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In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over
the past two decades, computational approaches for ab initio prediction of gene structure fromgenome sequence
alone have largely facilitated our understanding on a variety of biological questions. Although the computational
prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly
find the non-coding RNA genes, such asmiRNA and lncRNA. Twomain aspects of ab initio gene prediction include
the computed values for describing sequence features and used algorithm for training the discriminant function,
and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review
these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction.
Themain purpose of this article is to provide an overview to beginnerswho aim to develop the related bioinformatic
tools.

© 2016 Huang et al. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Eukaryotes
Due to tremendous progresses in terms of efficiency, accuracy and
cost for the high-throughput sequencing technologies, a large number
of genome sequences of eukaryotic, prokaryotic and archaea organisms
are increasingly becoming available [1,2]. These efforts are expected to
open the window for better understanding the kinds of biological pro-
cesses because essential information in principle is encoded in genome
sequences. Nevertheless, it is also challenging for meaningfully decoding
the huge amount of DNA sequences; for example, we are still infants
in understanding biological implications of the substantial fraction
sequences of “junk DNA” in eukaryote genomes, which don't encode
any known proteins [3]. Additionally, a recent publication also revealed
that the sequence context has functional consequences by influencing
the substitution rate of adjacent nucleotides [4], whichwould complicate
the biological explanation of genome sequences because the more
complex mathematical models would be required.

By contrast to experimental investigations on biological functions,
the in silico analysis of DNA sequences is essential in post-genomic
era. There are many general properties of DNA sequence, such as GC
content and base composition, having been well used for in silico analysis
[5]. Additionally, ab initioprediction of gene structure is a critical step after
sequencing whole genome and therefore has received much attention
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over the past decade [6]. Because of limitations of biological knowledge
and bioinformatic algorithm, however, it still remains to be further
improved on precision for these existing bioinformatic tools of gene pre-
diction. In the present article, we briefly review these well-characterized
features of DNA sequence and applications to ab initio gene prediction in
eukaryotes. Although some literatures were published more than ten
years ago, it is still helpful to provide an overall landscape for promoting
the development of bioinformatic tools. Also, genome architectures for
these available eukaryotic species are summarily illustrated in advance.
1. Outlines of genome architecture

To explore the evolutionary dynamics and biological consequences on
genome size, base composition, and relative proportions of functional and
nonfunctional sequences are deemed fascinating challenges in biology.
The transposable genetic elements, in combinationwith natural selection,
have been acknowledged to contribute to genome evolution,which result
into considerable accumulation of repetitive sequences [7–9]. However,
many proposed mechanisms trying to account for the genome evolution
still remain uncertain or controversial, and these topics are also beyond
scope of the present review. Fortunately, the recently prevailing approach
of pan-genome analysis would be anticipated to provide more insights
into this field [10].

According to intuitive expectation, the genome size would be pro-
portional to species complexity, i.e., the higher organisms have larger
genomes. However, substantial variability of DNA content per haploid
mputational and Structural Biotechnology. This is an open access article under the CC BY
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genome (C-value) have been widely observed even among the closely
related species from same genus [3], which is thereby termed the C-
value paradox. Scientific publications in eukaryotes on diversity patterns,
evolutionary mechanisms and research methodologies in relation to
genome size were recently summarized [11]. The traditional view
suggests that more than 90% of human genome are nonfunctional and
therefore regarded as “junk DNA”, whereas ENCODE project recently
argued that up to 80% of genome sequences have functional roles
[2,12]. Of course, the two opinions are also being on the road for heated
debate. Here, we analyzed the genome sequences for 32 representative
eukaryote species and roughly illustrated their comparisons on genome
size, GC content, and relative proportions of intergenic regions, exons
and introns (Fig. 1). Unsurprisingly, an intuitional correlation between
genome size and fraction of intergenic regions could be drawn out.
Fig. 1.Architecture of eukaryotic genomes. A total of 32 representative species are included for c
intergenic regions (IG), exons and introns. In brief, allfive indiceswere generated by the dissect
(March, 2016); and these steps were performed using in-house scripts written in Python la
phylogenetic relationships among species, in which the full Latin scientific names of species w
Additionally, the proportions of exons and introns show consistent
changes more or less.
2. Well-characterized features within genome sequence

Although it is impossible to be completely verified, the conserved
features of DNA sequence would exist for corresponding to various
biological functions, while some of them are already known but some
unknown yet. On the basis of this supposition, we are able to perform
in silico analysis of DNA sequences for functional investigations. On
the whole, features of DNA sequence in eukaryotic genomes could be
routinely categorized into two classes, including the compositional
properties and functional signals (Fig. 2).
omparatively illustrating the genome size, GC content, aswell as respective proportions of
ion of annotation information of reference genome (in GFF format) downloaded fromNCBI
nguage. Additionally, the screenshot of NCBI taxonomic tree is employed to show the
ere used.
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Fig. 2. Schematic illustration of main sequence features.
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2.1. Compositional properties

2.1.1. Repetitive sequences
Our knowledge on the organization of eukaryote genomes has

dramatically increased due to ever-growing genome sequences [1]. A
well-known feature of eukaryote genomes is that they consist of substan-
tial proportion of repetitive sequences occurred in hundreds or thousands
of times [13]. According to evolutionary origins and genomic distribution,
repetitive DNA sequences could be overall classified into three types [14,
15], including the tandemrepeats, interspersed repeats, and long terminal
repeats (LTRs). Tandem repeats, such asmicrosatellites,minisatellites and
satellites, are characterized by two or more contiguous repetitions of
short fragments [16]. Interspersed repeats mainly include short and
long interspersed elements; and both of them, together with LTRs, are
evolutionarily derived from the transposable elements [17,18]. As the
evolutionary dynamics, diversity pattern, and biological function of
repetitive sequences in eukaryote genomes have been intensively
reviewed elsewhere [19–21].

The specific databases, such as Repbase Update [22] and SINEBase
[23], provide platforms and computational tools for depositing, naming
and annotating the repetitive sequences in eukaryotes. Meanwhile,
various bioinformatic tools have been developed for finding repetitive
sequences in genome, including RepeatMasker [24], PILER [25] and
RepeatExplorer [26]. In human, it was estimated by de novo tool that
about 70% of entire genome is repetitive or repeat-derived, which was
higher than estimation using the alignment-based approaches [20,27].
In practices, the repetitive sequences are always masked in advance
for finding eukaryotic genes because of their absences for encoding
proteins [28].

2.1.2. Coding measures
Due to constraints of natural selection, base composition of protein-

coding DNA sequences would significantly differ from non-coding
sequences or random expectation. Various coding measures, in relation
to base composition, had been early proposed with statistical virtue
[29]. Among them, the most widely used measure is codon usage bias
[30]; the observed frequencies for all 64 possible codons in a DNA
sequence could be first counted. Alternatively, each codon could also be
translated into amino acid and then generated the observed frequencies
of 20 amino acids and stop codon. Subsequently, these observed frequen-
cies of codons or amino acids are used tomodel the discriminant function
for distinguishing coding from non-coding sequences. In more general
way, the linguistic word in length of arbitrary n nucleotide acids can be
phased and subjected to calculation of the observed frequencies. After
comparing various word lengths, it has been acknowledged that the
6 bpword, which is also termed hexamer, would be themost informative
index [31].

Althoughgenetic codon is represented as triplet, the degrees of biolog-
ical conservation significantly differ among the first, second and third po-
sitions. Therefore, the base composition bias among three codonpositions

Image of Fig. 2


Fig. 3. Base composition observed among three positions of coding codons or noncoding
triplets. This analysis is totally based on 50, 909 reference sequences of mRNA and
lincRNA in human. (a) The overall frequencies of nucleotide A, T, C and G among three
positions are first computed for entire sequence. (b) The relative frequencies of four
nucleotides at each position are further shown. For the non-coding sequences, the
three-periodic nucleotide usage was calculated with arbitrary selection of start position.
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would be expected to provide valuable information for discriminating
between coding and non-coding sequences [29]. To better demonstrate
this issue, we analyzed the base frequencies among three positions
between coding segment and untranslated regions for 38, 542 reference
sequences of human mRNA. Additionally, 12, 367 sequences of known
lincRNA in humanwere also included for comparison (Fig. 3). Our results
clearly revealed the bias of base composition within coding segments in
terms of both the absolute and relative frequencies. However, both
intergenic and intron sequences should be further investigated. In fact,
more than two decades ago, Fickett proposed a statistical index named
Fickett TESTCODE [32], which combinationally utilized information of
both base composition and codon usage bias and was employed for
computationally estimating the coding potential of DNA sequence
[33]. Recently, Python package of repDNA was published for efficiently
generating feature vectors in relation to base composition of DNA
sequences [5], which could facilitate analysis for biologists without
well bioinformatic background.

2.1.3. Other mutual information
Regardless of functional implications, it is also possible to findmutual

information to discriminate between coding and non-coding sequences.
For example, according to information-theoretic quantity, averagemutual
information was designed and taken as a species-independent statistical
index for distinguishing coding from non-coding DNA sequences [34].
The segmentationmethod according to the estimated entropy in relation
to base composition of DNA sequence was proven to be powerful for
finding borders between coding and noncoding regions [35]. The local
properties of DNA sequence, rather than global features, were also
successfully used for partitioning the coding and non-coding regions
in eukaryotic genome [36].

2.2. Functional signals

In addition to compositional properties of DNA sequences as
mentioned above, genome sequences in eukaryotes would contain
many intrinsic signals for guiding various biological functions, such as
transcription, processing of pre-mRNA, and translation into amino
acids [28]. Briefly, the well-known functional signals in relation to
genic transcription mainly include TATA box, initiator, cap signal, CpG
islands and polyadenylation signal. As for the genomic distribution,
sequence characteristics and computational detection of transcriptional
signals have been specifically addressed [37–39]. After being transcribed
into pre-mRNA, splicingmechanismwill be initiated for removing introns
and producing mature mRNA; and during which splicing sites are recog-
nizedby the canonical presence ofGTat donor site upstreamof intron and
AG at acceptor site downstream of introns, respectively [40,41]. Beside
start and stop codons, the Kozak sequence (GCC(A/G)CCAUGG) as well
as upstreamopen reading frames (uORFs)would be the principal transla-
tional signals [42].

Although these functional signals would play important roles in
predicting gene structure and organization, especially for protein-
coding genes, two intrinsic limitations should be taken into account
when including them into bioinformatic algorithm. First, there is no any
statistical meaning by analyzing functional signals in DNA sequences.
Second, not all of genes contain the canonical functional signals, i.e.,
some signals would be completely absent or present by the non-
canonical forms. For example, minor types of splicing sites have
also been acknowledged in addition to canonical GT/AG [40]. In practices,
therefore, both functional signals and compositional properties are
always combined together for gene prediction.

3. Bioinformatic tools for ab initio gene prediction

Over past two decades, ab initio gene prediction from anonymous
DNA sequences has acquired great achievements [43] and also boosted
by need of genomic annotations when eukaryotic genomes become
available [44]. For existing tools, much attention has been paid to
prediction of protein-coding genes due to functional importance
and algorithmic convenience. By contrast, the number and function
of noncoding RNA (ncRNA) genes in eukaryotes, with exceptions of
tRNAs and rRNAs, have remained largely unknown [45]. Therefore,
the computational approaches for finding ncRNA genes in eukaryote
genomes should be specifically addressed [46].

3.1. Brief description on prediction of protein-coding genes

The prevailing tools for computational prediction of protein-coding
genes in eukaryotes have been considerably optimized, and on which
specific reviews or comparatively technical analyses on their strengths
and weaknesses had been already published [6,47–49]. In the present
review, therefore, we only summarize the pivotal features for these
prevailing tools for ab initio prediction of eukaryotic genes in Table 1.
Briefly, computational approaches of ab initio gene prediction could be
discussed on two aspects, including the used information for describing
DNA sequences and the employed algorithms for establishing the
discriminant function. Various sequence features within eukaryote
genomes in relation to gene prediction have been documented above.
For modeling discriminant function, the most often used algorithms
include Markov model and dynamic programming. Actually, most of
them also utilize the information of sequence similarity by searching
against database for improving prediction accuracy.

3.2. Prediction of ncRNA genes

Term of ncRNA generally refers to RNAmolecule without needing to
be translated into protein, which could directly function as RNA [56].
Therefore, ncRNAswould lack functional sense of ORFs and/or sequence
features similar to protein-coding genes. However, absences of signifi-
cant ORF or coding measures are not sufficient for supporting it is an
ncRNA gene [3]. There are a variety of ncRNAs with differential struc-
tures and functions [45,57], which significantly complicate ab initio
prediction of ncRNA genes in eukaryote genome. In theory, a conserved

Image of Fig. 3


Table 1
Summary of the selected tools for ab initio gene prediction in eukaryotes.

Tools Years Main sequence features Algorithms

GeneID 1992 [50] Splice sites; Start and stop codons;
Coding signals

Rule-based system

GeneParser 1993 [51] Splice site; Codon usage; Compositional complexity; Hexamer frequency; Length distribution; Periodic asymmetry Dynamic programming
GENSCAN 1997 [52] Coding signals; Length distributions and compositional features of exons, introns and intergenic regions Generalized hidden Markov

mode
HMMgene 1997 [53] Coding, noncoding, and intergenic sequences Hidden Markov model
Fgenesh 2000 [54] Splice sites; Start and stop codons;

Poly (A) signals; ORFs
Hidden Markov model

AUGUSTUS 2005 [55] Sequences around splice sites, start and stop codons, and coding and non-coding regions; Length of exons, introns and
intergenic regions

Generalized hidden Markov
mode

Note: only these actively cited tools are included without subjective preference.
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feature for most if not all of ncRNAs is the presence of secondary struc-
ture, which would facilitate the computational prediction [46,57].

3.2.1. miRNA genes
The microRNA (miRNA) is an abundant family of ncRNAs playing

ubiquitous roles for post-transcriptional regulations in eukaryotes
with length of ~22 nucleotides. According to the biogenesis pathway,
mature miRNAs are derived from intermediate precursor of pre-
miRNAs in length ofmore than 70nucleotides,which are almost charac-
terized by a stem-loop structure [58,59]. Another feature of miRNAs is
highly evolutionary conserved on primary sequences and secondary
structures even across taxonomically diverse species [45]. Therefore,
the prevailing computational approaches for finding miRNA genes are
preferable to simultaneously depend on both intrinsic sequence
features and homology similarity [60,61]. However, it is also necessary
to predict the non-conserved or species-specific miRNA genes [62],
hence we herein focus on ab initio approaches which completely utilize
intrinsic features.

First, the potential to form hairpin structures is vital for selecting as
candidates of miRNA genes, which could be computationally deduced
on basis of the estimated free energy by tools of RNAfold [63] and
Mfold [64]. Actually, the homology search-based approaches, such as
MiRscan [65] and miRseeker [66], were also designed to first scan
intergenic regions of entire genome and generate full list of candidates
according to the deduced hairpin sequences before homology search.
Therefore, design of the prevailing PalGrade tool is first to assign a
score to each candidate sequence according to stability of computational
hairpin, which, together with other features such as hairpin length and
loop length, are subsequently used for establishing predictor of miRNA
genes [62].

The support vector machine method can be used to discriminate
between real and pseudo pre-miRNAs as implemented in triplet-SVM
[67]. Similar to triplet-SVM, MiPred [68] additionally employed the
thermodynamics-related features and random forest algorithm for
achieving higher performance. A more sophisticated algorithm in
ProMiR [69], termed the paired hidden Markov model-based probabi-
listic co-learningmethod, was proposed to utilize sequential and struc-
tural characteristics for efficiently predicting non-conserved miRNA
genes. An alternative approach is HHMMiR, which used hierarchical
hidden Markov model to describe the evolutionarily non-conserved
hairpins [70]. A Naïve Bayes classifier (BayesmiRNAfind) was also
proposed for prediction of miRNA genes, which efficiently utilize
data from multiple species to provide better training dataset [71].

Recently, the speed of computational algorithm also began to be
intentionally taken into consideration when predicting miRNA genes
from entire genome. Tool of miRNAFold [72], an ab initio computational
method, developed an approximation algorithm for searching hairpin
sequences within genome and then resulted in significant decrease in
number of candidates of interest. Along with rapid advances of high-
throughput sequencing of small RNA, computational tools of miRNA
prediction have been designed to utilize the sequenced short reads for
structural analysis, such as MiRDeep and its varieties [73].
3.2.2. lncRNA genes
Long noncoding RNAs (lncRNAs) are typically more than 200

nucleotides in length without protein-coding capability; and the esti-
mated number in human genome would be significantly higher than
protein-coding genes [74,75]. Experimental examinations of lncRNA
genes become feasible in eukaryotic species because they can be profiled
by RNA-seq method due to their presences of poly(A) tails and other
mRNA-like features [76]. In contrast tomiRNAs, however, it is much diffi-
cult for ab initio predictions of genomic sequences which are transcripted
into lncRNAs because of lack of informative features and evolutionary
conservation [74]. Despite this fact, a few statistics of lncRNAs, such as
the secondary structure, protein-coding potential and miRNA binding
sites, have been proposed [77].

In practices, several existing tools could be used to computationally
deduce the coding potential of cDNA sequences or the assembled tran-
scripts from RNA-seq data. On basis of six biologically meaningful
sequence features, including the possible ORFs and homology search
hits, computational estimation of coding potential (CPC) was successfully
established by support vector machinemethod [78]. Similar to CPC, com-
putational tool of CPAT alternatively used the logistic regression method
to model four sequence features for estimation of coding potential [33].
Of course, it is also expected to perform ab initio prediction of lncRNA
genes from genome alone when our understanding on lncRNA biology
significantly increase.
4. Concluding remarks

Alongwith the increasing sophistication and complexity of machine
learningmethods, it is anticipated thatmore andmore biological process-
es could be computationally modeled. Meanwhile, the high-throughput
sequencing technologies produce huge amounts of biological data each
day,whichwould furthermotivate the development of computational bi-
ology. Ab initio computational prediction of eukaryotic genes, with a long
history of intensive research, has considerably contributed to our under-
standing on the related biological questions. However, there still remain
practical needs not only for further improvements in prediction accuracy
of protein-coding genes but also for development of new approaches for
finding ncRNA genes. In the present review, therefore, we outline the
achievements in relation to two main aspects of ab initio gene prediction
during the past twodecades, including thesewell-characterized sequence
features in eukaryote genomes and their practices in bioinformatic tools.
However, the prediction methods on basis of homology search are not
addressed here because of its relatively straightforward concept.
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