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Abstract
Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to
predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic
prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock),
comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized
that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the
infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on
sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show
that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor
(G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture.
However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the
top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When
the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well,
while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that
accounting for genetic architecture can improve prediction accuracy for quantitative traits.

Introduction

Most phenotypic variation in natural populations is con-
tinuous. Fisher (1918) reconciled the opposing ideas of
Mendelian segregation and continuous phenotypic variation
for quantitative traits by formulating the classical ‘infinite-
simal’ model of inheritance, whereby alleles at many
(effectively infinite) loci affecting quantitative traits exhibit
Mendelian properties of homozygous (additive) effects,
dominance effects, and non-additive interlocus interactions
(epistasis), but the effects are small and sensitive to varia-
tion in the environment (Falconer and Mackay 1996). The
effects of these quantitative trait loci (QTLs) are too small to
be assessed individually in pedigrees. However, QTL
effects in aggregate can be described in terms of additive
(VA), dominance (VD), and epistatic (VI) variance compo-
nents, the summation of which comprises the total genetic
variance (VG) of a quantitative trait; the remainder of the
observed phenotypic variance (VP) is due to variation in
environmental influences (VE). Importantly, Fisher showed
that the ratio of additive genetic variance to the total phe-
notypic variance, VA/VP, the narrow sense heritability (h2),
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determines the phenotypic correlations among relatives. h2

is the fraction of the variance of the trait that is transmissible
from parents to offspring, and is therefore critical for pre-
dicting responses to natural and artificial selection, as well
as disease risk, in the absence of knowledge of the under-
lying genetic details (Fisher 1918; Falconer and Mackay
1996).

The current availability of abundant polymorphic mole-
cular markers, and in some cases population scale genome
sequences, have enabled high resolution and well powered
genome wide association studies (GWAS) to map indivi-
dual QTLs, particularly in human populations. GWAS
assessing additive (marginal) effects of QTLs have identi-
fied many loci affecting complex traits, contributing to our
knowledge of the biology of these traits. However, these
loci cumulatively generally explain a small proportion of
the narrow sense heritability, limiting our ability to predict
quantitative trait phenotypes from high resolution genetic
polymorphism data. The most cited example of this phe-
nomenon is human height, for which h2 from pedigree
studies is ~0.8 and the loci identified by GWAS collectively
explain ~10% of the total phenotypic variation (Manolio
et al. 2009; Lango Allen et al. 2010).

There are many possible and not mutually exclusive
causes of this “missing heritability” phenomenon, including
the stringent significance threshold imposed by the multiple
testing correction, limiting sample sizes if most QTLs have
small effects, rare alleles with large effects that are not
assessed by single locus GWAS, and failure to account for
the possibility of non-additive effects (Manolio et al. 2009).
Recognizing the difficulty of mapping causal QTLs, Meu-
wissen et al. (2001) proposed using whole genome regres-
sions of additive effects of many molecular markers
simultaneously to predict individual genetic values. Such
genomic prediction methods have shown high prediction
accuracies in domesticated animals and crops and have
transformed animal and plant breeding (Goddard 2009).
When Yang et al. (2010) applied the whole genome
regression method to a large sample of unrelated humans
with dense common single nucleotide polymorphism (SNP)
genotype data and height phenotypes, the proportion of
phenotypic variance explained by SNPs (the ‘genomic
heritability’, h2g) was ~0.45; about half of the narrow sense
heritability. However, the ability to explain a substantial
fraction of genetic variation does not necessarily translate
into high predictive ability; the same model used by Yang
et al. (2010) gave poor predictive ability for human height
(de los Campos et al. 2013). The discrepancy between high
prediction accuracies with domesticated animals and crops
and low accuracies in humans is likely due to different
patterns of overall relatedness and consequently different
patterns of linkage disequilibrium (LD). High relatedness
and consequently high LD in selected crops and animals

mean that any marker is likely to be in strong LD with
causal QTL(s); but largely unrelated humans and relatively
low LD mean that markers will not necessarily capture
effects of causal QTLs (de los Campos et al. 2013). Var-
iation in LD is also thought to be the explanation for poor
performance of genomic prediction across breeds (De Roos
et al. 2009).

The most commonly used genomic prediction model,
Genomic Best Linear Unbiased Predictor (G-BLUP, e.g.,
Habier et al. 2007) assumes Fisher’s additive, infinitesimal
genetic architecture. Given a single population in which
genotype data and measures of multiple phenotypes have
been obtained, the same G-BLUP model would be applied
to all phenotypes, which is biologically unrealistic and
neither gives nor uses any biological insight regarding the
genetic basis of variation in the traits. Thus, an additional
reason for poor prediction accuracy can be departure of the
real genetic architecture of quantitative traits from the infi-
nitesimal model. Information on relatedness from large
panels of molecular markers can dilute the true signal of
genetic relatedness at causal loci when many fewer loci
affect the trait than markers, even if the true genetic archi-
tecture is additive. Further, epistatic interactions have been
shown to be an important component of genetic architecture
of quantitative traits in model organisms (Mackay 2014;
Taylor and Ehrenreich 2015), and if they occur, accounting
for non-linear interactions between loci may improve pre-
diction (Jiang and Reif 2015; Ober et al. 2015; Martini et al.
2016).

If molecular quantitative genetics is to fulfill the dual
goal of biological insight and genotype-phenotype predic-
tion in the context of precision medicine (de los Campos
et al. 2010) and precision agriculture (e.g., Goddard and
Hayes 2009; Heffner et al. 2009), we need to develop
accurate prediction methods that work well for populations
of unrelated individuals and that utilize trait architecture
information to simultaneously give insight into the num-
bers, identity and gene action of causal loci. A method
combining GWAS and G-BLUP has recently been proposed
to achieve this goal (Ober et al. 2015). Briefly, phenotypic
records of time to recover from a chill-induced coma were
obtained for multiple individuals from the sequenced,
inbred lines from the Drosophila Genetic Reference Panel
(DGRP) (Mackay et al. 2012; Huang et al. 2014). The broad
sense heritability (H2, the proportion of phenotypic variance
due to all sources of genetic variation) of line means, on
which GWAS was based, was very high, ~0.9. GWAS
revealed sex-specific genetic architecture including major
effect loci and evidence of epistasis. The prediction accu-
racy estimated using G-BLUP and cross-validation was zero
in both sexes. However, incorporting genetic architecture by
performing GWAS for additive effects and epistatic inter-
actions in the training data and using the top variants to
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build a genomic relationship matrix (GRM) to predict
phenotypes in the test data greatly improved prediction
accuracy, despite the small sample size, low LD between
closely linked loci, and minimal relatedness among the
DGRP lines.

Motivated by the results of Ober et al. (2015), we further
investigated the utility of combining mapping and predic-
tion to simultaneously infer genetic architecture and
develop a robust prediction model under the unfavorable
scenario of low relatedness and LD. To overcome the lim-
ited sample size of the DGRP, we simulated large numbers
of genotypes based on the DGRP polymorphisms and allele
frequency spectrum, as well as whole genomes with similar
LD decay and pairwise relatedness to the DGRP, for a range
of simplified genetic architectures. (We use the term
‘genetic architecture’ throughout to denote the number of
causal loci, their allele frequencies and gene actions,
although we recognize that this term may embrace other
factors). The simulated genetic architectures are more sim-
plified and extreme than in reality, but serve as a ‘stress test’
of the G-BLUP model. We found that the G-BLUP model
performed poorly when all common polymorphisms are
used for prediction, and very well when the genetic archi-
tecture was estimated by GWAS in the training data, and
then incorporated in the prediction model.

Materials and methods

Simulation of causal genotypes and phenotypes

We simulated true QTL genotypes for sample sizes of 205
(the size of the DGRP), 1000, 2500, and 5000 by randomly
sampling 0 s and 2 s, i.e., the number of copies of
the reference allele, with probability equal to the genotype/
allele frequency spectrum of a reduced version of the DGRP
genotype data, including 8665 variants meeting the fol-
lowing criteria. The genotypes were pruned for LD
such that in every 1000-variant window, there were no pairs
of variants whose r2 was greater than 0.05; the genotype
call rate was greater than 0.8; and the minor allele frequency
(MAF) was greater than 0.25 for all variants. We chose the
high MAF threshold because prediction will fail for
any model that includes a causal allele in the training
set that is not present in the test set, which will happen
for low MAF when the population size is small (the case of
205 lines). The stringent LD threshold was chosen
to represent the simplified scenario where causal loci are not
in LD.

We simulated true QTLs for several different genetic
architectures. QTL effects were randomly drawn from a
Gamma distribution with shape and scale parameters of 0.4

Fig. 1 Types of epistasis. a Sign epistasis. The effect of Locus 1 is of the same magnitude but opposite direction depending on the genotype of
Locus 2. b Variance epistasis. The effect of Locus 1 changes magnitude depending on the genotype of Locus 2
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and 1.66, respectively. We randomly assigned the sign of
the effects such that some were positive and some were
negative (Meuwissen et al. 2001). The true genetic values
were calculated by multiplying the genotypes by the QTL
effects. Environmental effects were randomly drawn from a
Normal distribution with a mean of 0 and variance=
Vg

1�H2ð Þ
H2 , where Vg is the variance of the genetic values and

H2 is the broad sense heritability of the trait. Phenotypes for
the individuals were then obtained by summing the genetic
and environmental effects. We simulated four additive
genetic architectures in which 1, 20, 100, and 1000 QTLs
explained all the genetic variation using this approach.

We also simulated genetic architectures for 50 and 500
interacting pairs of variants exhibiting sign epistasis and
variance epistasis (Fig. 1) using a slightly modified
approach from the one we used to simulate the additive
architectures. With sign epistasis, the effect on the pheno-
type of one locus is of the same magnitude but in opposite
directions depending on the genotype at the interacting
locus, so negligible additive variance is produced when the
allele frequencies at both loci are intermediate. With var-
iance epistasis, where the effect on the phenotype of one
locus is in the same direction but of different magnitude
depending on the genotype at the interacting locus, additive
variance is produced when both loci are polymorphic
(Mackay 2014).

Once the two variants defining the interaction were
randomly sampled, an interaction matrix was created by
assigning a coefficient of −1 if the two genotypes were 0 0
or 2 2, and a coefficient of+ 1 if the two genotypes were 2
0 or 0 2 for sign epistasis. For variance epistasis, the
coefficient was −1 if the two genotypes were 0 0, 2 2, or 2
0, and +1 if the two genotypes were 0 2. Then, the simu-
lation of phenotypes followed the procedure described
above using the interaction matrix instead of individual
QTL genotypes. This procedure thus assigns two-locus
haplotypes (as appropriate for inbred lines) rather than
single-locus effects.

Further, we simulated two additional genetic archi-
tectures composed of a mixture of additive and epistatic
effects with 100 additive QTLs and 50 pairwise sign or
variance epistatic interactions following the procedure
described above. For each of these more complex genetic
architectures, the proportion of total genetic variance
explained by the additive component and the epistatic
component, respectively, was varied to be 0.75:0.25,
0.50:0.50, and 0.25:0.75 by adjusting the epistatic effects
with an appropriate constant. Importantly, these proportions
do not necessarily lead to VA and VI partitions of the same
numerical values since epistatic effects can also produce VA.
These two genetic architectures were simulated for sample
sizes of 205, 1000, and 2500.

We performed simulations for all genetic architectures
for H2= 0.4 and H2= 0.9, and 30 replicates per genetic
architecture/heritability value were produced.

Simulation of whole genome sequences and
phenotypes

Whole haplotype sequences for 10,000 lines were simulated
using the Markovian Coalescent Simulator (MaCS). Then,
each haplotype was duplicated to create 10,000 diploid,
inbred genomes (one for each line). MaCS takes two main
parameters as input: ρ¼4Ner and θ ¼ 4Neμ; where Ne is the
effective population size, r is the recombination rate and μ is
the mutation rate (Chen et al. 2009). We chose values for
these parameters that produce LD decay and the distribution
of pairwise relatedness among the lines similar to those
observed in the DGRP (Huang et al. 2014) and that are
plausible for a natural population of D. melanogaster. The
values chosen were Ne= 1,000,000; r= 1× 10−8 and μ=
1× 10−8 (Charlesworth 2009; Comeron et al. 2012; Huang
et al. 2016). The simulated whole genomes were composed
of 3 chromosome arms of 5Mb each. The small simulated
genome compared to the actual Drosophila genome was
used so the number of polymorphic sites was similar to the
DGRP. The resulting sequences had 5,871,537 polymorphic
sites, of which 1,761,219 were common (MAF > 0.05).

The four additive and four pure epistatic architectures
described in the previous section were simulated by ran-
domly sampling variants to be QTLs or interactions, and
then using the same procedure. The simulated genotype data
were pruned for LD and MAF using the same thresholds as
above and consisted of 18,795 variants. All the additive and
epistatic architectures were simulated for H2= 0.4 and H2

= 0.9, and 30 replicates per architecture/heritability value
were produced.

Statistical analysis: estimation and prediction

The data were analyzed using alternative genomic models:

1. Additive model: y¼1μþgAþe, where y is an n-vector
of phenotypes, 1 is an n-vector of ones, μ is the
population mean, gA is an n-vector of random additive
line effects [gA ~ N(0, Gσ2gA)] and e is an n-vector of
random residual effects [e ~ N(0, Iσ2e)]. G is the
additive GRM built using all common variants (MAF
> 0.05) according to the formula WW ′

p where W is the
matrix of centered and standardized genotypes for all
the lines and p is the number of variants; I is the
identity matrix.

2. Epistatic model: y¼1μþ gEþe;where y is an n-vector
of phenotypes, 1 is an n-vector of ones, μ is the
population mean, gE is an n-vector of random epistatic
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line effects [gE ~ N(0, EpiGσ2gE)] and e is an n-vector
of random residual effects [e ~ N(0, Iσ2e)]. EpiG is the
additive × additive epistatic GRM and was built by
G#G as in Su et al. (2012); I is the identity matrix.

3. Combined additive and epistatic model:
y¼1μþgAþgEþe, where y is an n-vector of pheno-
types, 1 is an n-vector of ones, μ is the population
mean, gA is an n-vector of random additive line effects
[gA ~ N(0, Gσ2gA)], gE is an n-vector of random
epistatic line effects [gE ~ N(0, EpiGσ2gE)] and e is an
n-vector of random residual effects [e ~ N(0, Iσ2e)]. G
and EpiG are the additive and epistatic GRMs,
respectively, as described above; I is the identity
matrix.

When the three models were used with the true QTL
data, the additive and epistatic GRMs were built using only
the true QTLs/interactions that generated the phenotypes. In
the additive scenarios, only the additive model was fitted.
For scenarios with sign epistasis and variance epistasis, all
three models were fitted; the GRM in the additive model
was built using all the 100 or 1000 variants that defined the
50 or 500 pairwise interactions. In the epistatic and com-
bined additive and epistatic models, we implemented a
modified version of the epistatic GRM proposed by Ober
et al. (2015), which accounts only for the true interactions
that generated the phenotypes.

The true QTL data were analyzed using 10 replicates of
5-fold cross-validation (CV) for each of the 30 replicates of
simulated phenotypes, as this is the most appropriate tech-
nique when analyzing non-simulated data, where only one
dataset is usually available, and/or sample size is small
(Daetwyler et al. 2013). For simulations with whole genome
sequences, where the sample size was 10,000, we randomly
drew training (80% of the data) and test (20% of the data)
samples to reduce the computational demand.

The prediction accuracy was calculated as the squared
correlation coefficient between the true and predicted phe-
notypes (r2), averaged over the 30 replicates of each genetic
architecture; when CV was used, r2 was also averaged over
folds and CV replicates. This statistic, which measures the
proportion of true phenotypic variability accounted for by
the predicted phenotypes, is useful for evaluating prediction
models because the asymptotic upper bound of r2 is the
heritability of the trait when fitting a model with only
genomic data (de Los Campos et al. 2013). For a number of
representative architectures and methods, we also calculated
the bias of prediction as the slope of the regression of true
phenotypes onto predicted phenotypes. The genomic herit-
ability was calculated in the training set as h2g¼

σ2g
σ2gþσ2e

using
the additive model, averaged over the 30 replicates of each
architecture (de los Campos et al. 2015).

These analyses were performed using R (R Core Team
2015). Variance components for the datasets with sample
size of 10,000 were estimated using GCTA (Yang et al.
2011).

Statistical analysis: variable selection

To combine mapping and prediction and select informative
features for the prediction models when whole genome
sequences were used, we performed marker selection based
on genotype-phenotype associations in the training popu-
lation; we then used only the selected markers to derive the
model in the training population and predict phenotypes in
the test population. Specifically, we performed a single
marker regression without any adjustment to rank variants
whose additive effects are associated with the phenotype
using PLINK (Purcell et al. 2007) using all ~1,800,000
common variants (i.e., not only the ~18,000 variants used to
sample the true causal variants and interactions). We
selected (1) the top t variants (for t= 100, 1000, 10,000 or
100,000) with the smallest P-values and (2) variants with P-
values for association smaller than 10−3, 10−5, 10−7, and 10
−9 to build the additive GRM to use in the prediction
analysis.

We also performed a pairwise interaction GWAS
(EpiGWAS) using FastEpistasis (Schüpbach et al. 2010),

testing all possible
18; 795

2

� �
variant-variant combina-

tions on the pruned genotype data described in the previous
section. We used the pruned genotype data here because it
was not computationally feasible to test all possible variant-
variant combinations among all common variants. The top q
pairwise interactions (q= 50, 100, or 500) with the smallest
P-value were then selected and used to build the modified
version of the epistatic GRM accounting only for these
interactions (Ober et al. 2015) to use in the prediction
analysis.

Relaxing the MAF and LD assumptions

To achieve a more realistic test on the different models, we
repeated the simulations with whole genome sequences
described above using less stringent thresholds for MAF
(MAF > 0.05) and LD (r2< 0.2) of causal variants/interac-
tions. This resulted in 144,537 pruned genotypes from
which causal variants and interactions were drawn. These
simulated phenotypes were analyzed using the same meth-
ods described above, except that we did not use a P-value
threshold in the additive GWAS pre-selection of variants.
Moreover, EpiGWAS was performed by testing all possible
144; 537

2

� �
variant–variant combinations.
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Results

We assessed the effects of sample size, genetic architecture
and different genomic prediction models on predictive
ability for a population of unrelated individuals in which
LD decays rapidly with physical distance. We performed all
analyses for heritabilities of H2= 0.4 and H2= 0.9. The
former represents a heritability typical of many quantitative
traits assessed on an individual basis in natural outbreeding
populations. The latter represents a very high heritability,
which can occasionally occur in nature (e.g., human height
(Manolio et al. 2009)) but are more common in replicated
mapping populations such as recombinant inbred lines, the
DGRP, and naturally inbreeding or clonally reproducing
organisms, where many individuals of the same genotype
can be measured. We present the results for H2= 0.4 in the
main text and those for H2= 0.9 in the supplementary
material since the conclusions from both analyses are qua-
litatively similar.

Prediction accuracy when true QTLs/interactions are
known

We first assessed the accuracy of genomic prediction using
G-BLUP when the true QTLs/interactions are known and
used to build the GRMs, for different genetic architectures
(purely additive, purely epistatic, and three different

proportions of additive and epistatic architectures), for
sample sizes ranging from 205 (the size of the DGRP) to
5000. These simulations show how genomic prediction
models perform in an idealized situation where all true
QTLs are known. As expected, the additive model per-
formed well when the true genetic architecture was additive,
but required larger sample sizes to approach the upper
bound for prediction accuracy as the number of QTLs
increased (Fig. 2a). For example, with H2= 0.4 and a single
QTL explaining all the genetic variance, a sample size of
205 was sufficient to achieve the upper bound of prediction
accuracy. However, with 1000 QTLs, a sample size of 205
yielded very poor prediction accuracy. Prediction accuracy
increased significantly for the 1000 QTL scenario with
increasing sample size, but even with a sample size of 5000
the average prediction accuracy was only 0.27, ~68% of the
theoretical maximum (Fig. 2a).

In contrast, when the true genetic architecture was
determined by 50 pairs of loci with sign epistasis (Fig. 1a),
an additive model with a GRM built from the causal var-
iants but ignoring the genetic architecture produced a pre-
diction accuracy of r2= 0 regardless of sample size (Fig.
2b). The epistatic GRM, however, gave good prediction
accuracy, even with smaller sample sizes. The prediction
accuracies from the combined additive and epistatic model
were in this case indistinguishable from those of the epi-
static model alone. These results are expected for sign
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Fig. 2 G-BLUP analyses of purely additive or epistatic simulated traits
(H2= 0.4) using only the true QTLs and/or interactions. Error bars are
standard errors of the mean. The y-axes are mean r2 values and the x-
axes show the sample size. a Four additive scenarios for different
numbers of QTLs. b 50 sign epistasis interactions. c 50 variance

epistasis interactions. d 500 sign epistasis interactions. e 500 variance
epistasis interactions. Panels (b–e) show results from three models:
additive (ADD), epistatic (EPI) and, combined additive and epistatic
(ADD&EPI)
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epistasis and intermediate allele frequencies of interacting
loci, as these conditions produce negligible additive genetic
variance.

When the true genetic architecture was defined by 50
pairs of loci with variance epistasis (Fig. 1b), an additive
model with a GRM built from the causal interacting variants
produced significant prediction accuracy (Fig. 2c). How-
ever, in this case the prediction accuracy of the additive
model appeared to quickly reach an asymptote whereby
increasing the number of lines did not correspond to an
increase in accuracy; this asymptote fell well below the
upper bound of accuracy. The same trend was observed
when using the epistatic GRM, although with even lower
accuracy. However, the combined additive and epistatic
model achieved much higher prediction accuracy than the
summation of the accuracies of the separate additive and
epistatic models. These results are not surprising because
variance epistasis generates both additive and epistatic
variance with intermediate frequencies of interacting loci.

Increasing the numbers of epistatically interacting loci to
500 yielded qualitatively similar patterns (Fig. 2d–e).
However, larger sample sizes were required to get closer to

the upper bound of prediction accuracy compared to the 50
pairs of loci scenario, similar to the results of increasing the
number of causal loci in the additive scenarios.

We next explored the effect of mixed additive and epi-
static genetic architectures for both sign and variance
epistasis. We varied the sample size from 205 to 2500 and
kept the genetic architecture constant at 100 additive QTLs
and 50 interacting pairs of QTLs, and assessed different
contributions to additive genetic and epistatic variance
(additive:epistatic variance ratios of 75:25, 50:50, and
25:75) (Figs. 3 and 4). In all cases, the combined additive
and epistatic model gave consistently better prediction
accuracies than the pure additive or epistatic models.
However, the single component models achieved different
performances depending on whether sign or variance epis-
tasis was modeled, as well as the percentage of total genetic
variance explained by additive QTLs and interactions. For
example, the additive model gave low prediction accuracies
even for large sample sizes when the proportion of genetic
variance explained by additive QTLs and interactions was
0.25:0.75 and sign epistasis was modeled (Fig. 3c). In this
case, the epistatic model gave much higher prediction

Fig. 3 G-BLUP analyses on the simulated traits (H2= 0.4) with both
additive and sign epistasis components, using only the true QTLs and/
or interactions. The y-axes are mean r2 values and the x-axes show the
sample size. Error bars are standard errors of the mean. a Results for a
trait for which 75 and 25% of the total genetic variance is additive and
epistatic, respectively. b Results for a trait for which 50% of the total

genetic variance is additive and 50% is epistatic. c Results for a trait
for which 25 and 75% of the total genetic variance is additive and
epistatic, respectively. Three models are fitted for each scenario:
additive (ADD), epistatic (EPI) and combined additive and epistatic
(ADD&EPI)
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accuracies. However, the additive model gave high pre-
diction accuracies when the proportion of genetic variance
explained by additive QTLs and interactions was 0.75:0.25
and variance epistasis was modeled (Fig. 4a).

Similar patterns were observed for the pure and mixed
genetic architectures when H2= 0.9 (Figs. S1-S3), but
smaller sample sizes were needed to achieve proportionally
higher accuracy. For the case of truly additive QTLs and an
additive GRM, these observations agree with predictions
from deterministic formulae and simulation studies (God-
dard 2009; Daetwyler et al. 2010). For example, with
sample size of 5000 and 1000 QTLs, prediction accuracy
averaged 0.87, 97% of the maximum (Fig. S1).

In summary, we show that when true QTLs and genetic
architectures are known, which represents a situation where
standard GWAS are perfect and could identify all and only
causal variants, taking account of the genetic architecture
always improves prediction accuracy for all sample sizes,
and the combined additive and epistatic model gives highest
prediction accuracies when there is epistasis. Further,
applying the additive model when there is considerable sign

epistasis gives poor predictive ability no matter how large
the sample size is. In the presence of variance epistasis, the
predictive ability of the additive model improves, but the
asymptotic predictive ability with increasing sample size is
much less than the theoretical maximum given by the
heritability.

Prediction accuracy using all common variants when
true QTLs/interactions are unknown

In reality, we do not know the true QTLs, and therefore we
must use markers as proxies in genomic prediction analyses.
To investigate this more realistic scenario, we simulated
whole genomes for 10,000 individuals using estimates of
effective population size and recombination and mutation
rates to generate a distribution of pairwise genomic rela-
tionships and LD decay similar to that observed in the
DGRP. LD decayed rapidly with physical distance and
asymptoted to a low background level (Fig. S4), and the
distribution of the off-diagonal elements of the additive
GRM shows that the individuals were unrelated (Fig. S5).

Fig. 4 G-BLUP analyses on the simulated traits (H2= 0.4) with both
additive and variance epistasis components, using only the true QTLs
and/or interactions. The y-axes are the mean r2 values and the x-axes
show the sample size. Error bars are standard errors of the mean. a
Results for a trait for which 75 and 25% of the total genetic variance is
additive and epistatic, respectively. b Results for a trait for which 50%

of the total genetic variance is additive and 50% is epistatic. c Results
for a trait for which 25% and 75% of the total genetic variance is
additive and epistatic, respectively. Three models are fitted for each
scenario: additive (ADD), epistatic (EPI) and combined additive and
epistatic (ADD&EPI)
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We again simulated different levels of genetic complexity
(1, 20, 100, and 1000 additive QTLs); 50 and 500 inter-
acting pairs of QTLs with sign epistasis; and 50 and 500
interacting pairs of QTLs with variance epistasis. We did
not simulate the mixed additive and epistatic architectures
as the previous analyses indicated the results from these
analyses would fall within the boundaries set by the pure
models.

First, we asked to what extent the additive GRM using all
common markers explained the heritability in the training
data. For the additive genetic architectures, the additive
model could recover all the theoretical genetic variation
(Fig. 5a, Fig. S6A), as expected for a true additive archi-
tecture and sequence data (de los Campos et al. 2015).
However, applying the additive GRM to training data in
which the true genetic architecture was 50 pairs of loci with
sign epistasis only explained ~16% of the total heritability,
which increased to ~73% when the true genetic architecture
was 50 pairs of loci with variance epistasis. Similar results
were obtained for 500 interactions (Fig. 5a, Fig. S6A).
Next, we assessed the prediction accuracy of the same
additive GRM using all common markers for the different

genetic architectures, and found it was universally very low
and 0 for the sign epistasis genetic architectures (Fig. 5b,
Fig. S6B). In agreement with previous studies, additive
architecture with drastically different numbers of true QTLs
had similar prediction accuracies using G-BLUP (Daetwy-
ler et al. 2010). We observed a similar result for the epistatic
architectures with different number of interactions. Finally,
the pure epistasis GRM using all common markers gave
even lower prediction accuracies than the additive model in
all scenarios except the sign epistasis architecture (Fig. 5b,
Fig. S6B). The pattern of results is similar regardless of the
heritability; except that proportionately higher accuracies
are achieved with the higher heritability.

Prediction accuracy accounting for trait genetic
architecture using GWAS when the true QTLs/
interactions are unknown

One plausible reason for the low predictive ability when
using all common markers when the genetic architectures
are truly additive is the low signal to noise ratio—there are
many more markers than QTLs, and the individuals are
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Fig. 5 G-BLUP analyses of purely additive or epistatic simulated traits
(H2= 0.4) using all common variants (MAF> 0.05). Error bars are
standard errors of the mean. a The genomic heritability, h2g, computed
in the training set (TRN). The y-axis is the mean h2g and the x-axis
gives the different simulated architectures. b The predictive ability on

the test set. The y-axis is the mean r2 value and the x-axis gives the
different simulated architectures. Red bars show the predictive ability
calculated using an additive model (ADD) and blue bars show the
predictive ability calculated using an epistatic model (EPI)
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unrelated with low LD, so the true signal is diluted by the
non-associated markers. Combining mapping with predic-
tion could alleviate this problem (Zhang et al. 2015; Ober
et al. 2015; Tiezzi and Maltecca 2015). Therefore, we
performed a GWAS for additive effects on the training data
for each of the different genetic architectures, and then used
only the top variants associated with the trait to predict
phenotypes in the test population. We used two different
procedures to select the top variants—the top t variants or
the top variants with P< 10−x.

Combining mapping and prediction using an additive
model worked well when the genetic architecture was
additive (Fig. 6, Fig. S7). The prediction accuracies
increased substantially over the additive GRM using all
common variants for all the additive architectures regardless
of the procedure used to select the top variants to include in
the prediction models. The prediction accuracy deteriorated
as more markers were added, consistent with increasing
dilution of the signal. Using the top t variants or all top
variants with P-values< 10−x yielded similar results within

each architecture, although results were somewhat more
sensitive to the number of variant threshold than to the P-
value threshold (Fig. 6, Fig. S7). The average number of
variants selected by the different P-value threshold is shown
in Table S1.

This procedure, however, did not improve prediction
accuracy when the genetic architecture was pure sign
epistasis—prediction accuracy remained at 0 for all
thresholds used (Fig. 6, Fig. S7). However, there was a
conspicuous improvement in prediction accuracy over using
all common variants when the genetic architecture was of
variance epistasis, although the improvement was less
pronounced than for the corresponding additive architecture
(100 or 1000 QTLs) and for larger number of interactions
(Fig. 6, Fig. S7). Similar to the additive scenarios, the
accuracy of prediction for variance epistasis declined as the
number of selected variants increased.

The pattern of results for all genetic architectures is again
similar regardless of the heritability; except that proportio-
nately higher accuracies are achieved with the higher
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Fig. 6 G-BLUP analyses of purely additive or epistatic simulated traits
(H2= 0.4) using different subsets of variants prioritized by GWAS and
the additive model (ADD). The y-axes are mean r2 values and the x-
axes give the different simulated architectures. Error bars are standard
errors of the mean. a The top t variants (t= 100; 1000; 10,000; or

100,000) from GWAS were used for prediction. b Variants with P<
10−x (x= 3, 5, 7, or 9) from GWAS were used for prediction. In the 50
(500) sign epistasis scenario, only 13 (6) and 8 (2) replicates had at
least 1 variant with P< 10−7 and P< 10−9, respectively; the average is
based only on those replicates
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heritability, as expected from deterministic analyses (God-
dard 2009; Daetwyler et al. 2010).

Prediction accuracy using EpiGWAS and GWAS
+EpiGWAS when the true QTLs/interactions are
unknown

Using GWAS to select variants marginally associated with
traits increased prediction accuracy for completely additive
traits, but did not perform as well for epistatic traits. While
there was some improvement in prediction accuracy with
variance epistasis, it was not as great as that for the scenario
with 100 or 1000 additive QTLs; and for sign epistasis the
strategy failed completely. Because the epistatic GRM and
combined additive and epistatic GRMs prediction models
greatly improved prediction accuracy for epistatic scenarios
when the true QTLs were known, we asked whether we
could enrich for true interactions using an epistatic GWAS
to select the top q interactions associated with the trait to
build the epistatic GRM to use for prediction. We also tried
a combined strategy performing an additive GWAS plus
epistatic GWAS in the training data to select the top t

variants to build the additive GRM and the top q interac-
tions to build the epistatic GRM.

When all QTLs exhibited sign epistasis, using the top q
interactions from the epistatic GWAS greatly improved
prediction accuracy over all other models, for which pre-
diction accuracy was 0 or close to 0 (Fig. 7). For H2= 0.4,
the prediction accuracy was greatest when the number of
interactions included in the epistatic GRM was 50, declined
slightly as the number of interactions increased to 100, and
dropped when the number further increased to 500, reca-
pitulating the dilution effect seen previously for the additive
models and additive gene action (Fig. 7). This pattern was
observed when the true architecture was made of either 50
or 500 interactions but did not occur for H2= 0.9, where the
three epistatic GWAS models yielded more similar
accuracies (Fig. S8). Incorporating the additive GRM built
using the top 100 additive GWAS variants to the two epi-
static GWAS GRMs also gave improved prediction
accuracies, but the mean r2 values were less than the cor-
responding pure epistatic GWAS models for H2= 0.4 (but
not for the higher heritability, where all four models had
comparable accuracies) (Fig. 7, Fig. S8).
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Fig. 7 G-BLUP analyses of the purely epistatic simulated traits (H2=
0.4) using subsets of interactions prioritized by a pairwise GWAS
(EpiGWAS), or subsets of interactions prioritized by both EpiGWAS
and GWAS. The top q pairwise interactions (q= 50, 100, or 500) from
EpiGWAS, or the top t variants (t= 100) from GWAS and the top q

pairwise interactions (q= 50, 100, or 500) from EpiGWAS were used
for prediction. The epistatic model (EPI) or the combined additive and
epistatic model (ADD&EPI) were used. The y-axis is the mean r2

value and the x-axis shows the two types of simulated epistatic
architectures. Error bars are standard errors of the mean

510 Fabio Morgante et al.



When all interactions exhibited variance epistasis, a
GRM built from the top epistatic GWAS variants gave a
significant prediction accuracy, but it was much lower than
the best additive model for either heritability (Figs. 6 and 7,
Figs. S7, S8). However, the combined additive and epistatic
GRMs performed much better than either the additive or the
epistatic GWAS models when the true architecture con-
sisted of 50 interactions for both heritablities, and 500
interactions for H2= 0.9. However, when the true archi-
tecture consisted of 500 pairwise interactions with H2= 0.4,
the combined additive and epistatic GRM model did not
give any improvement over the additive GWAS model for
traits (Fig. 7, Fig. S8). These results are consistent with the
theoretical expectation that variance epistasis produces both
additive and epistatic variance when the causal variants are
common (Mackay 2014).

Prediction accuracy with less stringent MAF and LD
thresholds

In the additive scenarios, the results obtained for archi-
tectures with causal MAF> 0.05 were very similar to those
with causal MAF> 0.25 for all analyses (Figs. S9, S10,
S12, S13). The additive model with all common variants
explained all the genetic variance in the training set, but
prediction accuracy in the test set remained very low (Figs.
S9, S12), and increased when only the top t variants from
GWAS were used (Figs. S10, S13). However, the additive
model with all common variants explained a large amount
of genetic variance for both sign and variance epistasis
when the MAF threshold was lowered. This was expected
since epistatic interactions generate increasing amounts of
additive variance as allele frequencies decrease (Hill et al.
2008; Mackay 2014) (Figs. S9, S12). This model still gave
low prediction accuracies (Figs. S9, S12). Using only the
top t variants from additive GWAS provided a great
improvement in prediction accuracy in all epistatic scenar-
ios, including sign epistasis, for the same reason (Figs. S10,
S13).

For cases of sign and variance epistasis, using only the
top q interactions from epistatic GWAS provided an
improvement in prediction accuracy over the additive model
with all common variants, but accuracy was generally lower
than using the additive GWAS GRM (except for sign
epistasis with 50 interactions) (Figs. S11, S14). However,
the combined additive and epistatic GWAS GRMs per-
formed better than either the additive GWAS GRM or the
epistatic GWAS GRM for all scenarios except for variance
epistasis with 500 interactions and H2= 0.4, where the
additive GWAS model performs best (Figs. S11, S14).

As shown in Table S2, when using all common variants
predictions are unbiased (i.e., the slope of the regression is
not significantly different from 1) regardless the heritability,

genetic architecture and causal MAF. However, when using
preselected variants/interactions, predictions are generally
biased. While this observation is consistent with the litera-
ture (e.g., Veerkamp et al. 2016), the problem of biased
predictions can be solved using the method of Kim et al.
(2017).

Discussion

Here, we have shown how genetic architecture affects
prediction accuracy of complex traits. In a population of
unrelated individuals and low LD, the additive GRM built
using all common variants (~1,800,000) did not yield good
prediction accuracy regardless of the genetic architecture of
the trait, even a purely additive architecture. This is likely
due to the infinitesimal assumption made by the G-BLUP
model, where each marker in the GRM is assumed to
contribute the same amount of information to the calcula-
tion of relationships among individuals (de Los Campos
et al. 2013; Ober et al. 2015). This assumption was not met
in the simulated traits and is generally not realistic for many
complex traits. Thus, the true signal of causal loci is diluted
and masked by ‘noise’ from markers either not associated
nor in LD with the causal loci affecting the trait—it is the
relationships among individuals at causal loci for the trait
under analysis that matters for prediction.

It is important to note that the same additive GRM
explained all the additive genetic variance in the training
population for the additive genetic architectures. This is
expected from theory when the true causal variants are
included in the marker panel, as when genotypes are
inferred from genome sequence data, and when markers and
causal variants have the same MAF and LD properties (de
los Campos et al. 2015). A similar inference has been drawn
from actual data on human height in samples of unrelated
individuals, where an additive model gave h2g ≈ 0.4 but a
prediction r2 ≈ 0.03 (de Los Campos et al. 2013) using
400,000 markers. Therefore, while sequencing data may
increase the genomic heritability for completely additive
traits, an equivalent increase in prediction accuracy (the
ultimate objective of precision medicine and agriculture)
may not occur. The ability of a statistical model built using
a set of predictors to explain variation in the response
variable (i.e., inference) and its ability to predict yet-to-be
observed responses (i.e., prediction) are two different
properties that should not be confused. In fact, a model that
can explain substantial variation in the response might not
be the best for predicting future observations, and vice versa
(Shmueli 2010). Recently, much higher prediction accura-
cies have been obtained for human height using extremely
large datasets (Kim et al. 2017). However, these higher
accuracies were obtained using both explicit and implicit
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variable selection methods, therefore agreeing with our
hypothesis.

In addition to having no or extremely low predictive
ability, the additive model with all common variants could
recover only a fraction of the total heritability for com-
pletely epistatic traits, especially the sign type. This obser-
vation is in accord with theoretical expectation, and may be
related to the missing heritability (the difference between
pedigree-h2 and h2g) observed for many complex traits
because epistasis can inflate estimates of pedigree-based
heritability (Manolio et al. 2009; Zuk et al. 2012; Mackay
2014).

Since different traits likely have different genetic archi-
tectures and this difference is not accounted for by the G-
BLUP model, we sought to enrich the model for true causal
variants/interactions. We did this by combining mapping
(additive and/or epistatic GWAS on the training population)
and prediction such that the results from mapping (the top
variants/interactions) serve as prior information for G-
BLUP through architecture-specific additive and epistatic
GRMs (Ober et al. 2015). In the additive scenarios, using
the results of an additive GWAS considerably improved
prediction accuracy for any number of QTLs. The archi-
tectures with fewer QTLs benefited the most from this
procedure due to greater power to map true causal variants.

With completely epistatic architectures, using only an
additive GWAS was often not sufficient to achieve a rea-
sonable prediction accuracy, especially with sign epistasis
and higher causal MAF. Although this is an extreme case
that is unlikely to occur in nature, it clearly demonstrates the
possibility of such failure when models are misspecified.
Prediction accuracies using an additive GWAS were
increased for variance epistasis relative to the sign epistasis
case, but were less than the corresponding additive archi-
tecture. While an epistatic GWAS GRM alone provided
high prediction accuracy for sign epistasis when the causal
MAF was greater than 0.25, this was not true for sign
epistasis with causal MAF greater than 0.05, and variance
epistasis with either causal MAF threshold. However, fitting
a model with both an additive GWAS GRM and an epistatic
GWAS GRM generally performed better than either the
additive GWAS or epistatic GWAS GRM alone.

These results clearly show how accounting for the
genetic architecture of complex traits may help predict
future observations. The fact that the additive GRM with all
common variants has worked well, for example, within
dairy cattle breeds for most traits is likely attributable to
closely related individuals and high LD whereby each
marker is potentially in LD with at least one causal variant,
simulating the infinitesimal model assumption. This con-
dition, however, is not satisfied in samples of unrelated
individuals (such as human populations or Drosophila
lines) and leads to low predictive ability. Previous studies

(de los Campos et al. 2013; Ober et al. 2015) showed that
prioritizing variants/interactions via GWAS to use in pre-
diction could improve prediction accuracy. Here, we
investigated a wide variety of simulated scenarios with
different genetic architectures and showed that this
approach works. These scenarios were for very simplified
and extreme conditions that are unlikely to be present in
nature and may have overemphasized the importance of
epistasis in prediction analysis. Nonetheless, they served
our purpose as a ‘stress test’ to demonstrate that the additive
infinitesimal model may not always work, and should sti-
mulate further investigations to evaluate more realistic
scenarios.

Some of the limitations of the method used here are the
need for a reasonable sample size providing mapping
power, and an LD structure that allows mapping resolution
and minimizes confounding of founder effects. This is
particularly true for mapping interactions, as highlighted
when the true architecture consisted of 500 interactions. In
fact, higher accuracy was obtained when selecting only the
top 50 mapped interactions and decreased when adding
more interactions, suggesting that the additionally mapped
interactions contained spurious associations. This point is
also illustrated by the higher accuracy of the additive
GWAS GRM only over the combined additive and epistatic
GWAS GRMs for 500 variance epistatic interactions with
H2= 0.4. This, however, did not occur with H2= 0.9,
where each interaction explains a higher proportion of the
total variance. Clearly, larger sample sizes are needed to
map interactions precisely. Other methods which use prior
biological information to account for genetic architecture in
prediction do not suffer for these limitations, but require a
well annotated genome (Edwards et al. 2016).

The role of epistasis in complex trait genetics is con-
troversial. While there is substantial evidence, especially
from model organisms, that epistatic interactions are an
integral part of the genetic architecture of complex traits
(Mackay 2014), they are expected to translate mostly into
additive genetic variation if the variants making up the
interactions have low frequencies (Hill et al. 2008; Mäki-
Tanila and Hill 2014). However, evidence is accumulating
that causal variants may be more common than previously
thought (Fuchsberger et al. 2016). Thus, we should not
neglect epistasis a priori in complex trait analysis, even
though it is hard to map in outbred populations. With
respect to prediction, we have shown that even with var-
iance epistasis, where most genetic variation is indeed
additive, prediction accuracy obtained with additive models
(with or without variable selection) was generally low.
Remarkably, when we used the two variants that made up
the true causal interactions to build the additive GRM, an
asymptote well below the upper bound of accuracy was
reached, and increasing the sample size did not improve
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prediction accuracy. On the other hand, using the combined
additive and epistatic model immediately increased predic-
tion accuracy, which approached the upper bound when
using the true causal interactions. Thus, whenever it is
present, accounting for epistasis has the potential to
improve prediction accuracy of complex traits. The mag-
nitude of the improvement will largely depend on causal
MAF, with higher values benefiting the most.

Our analysis also highlights the relative importance of
sample size and statistical model. When the statistical model
used for the analysis closely matches the true model that
generated genetic variation in the trait, larger sample sizes
improve prediction accuracy of the more complicated
architectures. However, larger sample size does not translate
to improved prediction accuracy when the statistical model
deviates substantially from the true biological model.
Although the cost of genotyping and sequencing has
decreased tremendously and allows studies with large
sample sizes, equivalent efforts in modeling directed
towards identifying the causal variants and their mode of
action are needed.

Variance components and prediction analysis are not
suitable to infer the genetic architecture of complex traits
(Falconer and Mackay, 1996; Huang and Mackay 2016).
An additive model could capture most genetic variation and
yield significant prediction accuracy for a trait that was in
fact purely epistatic (for the case of variance epistasis with
any causal MAF or sign epistasis with lower causal MAF).
In addition, different parameterizations of the genetic effects
(i.e. additive, dominant and epistatic) can lead to different
partitions of the total genetic variance into its components
for the same data (Huang and Mackay 2016). This makes it
very difficult to obtain a reliable estimate of the relative
importance of additive and epistatic gene action underlying
quantitative trait variation. This motivated our choice to
vary the relative proportion of additive and epistatic var-
iance from one extreme to the other.

This study has some limitations. First, we limited our
simulation to pairwise interactions because it is extremely
computationally challenging to map higher order interac-
tions. However, there is no reason to assume that only
pairwise interactions affect complex traits, and high order
interactions have been empirically validated (Taylor and
Ehrenreich 2015). Possibly, pairwise epistasis is an emer-
gent property of higher order epistasis, similar to additivity
being an emergent property of pairwise epistasis (Mackay
2014). Hence, performing a pairwise scan, which can be
performed in a semi-exhaustive way in a reasonable amount
of time, may be able to capture higher order interactions.
Second, to make the scenarios as simple as possible, our
simulated genotypes were based on inbred lines, for which
only four genotypes segregate with pairwise epistasis, and
all interactions are of the additive by additive type. (In

outbred populations there are nine possible genotypes for
pairwise interactions, and four possible types of epistatic
interactions involving additive and dominance effects at
both loci).

Data Archiving

The code used to simulate all the data can be found in the
Supplementary material.
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