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The γ-herpesvirus Epstein–Barr virus (EBV) persistently infects >95% of adults worldwide

and contributes to 200,000 cancers annually [1]. EBV uses latency programs to convert meta-

bolically quiescent B lymphocytes into blasts that enter germinal centers and differentiate into

memory B cells, the reservoir for lifelong infection. Over the first 3 days of infection, EBV

expresses the pre-proliferation program, where particularly high levels of Epstein–Barr nuclear

antigen 2 (EBNA2) and its key host target MYC induce metabolism pathways needed for B cell

remodeling and proliferation (Fig 1) [1–4]. Over this period, infected cells quadruple in vol-

ume in preparation for hyperproliferation [2,5], reminiscent of remodeling that fuels germinal

center centroblasts [6]. The EBV latency IIb program, comprised of 6 EBNAs and noncoding

RNA (ncRNA), then supports hyperproliferation between days 4 and 7 postinfection in cell

culture (Fig 1). Subsequently, cells convert to lymphoblastoid physiology, where 6 EBNAs and

2 latent membrane proteins (LMPs) further remodel host metabolism [7,8]. If left unchecked

by immune surveillance, latency III causes outgrowth of lymphoblastoid cell lines (LCLs) that

model posttransplant lymphoproliferative diseases (PTLDs) and central nervous system lym-

phomas [1] (Fig 1). Here, we review key host metabolism pathways subverted by EBV onco-

proteins, with a focus on B cell transformation.

LAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:atent EBV induction of aerobic glycolysis

Within 4 days of infection, EBV highly induces glucose uptake and expression of all glycolysis

enzymes at the mRNA and protein levels, in particular the first and rate-limiting enzyme hexo-

kinase 2 [2,4,9]. Seahorse assays confirm that EBV increases glycolytic flux [4,9], which gener-

ates lower quantities of ATP than oxidative phosphorylation (OXPHOS), but provides key

building blocks for anabolic metabolism. EBNA2, the only EBV oncoprotein required for

newly infected B cell outgrowth over the first 8 days of in vitro infection [10], is required for

glycolytic enzyme induction, likely together with MYC [4,10].

Prior to B cell proliferation, EBV down-regulates thioredoxin-interacting protein (TXNIP),

a key negative regulator of the glucose transporter GLUT1 [4,9]. TXNIP is also down-regulated

upon lytic reactivation [4,11,12]. GLUT1 plasma membrane abundance is further supported

by LMP1, which mimics CD40 to activate NF-κB, MAPK, PI3K/AKT, and interferon regula-

tory factors [13–16]. Of these, canonical NF-κB and AKT are necessary for GLUT1 up-regula-

tion [13–16]. LMP1 also promotes glycolysis through HIF1α, which it induces through MAPK

signaling and by generation of reactive oxygen species [17–19]. LMP1-activated Poly(ADP-

ribose) polymerase 1 (PARP1) coactivates HIF1α-dependent gene expression, including via

the formation of a complex with PARylated HIF1α at target promoter regions. LMP1-driven
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Fig 1. EBV latency oncoprotein–driven B cell metabolism remodeling. Schematic diagram demonstrating changes

in key metabolic pathways during EBV-driven B cell transformation into LCLs. Relative cell size and pathway

activation states are depicted. EBV factors associated with each phase of transformation are noted. Metabolic programs

and EBV oncogenic factors that regulate them are displayed below. EAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:BNA, Epstein–Barr nuclear antigen; EBV,

Epstein–Barr virus; LCL, lymphoblastoid cell line; LMP, latent membrane protein; ncRNA, noncoding RNA;

OXPHOS, oxidative phosphorylation.

https://doi.org/10.1371/journal.ppat.1010254.g001
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aerobic glycolysis is also observed in nasopharyngeal carcinoma tumor cells in culture [17–

21]. Similarly, in latency III B cells, EBNA-LP and EBNA-3A further prevent HIF1α hydroxyl-

ation and degradation via association with prolyl hydroxylases 1 and 2, respectively [22].

Conversion of glucose to pyruvate produces NADH. To maintain redox balance and avoid

reductive stress, NAD must be regenerated in cells with high glycolysis flux. This can occur by

conversion of pyruvate to lactate or by OXPHOS, each of which oxidizes NADH to NAD, and

each of which are important for EBV-mediated B cell transformation. To facilitate lactate

release, EBNA2 and LMP1 induce expression of the monocarboxylate transporters MCT1 and

MCT4, respectively [23].

EBNA2 and LMP1 induce oxidative phosphorylation

EBV strongly induces OXPHOS upon B cell infection [2,4,9], likely needed in addition to gly-

colysis to meet ATP demand. EBV-induced OXPHOS also likely serves to maintain cellular

NAD/NADH redox balance, to support de novo pyrimidine synthesis at the level of the flavin-

dependent enzyme dihydroorotate dehydrogenase (DHODH) and to regenerate ubiquinone/

coenzyme Q for redox defense. OXPHOS genes are encoded by the host nuclear genome and

therefore accessible to EBNAs and to LMP-activated host transcription factors. OXPHOS

remodeling coincides with EBV-driven increases in oxygen consumption rates [4,9]. Under-

scoring the importance of EBV-driven OXPHOS, chemical inhibition of mitochondrial respi-

ration impairs proliferation of newly EBV-infected primary human B cells [4,9]. Likewise,

switching the media sugar source from glucose to galactose, which is metabolized by OXPHOS

rather than by glycolysis, slows but does not prevent EBV-driven B cell outgrowth [4,9]. Fur-

thermore, metabolic stress is a barrier to the outgrowth of EBV-infected B cells in vitro, where

a population of EBV-infected cells growth arrest exhibit reduced OXPHOS and TCA activity.

Anaplerotic supplementation of TCA intermediates restores proliferation in a subset of these

arrested cells [9]. Autophagy also serves to manage metabolic stress in EBV-transformed cells

[9,15,24].

EBV-driven purine and pyrimidine nucleotide metabolism

Nucleotide synthesis rates are low in resting B lymphocytes, which reside in a Go cell cycle

state. Therefore, EBV must rapidly induce purine and pyrimidine biosynthesis for genome

replication as well as ribosomal RNAs to support elevated translation rates in newly infected

cells [2]. To meet purine and thymidylate demand, EBV induces the mitochondrial one-car-

bon (1C) pathway, which metabolizes serine into glycine and a carbon unit that can be used

for downstream biochemical reactions [4] (Fig 2). Tracing studies demonstrate that 1C serine

metabolism strongly contributes to purine and thymidylate pools in Burkitt-like hyperproli-

feration. Mechanistically, EBNA2 and MYC bind to the promoter of the host gene MTHFD2
and up-regulate its expression to increase flux through the mitochondrial 1C pathway [4].

Nonetheless, limitations in purine pools induce replication stress and DNA damage, which

can be reduced by nucleotide supplementation [9,25,26]. EBV also progressively induces the

purine metabolism enzyme adenosine deaminase (ADA) in newly infected B cells in vitro [27].

Notably, ADA catalyzes the hydrolysis of adenosine to inosine and plays key roles in adenosine

metabolism in germinal centers, where it serves to prevent the accumulation of deoxyadeno-

sine triphosphate to toxic levels [28]. ADA levels progressively increase in EBV-infected cells,

particularly as they convert to the lymphoblastoid phase [27]. Thus, EBV-induced ADA may

serve to protect infected B cells as they transition through germinal center reactions and again

in lymphoblastoid B cells, where ADA knockdown impairs proliferation in vitro [27]. Mecha-

nistically, EBNA1 binds to an enhancer upstream of the ADA gene and is sufficient for ADA
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Fig 2. EBV-driven 1C pathway drives nucleotide and glutathione synthesis. EBNA2 and MYC induce the 1C, glycolysis, and de novo serine synthesis pathways in B

cells. They also up-regulate plasma membrane abundance of the GLUT1 and ASCT1/2 transporters to increase glucose and serine import, respectively. Serine pools are

further expanded by the de novo serine synthesis pathway, which metabolizes the glycolysis product 3-PG into serine and generate NADH and αKG byproducts. EBV

also supports mitochondrial 1C metabolism via up-regulation of the SLC25A32 serine and SFXN1 folate transporters. Mitochondrial 1C metabolism converts serine

into glycine, NADPH, and a serine-derived carbon unit (red ball), which is shuttled into the cytosol for use in purine and thymidylate biosynthesis. The carbon-loaded

1C folate carriers 5-10-meTHF and 10-CHO-THF are shown. 1C, one-carbon; 3-PG, 3-phosphoglycerate; 3-PHP, 3-phosphohydroxypyruvate; P-ser, 3-phosphoserine;

5-10-meTHF, 5-10-methylenetetrahydrofolate; 10-CHO-THF, 10-formyl THF; EBNA2, Epstein–Barr nuclear antigen 2; EBV, Epstein–Barr virus.

https://doi.org/10.1371/journal.ppat.1010254.g002
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up-regulation in TERT-immortalized nasopharyngeal cells, but not in EBV-negative B cell

lines, perhaps because of their higher basal ADA levels.

The pyrimidine cytidine nucleotide triphosphate (CTP) is critical for DNA, RNA, and

phospholipid synthesis as well as for protein sialyation. To meet demand, EBNA2, MYC, and

the LMP1-activated noncanonical NF-κB pathway highly up-regulate the rate-limiting enzyme

cytidine 50 triphosphate synthase 1 (CTPS1). EBV also up-regulates the isozyme CTPS2, which

plays a partially redundant role with CTPS1 in EBV-transformed B cells. Interestingly, Burkitt

and lymphoblastoid cells can utilize cytidine salvage metabolism, in which imported uridine

or cytidine are converted to CTP [29]. This plasticity may underlie the clinical observation that

EBV+ lymphomas frequently occur in patients with inborn hypomorphic CTPS1 mutations

that severely impair T/NK cell immunity [30]. By contrast, inhibition of the enzyme DHODH,

which supports de novo thymidylate and CTP biosynthesis, restrains EBV-transformed B cell

proliferation and lytic replication in vitro and outgrowth of EBV+ lymphomas in humanized

mice [31].

Latent EBV induction of amino acid metabolism

Plasma membrane proteomic analysis identified amino acid transporters as among the most

highly EBV-induced host proteins upon primary human B cell infection [4]. These include the

ASCT1/2 and LAT1 neutral amino acid transporters (Fig 2) and the xCT (also called

SLC7A11) cystine/glutamate antiporter, which reach near maximal levels by day 4 post-EBV

infection at the RNA and protein levels [2,4,32]. TAU : PleasecheckwhethertheeditstothesentenceTransporterinductionsupportsrapidamino:::arecorrect; andprovidecorrectwordingifnecessary:ransporter induction supports rapid amino

acid influx, which likely serves to activate mTOR, to participate in redox defense, and to sup-

port myriad anabolic reactions [33,34]. AAU : PleasecheckwhethertheeditstothesentenceAtlatertimepoints; LMP1andLMP2Afurther:::arecorrect; andprovidecorrectwordingifnecessary:t later time points, LMP1 and LMP2A further activate

the PI3K/mTOR pathway, and LMP1 also promotes glutamine uptake in nasopharyngeal car-

cinoma (NPC) cellsAU : PleasenotethatNPCshasbeendefinedasneuralprogenitorcellsinthesentenceAtlatertimepoints; LMP1andLMP2Afurther::::Pleasecheckandcorrectifnecessary:[35]. αKG is also produced by EBV-induced de novo serine synthesis (Fig

2) and has key roles in metabolic reactions, including in the TCA cycle and in EBV-induced

TET2 DNA demethylase activity critical for latency III [35–37].

Latent EBV subversion of host lipid metabolism pathways

The mevalonate and fatty acid biosynthesis pathways are highly EBNA2 and MYC induced in

newly infected primary human B cells [4,5]. These pathways use glucose-derived acetyl-CoA,

together with NADPH reducing power, to produce sterols, isoprenoids, cholesterol, and fatty

acids. The mevalonate pathway product geranylgeranyl pyrophosphate (GGPP) then plays a

key cross talk role in support of LMP1 and LMP2A. Following EBNA3A/C-mediated up-regu-

lation of the GTPase Rab13 expression [5,38], covalent GGPP modification licenses Rab13 to

chaperone LMP1 and LMP2A to membrane signaling regions, thereby providing a metabolic

link between multiple EBV latency III oncoproteins [5].

EBV also up-regulates the rate-limiting fatty acid synthesis enzymes acetyl-CoA carboxylase

1 (ACACA) and fatty acid synthase (FASN), which convert acetyl-CoA into palmitate for pal-

mitoylation, triglyceride, and long-chain fatty acid pathways [5]. EBNA2, MYC, and sterol

response element binding protein 2 (SREBP2) are each critical for ACACA and FASN induc-

tion. LMP1 further supports FASN up-regulation [39]. Similarly, LMP1 induces sterol

response element binding protein 1 (SREBP1) in NPCs to up-regulate FASN and promote

tumor progression, and LMP1 and FASN levels correlate in primary NPC samples [40]. Since

CRISPR analysis indicates that SREBP2, rather than SREBP1, is an LCL dependency factor,

EBV latency program and/or cell type may dictate which SREBP drives EBV-infected lipid

metabolism. Upon lytic reactivation, the EBV immediate early gene RTA also up-regulates

FASN, and FASN inhibition disrupts EBV lytic replication [41].
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High rates of lipid biosynthesis raise the question of how EBV-infected cells are protected

against ferroptosis, a programmed cell death pathway driven by iron-catalyzed lipid metabo-

lism–generated reactive oxygen species. EBV-mediated metabolism reprograming likely sup-

ports redox defense, given that 1C supplies NADPH and glycine building blocks for

antioxidant glutathione synthesis. Indeed, metabolic tracing studies demonstrate important

1C roles in support of glutathione biosynthesis and for the 1C enzyme MTHFD2 in supporting

NADPH levels in newly infected B cells [4] (Fig 2).

Concluding remarks

Despite recent advances, key questions remain to be addressed about how EBV remodels host

cell metabolism to support infected cell growth and survival, including in human cancers with

characteristic latency programs. How EBV-driven metabolism pathways affects the microenvi-

ronment, and how this, in turn, might alter antiviral T and NK cell responses, is largely

unstudied. It will also be of interest to define how EBV specifically alters infected B cell immu-

nometabolism within germinal centers to cope with relative hypoxia and nutrient constraints

in this specialized lymphoid microenvironment. We speculate that as infected cells transit

through germinal centers and switch to the viral latency II program, comprised of EBNA1,

LMP1, LMP2A, and ncRNAs (Fig 1), they increase their reliance on glycolysis and lactate

secretion at the expense of OXPHOS to cope with hypoxia. How EBV latency II more broadly

remodels B cell metabolism remains an open question, which has been limited by a paucity of

latency II model systems. Newly developed tonsil organoid and humanized mouse models

promise new insights into the metabolism of B cells in this germinal center latency II state

[42]. With regard to latency I, little is presently known about whether EBV alters host cell

metabolism in memory B cells to support this reservoir for lifelong infection. Although EBV

+ memory B cell models are needed, single-cell analyses of human tonsil samples may offer

new insights into metabolism pathway states in EBV+ versus uninfected memory cells. With

respect to EBV strains, little is presently known about how type I versus II EBV differentially

alter infected B cell metabolism and how this contributes to observed differences in growth

transformation and lytic gene expression. A key area will be to specifically define how EBNA2

polymorphisms, including one that contributes to superior type I growth transforming activity

[43], affect flux through host metabolism pathways described above.

Enhanced understanding of EBV-driven metabolism network remodeling promises to lay

the groundwork for new therapeutic approaches to EBV+ lymphomas. For instance,

HMG-CoA reductase inhibitors (statins) block EBV-induced mevalonate metabolism and

limit outgrowth of EBV-transformed B cells in culture [2,5], suggesting that it would be of

interest to test these widely used medications in murine PTLD models. Similarly, given robust

EBV-driven 1C pathway up-regulation, a next step will be to test 1C antagonists in xenograft

and PTLD models in vivo. CRISPR analysis and small molecule studies suggest that the major

metabolism regulator PI3K/AKT pathway is critical for lymphoblastoid B cell survival [44,45].

CRISPR screens also identified that Burkitt cells rely on the lysosomal iron reductase

CYB561A3 to reduce transferrin-imported iron to bioavailable ferrous (Fe2+) iron [46]. While

effects on nontransformed cells remain to be defined, nearly 700 Cancer Dependency Map cell

lines derived from a wide range of human tissues were not dependent on CYB561A3 for prolif-

eration, suggesting that a therapeutic window may exist for CYB561A3 antagonists in Burkitt

lymphoma treatment. LCLs instead use STEAP3 to reduce imported lysosomal iron [46], indi-

cating that STEAP3 may be a druggable PTLD target. How EBV-driven metabolism remodel-

ing controls the maintenance of restricted forms of EBV latency at the level of cross talk with

DNA and histone methylation remains incompletely understood. It is plausible that
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metabolism pathways can be exploited to derepress highly immunogenic latency III or lytic

cycle antigens in order to sensitize EBV+ tumor cells to immunotherapy or lytic induction

approaches, respectively. Finally, latent EBV infection can sensitize cells to synthetic lethal

combinations that target multiple EBV oncometabolism pathways. For instance, blockade of

EBV-induced MCT lactate exporters and electron transport chain complex I is highly toxic to

LCLs [23].
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