]arenes and 

resorcin[4]arenes possess charged groups (ammonium, sulphonium, carboxylate, phosphate) or 

hydrophilic fragments [222–225]. Derivatives of calix[n]arenes such as p-sulphonate or methoxycarboxylic 

derivatives form stable complexes with Zn2+, Cu2+, Ni2+ under neutral or alkaline conditions [226–228]. 

Water soluble resorcin[4]arene derivatives are able to form complexes, not only with the metal  

ions, but also with amino acids, sugars, and nucleosides [229–231]. It was demonstrated that  

p-sulfonatocalix[4,6,8]arene and C-nonylresorcin[4]arene possess antimicrobial activity against  

fungal and bacterial microorganisms [232]. Additionally, C-methylcalix[4]-resorcinarene containing 

pyridinium salt, was reported to exhibit a selective inhibitory effect on Gram-positive bacteria [233]. 

Water soluble supramolecular molecules have the potential to modify interactions between metals 

and microorganisms such as microalgae, but their application in this field is highly unexplored. 

4.3. Development of Strain Tolerance to Metals 

Some microalgae are able to inhabit environments contaminated by heavy metals. Such microalgal 

strains possess uplifted tolerance towards heavy metals [104,234–237]. Increased tolerance can be also 

induced on laboratory scale by applying proper metal dosages [238,239] or metal-containing  

wastes [240]. It results in development of physiologically adapted strains [61,239,241] or metal resistant 

mutants due to rare spontaneous mutations that occur before metal treatment [61,238,239]. Microalgae 

with improved tolerance can become promising microbes for cultivation in metal polluted growth media 

and for production of target compounds [104]. However, it should be taken into consideration that 

increased tolerance can be strictly strain–metal specific [235] and a lack of inducing metal in the 

cultivation medium can have a negative effect on growth of metal resistant mutants [238]. 

5. Strategy for Microalgal Production in the Presence of Metals 

It has been widely reported that microalgae cultures, due to their ability for metal accumulation, can 

be used for bioremediation of heavy metal contaminated water/wastewater streams [80,242,243]. In this 

review, other aspects of microalgae exposure to metals, such as production of numerous industrially 

important compounds from metal-exposed microalgae (Table 6) and stategies to alter microalga–metal 

interactions for industrial microalgae productions, are discussed. As a result of metal exposure, 

microalgae are able to synthesize a range of target compounds: pigments, lipids, peptides, exopolymers, 

phytohormones, arsenoorganics or nanomaterials, as a defense mechanism against metal stress. 

Although metals induce synthesis of compounds by microalgae cells, they may also have detrimental 

effects on cell number, growth rate, cell dry weight, thereby diminishing productivity of target 

compounds in a metal-trigger system. For instance, an elevated copper (Cu) concentration increased 
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chlorophyll and carotenoid content in Dunaliella cells [244] and stimulated release of  

polysaccharides from Cylindrotheca fusiformis [245] and phenolics from Dunaliella tertiolecta [246] 

cells, though at the expense of a reduced number of cells in the culture. In other studies, the content  

of chlorophyll, protein and lipids in Chlorella vulgaris [247], proline and total amino acids in  

Chlorella pyrenoidosa [63] and chlorophyll and carotenoid in Pseudokirchneriella subcapitata [248] 

increased in the presence of cadmium (Cd), chromium (Cr) and copper (Cu) respectively, but the  

growth in these cultures was considerably suppressed [63,247,248]. A possible strategy to overcome this 

problem could be cultivation of microalgae under non-stressed conditions in order to obtain higher cells 

densities, with subsequent addition of metals for inducing stress and synthesis of target products in 

microalgae cells [10]. Metals at higher concentration are toxic to microalgae, but at lower concentration 

can be stimulatory for growth (Table 1). Additionaly, it was concluded that growth media might contain 

nutrients (Ca, Mg) in amounts that are not sufficient for some microalgal strains to achieve desirable 

growth [249] and therefore some metal-containing effluents could also serve as a nutrient replacement 

for Ca [41], Fe [37] or Zn [44] deficiency in growth media. Microalgae cultivation systems require large 

amounts of water [250] and production of target compounds with metal polluted industrial water streams, 

instead of exploiting clean water sources, could be an additional advantage. Growth of cyanobacteria 

Nostoc linckia and Nostoc rivularis was stimulated at low loadings of (Zn, Cd)-containing sewage 

waters, but suppressed at high sewage water loadings [251]. Industrial wastes/wastewaters contain not 

only metals, but also numerous organic pollutants (pesticides, pharmaceuticals, personal care products 

etc.) [252] that can be harmful for microalgae cultures. Furthermore, although metal uptake occurs  

in microalgal cultures, high dosage wastes can strongly decrease productivity of microalgal  

cultivation [251,253]. Therefore, precautions should be taken to control concentration of metals and/or 

organic toxicants, so that optimal microalgal growth and product biosynthesis could be obtained. 

An integrated process for metal (Al, Fe, Mn, Ba, Ce, La) remediation and lipid production in cultures 

of marine microalgae (Nannochloropsis, Pavlova, Tetraselmis, Chaetoceros) has already been  

proposed [254]. Recently, a combination of heavy metal (Zn, Mn, Cd, Cu) removal to increase up to 

2.17-fold lipid production from Chlorella minutissima has been described [115]. Further, it was 

concluded that small concentrations of metal mixtures (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn) present 

in coal fired flue gas could increase lipid yield in Scenedesmus obliquus cultures by 61% [255]. It was 

also suggested that uptake of lead (Pb) from textile dyeing industry effluent by Neochloris sp. could be 

accompanied with accumulation of cell neutral lipid content with increased levels of oleic (C18:1)  

acid [256]. Additionally, metal exposure can lead to modifications in fatty acid profiles in microalgal 

cells, thereby improving quality of biodiesel [117]. Finally, the uptake of metals (Cr, Mn, Fe, Co, Ni, 

Cu, Mo, Cd, Pb) from landfill leachate combined with hydrogen production in Chlamydomonas 

reinhardtii cultures, has been discussed [257]. It should be noted that products, synthesized by 

microalgae cells in response to metal stress, can be contaminated by metals. The presence of metals in 

final products might not be appropriate in terms of application for food or medical purposes. Therefore, 

desorption methods (EDTA, diethyl dithiocarbamate, carbonate, dicarbonate) should be applied to obtain 

a metal free product, without causing the degradation of the product structure. Moreover, monitoring to 

maintain metal concentration in a final product below allowable thresholds must be considered. 

Microalgae are capable of absorbing heavy metals under photoautotrophic [12,80,242,243] and 

heterotrophic conditions [234], and hence biocompound production under metal stress possibly could be 



Int. J. Mol. Sci. 2015, 16 23947 

 

 

achieved in open ponds, photobioreactors, but also in fermentation tanks [258]. Strictly controlled media 

compositions can modulate microalgal sensitivity towards heavy metals also during a chemostat-based 

continuous cultivation [59]. Additionally, an amount of microalgae biomass in relation to metal 

concentration should be taken into consideration, as high biomass densities can alleviate detrimental 

effect of metal ions on microalgae cells in culture [259,260]. The use of older culture inocullum also 

improved resistance of Scenedesmus quadricauda against Ag nanoparticles [239]. Synergistic effects  

of different heavy metal ions [261] or metal ions with nanoparticles (see Section 4.2.3) on microalgae 

cells, should be also taken into consideration. Additionally, although nanoparticles can be synthetized 

by microalgae cells (see Section 3.7), the presence of nanoparticles can have negative effects on 

microalgae (Table 1). 

Composition of growth media and cultivation parameters have significant influence on microalgae 

resistance towards metal induced stress (see Chapter 4). Moreover, a modification of cultivation media 

with the change of metal concentration and/or composition can enhance not only growth, but also 

biosynthesis of target compounds. For instance, an alteration in Fe, Mn, Mo concentration and  

addition of Ni, caused the increase in biomass and hydrocarbon productivity in Botryococcus braunii  

culture [262]. Also supplementation of growth medium for Chlorella vulgaris with 12 µM chelated Fe3+, 

resulted in an increase in Chlorella cell number by 27% and lipid content by 625%, when compared to 

the culture without Fe3+ added [263]. In another study, a six-fold uplift in Fe3+ concentration enabled an 

increase of 22% lipid productivity in Nannochloropsis oculata culture [264]. Anabaena variabilis, 

cultivated in a new vanadium (VO3
−)-containing growth media, produced 550% more hydrogen, and 

VO3
− was suggested as a microelement responsible for amplification of H2 synthesis [265]. Addition of 

20 µg/L VO3
− into growth medium increased dry weight by up to 34%, and cell chlorophyll content by 

up to 100% in heterotrophically cultivated Scenedesmus obliquus [37]. Further, 20 µg/L VO3
− stimulated 

production of zeaxanthin, lutein and β-carotene in Chlorella fusca cultivated at standard Fe medium 

concentration or Fe deficient conditions, and the stimulatory effect of VO3
− was more pronounced at 

standard Fe concentration [266]. Vanadium, added as 1.25 mM Na3VO4 to Haematococcus lacustris 

culture, increased carotenoid synthesis in cells and carotenoid productivity in culture respectively by 

120% and 25%, after a two-day exposure. However, in a prolonged cultivation time, caronenoid 

productivity decreased drastically if compared to control, presumably due to inhibitory activity of 

Na3VO4 towards protein tyrosine phosphatase (PTPase) [39]. 

Supplementation of organic compounds into microalgal culture can be an additional protection in 

order to diminish interactions of metals from wastes to a level that enables metal-trigger production of 

target compounds, together with sufficient microalgal growth rate, even in high metal-level environment. 

Organic compounds such as phytohormones or various chelating agents inducing resistance mechanisms 

inside cells or creating a resistance barrier outside cells, can serve as a defense for cultivation of 

microalgae in high dose-metal contaminated systems. Interestingly, phytohormones can not only protect 

microalgae against metal stress [154,187], but can also improve growth [267] and increase the content 

of saturated [268] or unsaturated [267] fatty acids in microalgae cells. Therefore, a proper design of 

media composition (micro/macro-elements, phytohormones, chelating agents, macrocycles) and 

cultivation conditions (CO2, light, temperature, pH) seems to be necessary in order to avoid detrimental 

effects of heavy metal ions and to obtain sufficient growth and productivity of target compounds in 

metal-exposed microalgae cultures. Finally, microalgae strains isolated from heavy metal polluted areas 
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or developed in the laboratory, are able to tolerate increased metal concentrations and can become 

promising candidates for cultivation under metal stress [104,235,236,240,241]. Such strains are more 

resistant against detrimental effects of metal exposure and could also be suitable for cultivation  

and synthesis of target products in outdoor open systems, as metal-stress conditions can prevent 

contamination by competitive or predatory micro and higher organisms [9,269]. 

Table 6. Some examples of metal effects on microalgae growth and bioproduct synthesis. 

Microalgae  
Strain 

Bioproduct Metal/s 
Bioproduct 

Synthesis Info 
Growth Reference

  Pigments    
Chlamydomonas 

acidophilla 
β-carotene Cu2+ 0.1 g/L 120% increase – [103] 

Coccomyxa 
onubensis 

 Fe2+   

[104] 
Lutein 0.5 mM ~33% increase 35% increase 

Zeaxanthin 0.5 mM ~93% increase 35% increase 
β-carotene 0.5 mM ~35% increase 35% increase 

Dunaliella  
salina 

β-carotene 
Fe2+  

0→450 µM Ac 
7-fold increase 

4-fold 
decrease 

[105] 

Nostoc minutum 

 As(V)   

[34] 
Chlorophyll a 0→1000 mg/L 75% increase 66% increase 
Carotenoids 0→1000 mg/L 40% increase 66% increase 

Allophycocyanin 0→1000 mg/L 24.7% increase 66% increase 

Anabaena doliolum 

 Ni2+   

[92] 
Chlorophyll a 0→10 µM ~47% increase 

35%  
increase 24h 

C-phycocyanin 0→0.1 µM 
4.35-fold 
increase 

9%  
decrease 96h 

Dunaliella salina 
Carotenoids 

Cu2+ 
1 µM→20 µM 

131% increase 

>50% 
decrease 

[244] 

Chlorophyll 62% increase 

Dunaliella 
tertiolecta 

Carotenoids 
133%  

increase 

Chlorophyll 
152%  

increase 

Pseudokirchneriella 
subcapitata 

Chlorophyll a 
Cu2+ 

0.5→60 µg/L 

10.3-fold 
increase 

Decrease 
(20% in 

growth rate 
and 72%  

in biomass) 

[248] 
Chlorophyll b 

15.4-fold 
increase 

Carotenoids 4.1-fold increase 

Scenedesmus  
obliquus 

Chlorophyll VO3
− 0→20 µg/L 100% increase 34% increase [37] 
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Table 6. Cont. 

Microalgae  
Strain 

Bioproduct Metal/s 
Bioproduct 

Synthesis Info 
Growth Reference 

Chlorella fusca 
Lutein 

VO3
− 0→ 

20 µg/L SFeC 

18% increase 
– [266] β-carotene 400% increase 

Zeaxanthin 130% increase 

Chlorella fusca 
Lutein 

VO3
− 0→ 

20 µg/L FeDC 

17% increase 
– [266] β-carotene 200% increase 

Zeaxanthin 40% increase 

Haematococcus 
lacustris 

Carotenoids 
VO4

3− 
0→1.25 mM 

125%  
increase 2DE 

45% 
decrease 2DE 

[39] 

Haematococcus 
lacustris 

Carotenoids 
VO4

3−  
0→1.25 mM 

No increase 4DE 
40% 

decrease 4DE 
[39] 

  Lipids    
Chlorella 

minutissima 
Lipids 

Cd2+  
0→0.4 mM 

~94% increase 
~12% 

increase 
[115] 

Euglena gracilis Lipids 
Cr6+  

0→1.3 µM 40%,1 
44%  

increase 40%,1 
IC50 for  
3.2 µM 1 

[116] 

Euglena gracilis Lipids 
Cr6+  

0→9.84 µM 40%,2 
28.5%  

increase 40%,2 
IC50 for  

24.6 µM 2 
[116] 

Euglena gracilis Lipids 
Cr6+  

0→36.16 µM 40%,3 
100%  

increase 40%,3 
IC50 for  

90.4 µM 3 
[116] 

Euglena gracilis Lipids 
Cr6+  

0→48.2 µM 40%,4 
10%  

increase 40%,4 
IC50 for  

120.5 µM 4 
[116] 

Chlorella vulgaris Lipids 
TiO2-NPs  
0→0.1 g/L 

10% increase No change [74] 

Arthrospira 
maxima 

Lipids 
nZVI-Nanofer 25  

0→5.1 mg/L 
21% increase 

15% 
increase 

[57] 

Desmodesmus 
subspicatus 

Lipids 
nZVI-Nanofer 25  

0→5.1 mg/L 
58% increase 

73% 
increase 

[57] 

Parachlorella 
kessleri 

Lipids 
nZVI-Nanofer 25  

0→5.1 mg/L 
17% increase 

41% 
increase 

[57] 

Nannochloropsis 
limnetica 

Eicosapentaenoic 
acid C20:5 

nZVI-Nanofer 25  
0→5.1 mg/L 

58 % increase 
19% 

increase 
[57] 

Trachydiscus 
minutus 

Eicosapentaenoic 
acid C20:5 

nZVI-Nanofer 25  
0→5.1 mg/L 

34% increase 
31% 

increase 
[57] 

Scenedesmus 
obliquus 

Lipids 
(As, Cd, Co, Cr, Cu, 
Hg, Ni, Pb, Se, Zn) 

as a mixture 
61% increase 1x 

12%  
increase 1x 

[255] 

Neochloris sp. 
Oleic acid 

C18:1 

Effluent from textile 
dyeing industry 
containing Pb Ut 

Neutral lipid 
accumulation  

Oleic acid  
accumulation 

– [256] 
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Table 6. Cont. 

Microalgae 
Strain 

Bioproduct Metal/s 
Bioproduct 

Synthesis Info 
Growth Reference 

Chlorella 
vulgaris 

Lipids 
Fe3+/EDTA 
0→12 µM 

7.25-fold increase 
~27% 

increase 
[263] 

Nannochloropsis 
oculata 

Lipids 
Fe3+ +EDTA 3.16→

18.96 mg/L 
22% increase in 

production 
– [264] 

  Exopolymers    

Lyngbya putealis 
 Cu  

13% decrease [131] Exopolysaccharides 0→2 mg/L 2.43-fold increase 
Exoproteins 0→2 mg/L 3.65-fold increase 

Lyngbya putealis 
 Co  

21% decrease [131] Exopolysaccharides 0→2 mg/L 2.09-fold increase 
Exoproteins 0→2 mg/L 2.64-fold increase 

Thalassiosira 
weissflogii 

Polysaccharides EPF Ag RENP 
~3.5-fold  

increase NL if: Ag 
0.03→0.11 nM 

50%  
decrease NL 

if: Ag  
0.01 nM 

[132] 

Thalassiosira 
weissflogii 

Polysaccharides EPF Ag RENP 
~6-fold  

increase NE if: Ag
0.01→6.14 pM 

50%  
decrease NE 

if: Ag  
2.16 pM 

[132] 

Thalassiosira 
pseudonana 

Proteins EPF 
Cd RENP  

0→0.05 nM 
50%  

increase CM, NE 
No change NE [133] 

Thalassiosira 
pseudonana 

Carbohydrates EPF 
Cd RENP  

0→0.05 nM 
2-fold  

increase CM, NE 
No change NE [133] 

Cylindrotheca 
fusiformis 

Exopolysaccharides 
Cu2+  

0→0.5 mg/L 
100% increase RC 57% decrease [245] 

  Phytohormones    

Chlorella 
vulgaris 

Indole-acetic acid 

Cd   

[154] 
0→10−4 M ~147% increase Ct 

~35% 
decrease Ct 

0→10−4 M +B 
3.6-fold  

increase Ct 
~8%  

decrease Ct 

Chlorella 
vulgaris 

Zeatin 

Pb   

[154] 
0→10−4 M ~35% increase Ct 

~40% 
decrease Ct 

0→10−4 M +B ~85% increase Ct 
~16% 

decrease Ct 

Chlorella 
vulgaris 

Abscisic acid 

Cu   

[154] 
0→10−4 M ~45% increaseCt 

~45% 
decrease Ct 

0→10−4 M +B ~65% increaseCt 
~24% 

decrease Ct 
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Table 6. Cont. 

Microalgae  
Strain 

Bioproduct Metal/s 
Bioproduct 

Synthesis Info 
Growth Reference 

  Hydrogen    

Chlamydomonas 
reinhardtii 

H2 

16% leachate 
medium containing: 

(Cr, Mn, Fe, Co, 
Ni, Cu, Mo, Cd, Pb)

~37% increase ~50% increase [257] 

Anabaena 
variabilis 

H2 
VO3

−  
0→0.023 mg/L M 

5.5-fold increase 
Delayed FSC  

No change in 
growth PCT 

[265] 

  Other products    
Dunaliella 
tertiolecta 

Phenolics 
Cu2+  

0→0.79 µM 
40% increase RC 34% decrease [246] 

Chlorella 
vulgaris 

Chlorophyll a 
Cd2+  

0→0.1 µmol/L 

~4–fold increase 
~65% decrease [247] Protein ~5–fold increase 

Lipids ~3–fold increase 

Chlorella 
pyrenoidosa 

Proline Total 
Amino Acids 

Cr6+  
0→5 mg/L 

240% increase  
66% increase 

60% decrease [63] 

Botryococcus 
braunii 

Hydrocarbons 
Modifications of 

culture media 
composition 

27% increase 
after: Fe and Mn 

uplift + Mo 
decrease + Ni 

addition  
(1.73 µM) 

34% increase 
after: Fe and 

Mn decrease + 
Mo uplift + Ni 

addition  
(3.38 µM) 

[262] 

Info, product synthesis expressed on various basis (cell content, dry weight, release from cells, concentration in 

the culture, productivity); Ac, with 67.5 mM acetate; 24h, a 24h cultivation time; 96h, a 96h cultivation time; SFeC, 

standard Fe concentration; FeDC, Fe deficient conditions; 2DE, increase in cells after a 2-day exposure and 

compared to control cells at the same cultivation time; 4DE, increase in cells after a 4-day exposure and compared 

to control cells at the same cultivation time; 40%, concentration that constitutes 40% of a concentration necessary 

to obtain IC50; 1, a UTEX strain cultivated in Buetow medium; 2, a MAT strain cultivated in Buetow medium; 
3, a UTEX strain cultivated in C&M medium; 4, a MAT strain cultivated in C&M medium; 1x, for a lowest 

metal mixture tested; Ut, Pb was partially utilized by strain; +EDTA, a six fold increase in EDTA concentration 

also suggested; EPF, from Extracellular Polymeric Fraction; RENP, released from Engineered Nanoparticles; NL, 

nitrogen limited medium; NE, nutrient enriched medium; CM, in cultivation media; RC, the release from cells; +B, plus 

brassinolide 10−8 M; Ct, when compared to control without heavy metal and brassinolide; M, composition and 

concentration of other micro/macro nutrients also changed; FSC, during the first stage of cultivation; PCT, in 

prolonged cultivation time. 

6. Summary 

Metal exposure can be an interesting method to induce, in microalgae cells, the synthesis of target 

products such as pigments, lipids, peptides, exopolymers, phytohormones, arsenoorganics and 

nanoparticles. However, stimulation of target compound production in microalgae depends on many 

factors such as metal type and concentration or metal combination leading to synergistic effects, 

specificity of strain and cultivation parameters, and growth media composition, which all taken together 
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determines the outcome of microalga response towards metal stress. Moreover, microalgae cultivation 

under stress conditions can stimulate production of target compounds, but usually at the expense of 

decreased growth rates, that diminishes overall productivity of metal exposed microalgae systems. The 

exception are resistant strains isolated from metal contaminated environments. A combination of metal 

removal from contaminated wastewaters, with metal-induced product biosynthesis, can be applied. 

Moreover, metal-containing wastewaters could also serve as a replenishment for microalgae growth in 

nutrient-deficient media. Suitable dosages of metals in relation to selected microalgae strain and adjusted 

growth conditions is key to develop efficient metal-exposed microalgal production systems. 
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