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Abstract

Objectives: Behavioral obesity treatment (BOT) produces clinically significant weight loss and health benefits for many

individuals with overweight/obesity. Yet, many individuals in BOT do not achieve clinically significant weight loss and/or

experience weight regain. Lapses (i.e., eating that deviates from the BOT prescribed diet) could explain poor outcomes, but

the behavior is understudied because it can be difficult to assess. We propose to study lapses using a multi-method

approach, which allows us to identify objectively-measured characteristics of lapse behavior (e.g., eating rate, duration),

examine the association between lapse and weight change, and estimate nutrition composition of lapse.

Method: We are recruiting participants (n¼ 40) with overweight/obesity to enroll in a 24-week BOT. Participants complete

biweekly 7-day ecological momentary assessment (EMA) to self-report on eating behavior, including dietary lapses. Participants

continuously wear the wrist-worn ActiGraph Link to characterize eating behavior. Participants complete 24-hour dietary recalls

via structured interview at 6-week intervals to measure the composition of all food and beverages consumed.

Results: While data collection for this trial is still ongoing, we present data from three pilot participants who completed

EMA and wore the ActiGraph to illustrate the feasibility, benefits, and challenges of this work.

Conclusion: This protocol will be the first multi-method study of dietary lapses in BOT. Upon completion, this will be one of

the largest published studies of passive eating detection and EMA-reported lapse. The integration of EMA and passive

sensing to characterize eating provides contextually rich data that will ultimately inform a nuanced understanding of lapse

behavior and enable novel interventions.

Trial registration: Registered clinical trial NCT03739151; URL: https://clinicaltrials.gov/ct2/show/NCT03739151
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Background

Overweight and obesity affect two-thirds of Americans

and contribute to the development of multiple cardio-

vascular disease risk factors (e.g., physical inactivity,

hypertension, hyperlipidemia, sleep-disordered breath-

ing, and diabetes mellitus), in addition to being inde-

pendent risk factors for cardiovascular disease.1–4

Behavioral obesity treatment (BOT) produces clinically
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significant weight losses through decreased caloric
intake and increased physical activity.5 Weight loss
and maintenance are achieved through adherence to
the recommended diet in BOT and nonadherence can
compromise outcomes.6 Dietary lapses (i.e., specific
instances of nonadherence to one or more BOT dietary
goals or eating behaviors) are frequent (�3-4 times per
week) and have been shown to undermine weight loss
outcomes.7,8 Moreover, the ability to cope with temp-
tation, and thus prevent lapses, is associated with
BOT success.9–11

Despite the clear potential for dietary lapses to influ-
ence weight loss outcomes, they remain understudied as
traditional measurement tools for assessing eating are
inadequate; dietary lapses are difficult to simulate in
laboratory settings and are vulnerable to inaccuracies
and inherent bias when studied via retrospective self-
report questionnaires.12,13 Ecological momentary
assessment (EMA) has enhanced the reliability and
validity of lapse measurement through real-time assess-
ment.13 EMA employs short surveys delivered (typical-
ly via smartphone) repeatedly over the course of the
day to self-report behaviors, cognitive/emotional
states, and environmental contexts.14 While EMA has
been used in prior studies to strengthen lapse measure-
ment,7,15,16 EMA is still dependent on participants’
awareness of their behavior and their willingness and
ability to report on it accurately. This limitation pre-
cludes a complete understanding of lapse characteris-
tics, the nutritional composition of lapses compared to
non-lapse eating, and the role of lapses in impeding
weight outcomes.

Thus, an important advancement to improve lapse
measurement would be to reduce reliance on self-report
by integrating objective monitoring of eating behavior
in real-time assessment. For example, rate of eating,17

number of bites,18 meal frequency,19 meal duration,20

meal timing,21 and meal size19 are objective measure-
ments of eating that have been associated with obesity.
As such, these same characteristics may serve as
markers of eating behaviors that jeopardize weight
loss, including dietary lapses. Objective monitoring of
eating behaviors is an ever-evolving field that capital-
izes on several passive sensing methodologies (e.g.,
wrist devices, chewing sensors, neck-worn cameras),
one of which involves wrist-based devices to detect
wrist-roll motion as food is being brought to the
mouth. While this methodology is being developed by
many research groups,22–25 our team has previously
used wrist-based passive sensing to infer bites from
eating episodes that were bounded by the participant
manually pressing a button at the start and end of
eating.26,27 The manual button press was helpful in
ensuring reports of ground truth, but participants in
our prior work have anecdotally reported that it

incurred additional burden, suffered from user error
(e.g., forgetting to press start and/or stop), and
prompted reactivity (e.g., not eating because they do
not want to press the button). As such, our recent work
has focused on developing and refining algorithms that
can infer eating episodes from continuously collected
wrist data (thus eliminating the need for a button
press).27–31

Our methods for eating inference and free-living bite
counting have been developed and refined over five
studies (each using differing wrist-based sensors, e.g.,
InertiaCube3 sensor, iPhone 4, Bite Counter device,
STMicroelectronics MEMS sensors, Shimmer3
device). In the first, we counted bites taken during a
meal with 86% sensitivity among 47 participants wear-
ing a wrist device during an uncontrolled eating setting
in which they brought their own meal to a lab.28 In the
second, we achieved 81% accuracy of inferring the
occurrence of eating (ground truth measured via
manual event logs) among 43 participants yielding
449 hours of data with total 116 meals and snacks.29

Third, we found that wrist-inferred bite count was
moderately correlated with kilocalories as measured
by a 24-hour food recall (R2¼ 0.44, p< .001) among
77 free-living participants over 14 days with a total of
2,975 meals.18,31 Fourth, we studied 271 participants
eating a single uncontrolled meal in a cafeteria setting
(yielding 24,088 bites) and achieved 75% sensitivity
with a positive predictive value of 89% for inferring
bites without a button press.27 Fifth, our most recent
study evaluated 4,680 hours of data across 351 partic-
ipants who wore a wrist device for 1 day during free-
living and used an activity log to self-report ground
truth of eating instances and secondary activities (i.e.,
walking and resting).30 This work capitalized on
accounting for secondary activities detected in the
wrist data to achieve 77% weighted accuracy of infer-
ring eating episodes. Further analysis showed that the
improvements over our prior methods (which achieved
74% weighted accuracy in this sample)29 due to
accounting for walking and rest were significant
(p< .001) and could be attributable to a 23% reduction
in false negatives.

While continued work is required to enhance accu-
racy and ensure generalizability of our results across
different samples and contexts, these studies do illus-
trate that wrist-based passive eating inference and char-
acterization in free-living settings (i.e., outside of the
lab) can be executed without a button press. This
method has the potential to supplement EMA by pro-
viding information on eating behavior that can
enhance accuracy of lapse detection and its character-
ization.32 Improving lapse detection and characteriza-
tion is important because it can dramatically enhance
our ability to intervene with personalized intervention
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tools and enable more complex conceptual models of
the behavior.33

Despite the potential for a combination of EMA
and passive sensing to advance the study of eating
behavior, few studies have employed both together.34,35

To date, there are no studies that integrate EMA, pas-
sive sensing of eating, and direct assessment of dietary
intake to understand a clinically relevant problematic
eating behavior, such as dietary lapse, in the context of
a health behavior change intervention. Given the
importance of lapse and the promise of passive sensing
technology to improve our understanding of the behav-
ior, we are conducting an NIH-funded study
(F32HL143954) with the following aims: 1) identify
objectively-measured characteristics of lapse behavior
by monitoring device predicted timing, duration, bite
count, and rate of eating amongst EMA-reported lapse
episodes and comparing to non-lapse eating episodes,
2) test the association between dietary lapse frequency
and weight change, and 3) estimate nutrition composi-
tion of dietary lapses via 24-hour food recalls.

To accomplish these aims, we utilize three assess-
ment methods concurrently during a behavioral obesity
treatment: EMA (the traditional gold-standard method
for measuring dietary lapse), a wrist-based device that
continuously detects wrist motion from which we can
infer eating episodes and relevant characteristics of
eating (e.g., rate of eating, duration of eating, bite
count), and telephone-based 24-hour food recalls (to
assess macro-nutrient and energy intake). The follow-
ing sections detail the study protocol for this trial.
While data collection is ongoing, we present an illus-
tration of pilot data collected from three participants to
underscore the strengths, challenges, and potential
impact of this work as it evolves. This protocol is infor-
mative it represents one of the first applications of this
type of multi-method assessment protocol combing
gold-standard and cutting-edge measurement strate-
gies. Moreover, the study of lapse is widely applicable
to the management of any chronic health condition
requiring dietary adherence to a set of recommenda-
tions (e.g., Type 2 diabetes, cardiovascular disease, gas-
trointestinal disorders).

Methods

Overview

This project adds continuous passive eating inference
and periodic dietary assessment to EMA to study die-
tary lapses in 40 adults with overweight/obesity and
cardiovascular disease risk throughout a 12-week in-
person BOT program and a 12-week period of weight
loss maintenance. Participants self-report all eating via
EMA, including dietary lapses. The ActiGraph GT9X

Link (ActiGraph, LLC, Pensacola, FL, USA), a wrist-
based device that is typically used to measure physical
activity and sleep, is being used to detect the wrist-
motion of food being brought to the mouth. Prior
work, completed with other types of wrist-mounted
devices, has developed and refined algorithms that
can infer eating episodes and characteristics from
wrist motion and wrist velocity data.28–31 We are now
extending these algorithms to infer eating from wrist
data collected by the ActiGraph. Because the compo-
sition of foods consumed during lapses is an important
and understudied facet of lapse behavior, participants
also complete periodic 24-hour dietary recalls via struc-
tured telephone interview to measure the composition
of all food and beverages consumed. Data from the
ActiGraph and 24-hour food recalls are being used to
assess objective eating characteristics (i.e., timing,
duration, bites, rate), estimated caloric content, and
nutritional composition of EMA-reported dietary
lapses compared to non-lapses. Weight is measured at
every treatment session.

Setting

This study takes place at The Miriam Hospital (located
in Providence, Rhode Island, USA).

Participants

We are recruiting 40 participants on a rolling basis.
Eligible participants are men and women with over-
weight or obesity (body mass index 25–50 kg/m2),
between the ages of 18 and 70, and who have been
diagnosed by a physician with one or more cardiovas-
cular risk factors (Type 2 diabetes, hypercholesterol-
emia, or hypertension). Individuals are excluded if
they report health problems that are contraindication
for weight loss or physical activity, are currently preg-
nant or breastfeeding, are currently enrolled in another
weight loss program, have lost �5% of their initial
body weight in the last 6months, are currently taking
weight loss medication, have had a surgical procedure
for weight loss, or report a history of a clinically diag-
nosed eating disorder excluding Binge Eating Disorder.

Procedure

See Figure 1 for a study schematic. Participants are
being recruited on a rolling basis using advertisements
in local newspapers, the research center’s website,
advertising resources available through the Miriam
Hospital (e.g., email newsletters circulated to patients
and employees), and through physician referrals from
local primary care practices. Interested individuals are
contacted via telephone to complete an initial screening
in which the study procedures are summarized.
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Individuals who appear eligible are scheduled for an in-
person appointment for additional screening and ori-
entation. Should the individual consent to participate
during the orientation visit, this appointment also
includes baseline assessment procedures. At the orien-
tation/baseline visit, participant height and weight are
measured by trained research staff, and they complete
questionnaires and are shown how to wear and main-
tain the ActiGraph. Participants are scheduled for their
initial treatment visit approximately one week after the
baseline visit. As a behavioral run-in, participants are
asked to wear the ActiGraph and record dietary intake
(either via smartphone app or paper-based diary) for
one week in between the baseline and orientation visit.
Participants are only eligible to continue with treat-
ment if they wear the ActiGraph for a minimum of
�10 hours on �5 days (including �1 weekend day)
and record at least 2 meals a day for 7 days during
the run-in phase. Finally, participants are required to
provide physician permission to participate in the study
procedures given their cardiovascular risk factors.

During the participants’ initial treatment visit
(60minutes), ActiGraph and dietary record data are
checked to confirm eligibility. Participants are then
instructed to wear the ActiGraph every day during
waking hours for the remainder of the 24-week study
period. Next, participants are trained in how to com-
plete EMA surveys (and in particular oriented to the
definition of a dietary lapse) and phone-based 24-hr
food recalls. Per Figure 1, participants are asked to
complete 7 days of EMA on a biweekly basis for
24weeks. A biweekly assessment schedule was chosen
to minimize participant burden while ensuring the ade-
quacy of the data. Participants with smartphones are
encouraged to use their personal devices for EMA. If a

participant does not own a smartphone device or wish

to use their personal device, they are provided with a

study device for EMA. Per Figure 1, dietary intake is

assessed every 6weeks via phone-based 24-hr food

recalls in intervals that align with EMA data collection.

Participants begin their first week (“baseline”) of EMA

and food recalls after the initial treatment visit is

completed.
Participants attend in-person treatment sessions on

a weekly basis for 12weeks, and then transition to

monthly booster sessions in the subsequent 12weeks

(referred to here as the maintenance phase). During

the maintenance phase, participants are asked to

attend an additional appointment once per month, sep-

arate from the monthly treatment visit, to initiate

downloading data from the ActiGraph when it

approaches the maximum storage capacity.

Participants receive $20 after attending each of the

three data download appointments (during which

time they receive no intervention) for a total of $60

over the 24-week study period. Participants are

weighed by trained study staff at every treatment and

data download session. At the final study visit, partic-

ipants complete questionnaires regarding feasibility

and acceptability of the program and the technology.

Behavioral obesity treatment

Session structure and content of the BOT are based on

the Diabetes Prevention Program and LookAHEAD

trials,36,37 which produce an average clinically signifi-

cant weight loss of 7% of initial body weight. Sessions

were held on an individual basis and were 30minutes in

length. Per national guidelines for weight loss, a daily

goal of 1200-1800 kcal/day is prescribed depending on

Study week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Treatment
session

X X X X X X X X X X X X X X X

Data download
session

X X X

Wear ActiGraph
device

X X X X X X X X X X X X X X X X X X X X X X X X

Complete EMA X X X X X X X X X X X X

24-hr food
recalls

X X X X X

Final
assessment &
questionnaire

X

1 2 3 4 5 6 7 8 9 10 11 12 313 144 515 616 177 18 19 020 21 22 23 24

Treatment
session

X X X X X X X X X X X X X X X

Data download
session

X X X

Wear ActiGra hph
device

X X X X X X X X X X X X X X X X X X X X X X X X

Complete EMA X X X X X X X X X X X X

24-hr food
recalls

X X X X X

Figure 1. Study schematic and timeline.
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baseline weight.38 AMediterranean diet is prescribed to

meet the recommended calorie goal and be consistent

with dietary recommendations for patients with cardio-

vascular disease risk.39 Participants are encouraged to

achieve 200minutes/week of moderate intensity activity

by gradually increasing activity level to achieve approx-

imately 40minutes of activity over five days per week.40

Increasing lifestyle activity (e.g., parking farther away

from a building entrance or taking the stairs) to reduce

sedentary time is also recommended. Participants are

taught strategies to assist them in meeting their dietary

and physical activity goals. To increase self-regulatory

skills and enhance awareness, participants are

instructed to track dietary intake and daily physical

activity, as well as weigh themselves regularly.

Participants are provided with instructions for using

My Fitness Pal, a commercially available smartphone

app that is commonly used in BOT studies because it is

based in social cognitive theory (the theoretical foun-

dation also underlying BOT), for tracking diet, activity,

and weight.41 In addition to facilitating self-

monitoring, My Fitness Pal contains brief messages

and information (e.g., recipes, exercise suggestions)

that are consistent with evidence-based BOT, which

makes it ideal for use in conjunction with an in-

person BOT program that provides more substantial

support.41,42 Participants are provided with personal-

ized feedback regarding dietary intake and activity by

their clinicians at the outset of each treatment session.

Participants are also taught skills for goal-setting,

eating mindfully, behavioral reinforcement, stimulus

control, and problem-solving.

Measures

Objective eating characteristics. Eating behavior is

objectively quantified using algorithms for inferring

eating episodes (previously validated using other

wrist-mounted devices) that are applied to ActiGraph

data.28–31 Participants are asked to wear the ActiGraph

on the wrist of their dominant hand (or that used for

eating) during all waking hours, exclusive of bathing

and swimming, for the duration of the 24-week study.

This ActiGraph is equipped with a wear time sensor

and the face of the device is an LCD display that pro-

vides date, time, steps, and battery life. When the

ActiGraph battery is depleted it requires re-

initialization via ActiLife software, as such, partici-

pants are asked to charge the ActiGraph nightly

(during sleeping hours) throughout the study period.

Participants are also instructed to monitor the battery

via the LCD display, which alerts them when the bat-

tery is at 10% capacity, and place on the charger as

needed to prevent depletion.

Most importantly, the ActiGraph has an integrated
Inertial Measurement Unit (IMU) that contains triax-
ial gyroscope, magnetometer, and accelerometer sen-
sors. The IMU provides information about
movement and rotation which are necessary for infer-
ring eating. Eating characteristics that are being
inferred in the current study are: timing, duration,
number of bites taken, and rate of eating. Our eating
inference algorithms segment the IMU data at peaks of
wrist motion,29 and then these segments are classified
as eating, walking, resting, or other, using a Bayesian
classifier.43 Classification of eating is further described
in the Statistical Analysis section. Once eating episodes
are inferred, we calculate duration and timing of
eating. An algorithm based on wrist-roll motion is
used to estimate the number of bites taken during an
eating episode (also described further in Statistical
Analysis28). In future studies, bite estimates can be
used to provide estimates of energy intake.44 Lastly,
rate of eating is calculated as seconds per bite using
number of bites and duration of the meal.

Ecological momentary assessment. Participants are
asked to complete seven days of EMA on a biweekly
basis for 24weeks. EMA is conducted using the secure
LifeData, platform for EMA. Participants download
the LifeData app (available for iPhone or Android)
on their smartphone to engage with the EMA protocol.
Once enrolled, participants are prompted through the
app via vibration and audible tone to complete self-
report ratings, which include occurrence of dietary
lapse and meals/snacks (i.e., non-lapses). The first
survey of each day also assesses whether any lapses
or eating occurred in the period between the last
survey of the previous day and the first survey of the
next day. Ratings are prompted semi-randomly around
five anchor times throughout the day (9:00am,
11:00am, 2:00pm, 5:00pm, and 8:00pm). Semi-random
prompting has been used in prior EMA studies of
eating behavior to prevent survey notifications from
arriving too close to one another, thus protecting
against user burden and ensuring experiences through-
out the day are sampled.45,46 LifeData randomly
prompts users to complete an EMA survey within þ/-
1 hour of the anchor time, which minimizes reactivity
by ensuring that participants cannot anticipate the
exact timing of the assessment. Anchor times were
selected to ensure 1) feasible completion by all partic-
ipants (i.e., not too early or late in the day), and 2) that
participants could not receive two surveys at once (i.e.,
that one survey would expire before another could be
delivered). Participants are given 60minutes to respond
to an EMA survey after each prompt, with a reminder
at 30minutes. Participants are also encouraged to
self-initiate ratings of dietary lapses and meals/snacks
as they occur. De-identified participant data is
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transmitted to a secure, password-protected server that
is only accessible to the research team. This platform is
accessible via a Web-based interface to control the start
and end date of EMA protocol, view summaries of
data in real-time, and download the complete dataset
of participant responses.

Each EMA survey assesses the following: Dietary
lapse is assessed by asking participants to report if
they have experienced a lapse since the last survey.
Consistent with prior work,7 lapse is defined as any
“eating or drinking likely to cause weight gain, and/
or put weight loss/maintenance at risk”. Participants
who report lapses are asked to record the time and
location of the lapse. Participants are asked “how
would you describe the lapse?” and select all that
apply (“I ate a larger portion of a meal or snack than
I intended”, “I ate when I hadn’t intended to eat”, “I
ate a type of food that I intended to avoid”, “I ate too
quickly”). This method of describing the lapse type aids
in achieving more accurate self-reports and will later
improve our ability to classify lapse behaviors.47 Non-
lapse eating is assessed by asking participants to report
if they had eaten a meal or snack since the last survey
and to note the approximate times of each. These data
will distinguish lapse from non-lapse eating episodes
throughout the day. Grazing is assessed by asking
“Did you engage in grazing since the last survey (e.g.,
eating small amounts of food within a period of one
hour in an unplanned and repetitious way without feel-
ing hungry?”) Previous testing revealed that it is diffi-
cult for the ActiGraph to passively detect very small
eating instances (such as one or two bites of food).
While participants in the study were discouraged
from grazing, knowledge of grazing will be valuable
when analyzing and aligning data from the
ActiGraph and EMA. Eating pace is assessed by
asking “How quickly were you eating?”, with response
options of “slower than my normal pace”, “my normal
pace”, and “faster than my normal pace”. This ques-
tion is designed to assist in classifying and understand-
ing rates of eating as detected via the ActiGraph.
Eating duration is assessed by asking “How long, in
minutes, did the eating episode last?”. This question
is designed to assist in validating objective assessment
of eating duration estimated by the ActiGraph.

Dietary composition. Dietary intake is assessed via
telephone-based 24-hour dietary recalls at 6-week inter-
vals that align with EMA data collection. The 24-hour
recall method was chosen because it is a gold-standard
dietary assessment tool capable of providing rich data
on dietary quality of lapses as compared to other non-
lapse eating.48,49 Recalls are collected by trained
research staff over a series of three random, non-
consecutive days of the week (2 weekdays and 1 week-
end day)49 Given that lapses occur approximately 3–4

times per week, we estimated that the standard series of
three recalls would likely capture at least one dietary
lapse (if not more). The Nutrition Data System for
Research (NDSR), a computer-based software applica-
tion developed at the University of Minnesota
Nutrition Coordinating Center facilitates the collection
of dietary recalls in a standardized fashion.50 Dietary
intake data is collected via a multiple-pass method
which collects information on eating occasion name
and time as well as each food and drink consumed.51

NDSR supports a dietary quality analysis of recalled
intake using a robust food and nutrient database that
pulls from the USDA’s Food and Nutrient Database
for Dietary Studies. Recalled food intake and indepen-
dently observed food intake are highly correlated, indi-
cating the 24-hour dietary recall is highly valid and is
thus considered the gold-standard for dietary assess-
ment.52 Estimated caloric intake, as well as macronu-
trient content (i.e., protein, fiber, carbohydrates, fat,
sodium) and an overall dietary quality score (as deter-
mined by the Healthy Eating Index-2015), will be cal-
culated for each eating episode using NDSR software.
Twenty-four-hour recall data will inform a greater
understanding of which dietary factors may character-
ize to lapse. These data can be used in future studies to
inform more targeted EMA-based dietary recalls
employed at the same frequency of lapse assessment,
thus providing more granular data on the dietary qual-
ity of lapses with reduced user burden.53

Questionnaires. Participants demographics and a
rating of comfort and familiarity with using technology
are assessed via questionnaire at baseline. At the final
assessment, participants complete questionnaires
regarding their level of satisfaction with the treatment
and assessment protocol.

Weight and height. Participants’ body weight is mea-
sured to the nearest 0.1 kg using a calibrated digital
scale at each study appointment (baseline assessment,
weekly, monthly boosters, and at ActiGraph download
appointments). Height is measured at baseline in milli-
meters using a wall-mounted stadiometer. Body Mass
Index (BMI; kg/m2) is calculated from height and
weight measures. Weight change is assessed in kilo-
grams (kg) and percentage change from baseline.

Statistical analysis plan

Inferring eating episodes. Periods of eating are inferred
using algorithms described in prior publications.29,30

The following briefly reviews the method in addition
to how eating characteristics are extrapolated from
these data. First, data are smoothed using a Gaussian
kernel to reduce the effect of noise. Wrist motion
energy is calculated as the sum of linear acceleration
across the X, Y and Z axes. Peaks in wrist motion
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energy have been found to occur before and after
eating episodes as a person prepares a meal and
cleans up after finishing. Peaks are found in the wrist
motion energy using a custom hysteresis threshold and
used to segment the data.29 Each segment is classified
using a naı̈ve Bayes classifier into one of four classes:
eating, walking, resting or other.30 Timing of eating is
calculated as the time of day that an eating episode is
inferred; these data will be categorized into six catego-
ries (breakfast, mid-morning, afternoon, mid-
afternoon, dinner, evening) for ease of interpretation,
as in our prior work.54 The duration of eating is calcu-
lated as the time between the start and end peaks used
to segment the data. The number of bites for each
eating episode is calculated using a bite detection algo-
rithm that utilizes the velocity and timing of successive
wrist-roll motions (described in more detail in our pre-
vious publications).28,31 Using bites and duration (in
seconds), rate of eating is calculated as seconds per
bite.55

Matching eating episodes. It is of note that all meth-
ods of assessment in this study (EMA, ActiGraph, and
24-hour food recall) incur some degree of error due to
mis-reporting and algorithm-detected false positives.
To the best of our knowledge, there are also no prece-
dents from prior research that can be used to inform
matching decision rules. As such, error in this matching
process is anticipated and the following procedures
seek to maximize our data while removing cases of
obvious error. In other words, as this work is in its
very early stages, attempts are made to retain matches
wherever possible.

After eating episodes are inferred from the
ActiGraph data, they are matched with EMA-
reported lapse and non-lapse eating episodes using
the time of day eating was detected/reported. See
Figure 2 for example output from a custom program
that our team built to map EMA-reported eating epi-
sodes onto wrist-inferred eating episodes (and second-
ary activities) throughout a given day. Given that EMA
was administered biweekly, eating episode matching
procedures are conducted on 12weeks of the 24-week
protocol. Days on which the ActiGraph was not worn
are removed from the matching process. To identify
possible error in EMA-reported eating prior to match-
ing, we first note eating episodes in which the EMA
survey completion timestamp fell greater than
30minutes before the EMA-reported eating episode.
This time difference would imply that the participant
forecasted eating episodes when EMA surveys clearly
only ask about eating in the previous hours, not future
eating. Thirty minutes was chosen as the cut-off to
account for possible rounding errors when reporting
eating (e.g., participant completes an EMA survey at
12:15 when they are currently eating but reports the

eating episode at 12:30pm). Eating episodes that were
forecasted> 30minutes into the future were identified
as likely reporting errors and removed from analysis.

Each EMA-reported eating episode is then matched
to its closest wrist-inferred eating episode and the time
difference in hours between the two eating instances is
calculated. We define “successful” matches as those in
which the EMA-reported eating and wrist-inferred
eating were within �2 hours of one another. In other
words, if an EMA-reported eating episode matches to a
nearest wrist-inferred eating episode that is over two
hours away in either direction, the match is considered
“unsuccessful”. It is well known that participants have
difficultly accurately self-reporting their dietary intake
(even in controlled settings in which they are given the
food items).56,57 While there are no studies that explore
bias in self-reported eating times, we assumed that the
evidence of misreporting and bias in other areas of self-
reported dietary assessment (e.g., amount of food con-
sumed, number of foods consumed) might also extend
to reports of eating time.58 As such, a two-hour
window for successful matches was chosen to retain
as much data as possible by allowing for generous
margin for human error in self-reporting the timing
of eating episodes. During preliminary analyses to
decide the eating match criterion, we discovered that
instituting a two-hour match rule eliminates 20.9% of
matches, a 90-minute match rule eliminates 25.3% of
matches, and a one-hour match rule eliminates 30.8%
of matches. Given that a one-hour match rule eliminat-
ed almost 1/3 of our matches, we chose the rule that
allowed us to retain the most data for analysis. Upon
trial completion, we plan to conduct analyses using the
data from more stringent to less stringent match rules
to examine differential patterns in the data (see
Discussion section for more details). Eating occasions
assessed via 24-hour food recall will be matched to
EMA- and wrist-detected eating using a similar
approach (i.e., using a two-hour window and examin-
ing differential patterns in stringency of match rules).

Aim 1: Objective characteristics of lapse. A super-
vised classification approach will be employed to deter-
mine which objective eating characteristics distinguish
EMA-reported lapse from non-lapse eating (as such,
EMA-reported data act as ground truth for the pur-
poses of model building and validation).59 We propose
to employ several different supervised classification
models including support vector machine, random for-
ests, and several types of C4.5 decision trees from the R
WEKA package (e.g., Logit.Boost, Bagging, Random
Subspace, Bayes Net60). Model performance will be
evaluated by calculating an Area Under the Curve
(AUC) estimate, which represents the ability of the
classifier to correctly discriminate lapse from non-
lapse cases.61 Model validation will be determined via
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leave-one-out cross validation (2/3 participants’ data
are used to build the algorithm and the remaining 1/3

participants’ data are left out as a blinded test set),
which ensures that the model is unbiased and general-

izable to new individuals.29,62 Accuracy, sensitivity,
and specificity of the model for classifying EMA-

reported lapse from non-lapse will be calculated using
the blinded test set. Predictive validity of each eating

characteristic will be assessed via least absolute selec-
tion and shrinkage operator regression, which we have

used in our prior work on lapse classification due to its

variable selection capabilities and reduced risk of over-
fitting.63–65

Aims 2 & 3: Lapses and weight change & nutritional
composition of lapses. General linear mixed effect

models will be used to evaluate the association between
weight change (dependent variable) and monthly lapse

frequency (time-varying predictor). Models will also be
run with the time-varying objective eating characteris-

tics described in Measures (timing of eating, duration
of eating, number of bites taken, and rate of eating) as

predictors, irrespective of lapse. To estimate the nutri-
ent composition of lapse compared to non-lapses, gen-

eral longitudinal linear mixed effect models will be used
to evaluate the association between lapse classification

(dependent variable) and time-varying macro- and
micro-nutrition components as measured via dietary

recall (i.e., Healthy Eating Index score, protein, fiber,
carbohydrates, fat, sodium, and total caloric intake).

Both sets of models will be evaluated three times; for

lapses identified by ActiGraph, for lapses identified by

EMA self-report, and for all lapses identified by either

method. Models will also control for sex, race, ethnic-

ity, age, EMA compliance (where applicable), and

weekday/weekend day (where applicable).
Justification for sample size. Data from our prior

work studying lapses in the context of a 10-week

mobile BOT54 was used to estimate power for Aim 2

(lapses and weight change) via a Monte Carlo simula-

tion with 5,000 iterations. With N¼ 40, alpha¼ .05,

two-tailed tests, mean (SD) lapses per month of 18.9

(11.6), a typical mean (SD) weight loss of 1.8 (1.8) kg

during weight loss and 0 (1.8) kg during maintenance, a

conservative intraclass correlation coefficient (ICC) of

0.5 for both lapse and weight loss, power will be .80 to

detect an effect size of Cohen’s d¼ 0.48 (a medium

effect) for the association between the time-varying

covariates (e.g., monthly lapse frequency) and weight

loss.

Results

Prior to the current trial, we conducted a pilot test of

our EMA and wrist-based eating inference methods,

and evaluated the feasibility of the eating episode

matching process among three participants who under-

went behavioral obesity treatment. We present data

from the eating inference methods and matching steps

of the above-described analytical plan to serve as a

demonstration of our methods. Due to our small

EMA report of
non-lapse eating

Time of day (minutes)
Legend of wrist-inferred activities
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Figure 2. Example of output from wrist-inferred eating and secondary activities using our algorithms (depicts one participant’s data over
one day). Downward arrows represent algorithm-identified peaks in wrist motion energy (y axis): colored boxes represent activities
classified from wrist motion data and length of time performed in minutes (x axis): blue vertical lines represent EMA-reported lapses and
non-lapse eating: red circles enclose the wrist-inferred eating episodes that would be matched to EMA-reported eating.
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sample, we present means and individual participant

data in Table 1. The results from the inferential analy-

ses described for Aims 1-3 will be presented in the pri-

mary outcomes paper of this trial with the full study

sample and 24-hour food recall assessment (as dietary

assessment was not conducted with these pilot

participants).
Participants were three women who were middle-

aged with an average baseline BMI in the obese

range. Two participants identified as White, and one

participant identified as Other. During the 24-week

behavioral obesity treatment, two participants lost

weight and the third gained weight. See Table 1 for

demographic information and weight change across

participants.

EMA-reported eating

As displayed in Table 1, participants were moderately

compliant with the EMA protocol with 639 (60.7%)

signal-contingent prompts out of 1052 total prompted

surveys completed. Additionally, participants

completed 37 event-contingent prompts, thus totaling

to 676 EMA surveys across 3 subjects. Participants

reported 493 eating episodes via EMA. An average of

164.3 (SD ¼ 54.8) eating episodes were reported per

participant across the 12-week period, which corre-

sponded to approximately 13.7 eating episodes per

week per participant. Of these, participants reported

101 total lapses (M¼ 33.7 lapses, SD¼ 7.4; 20.5% of

eating episodes), which corresponded to an average of

2.8 lapses per week per participant. The remainder were

392 total non-lapse eating episodes (M¼ 130.7,

SD¼ 61.4; 79.5% of eating episodes), which corre-

sponded to an average of 10.9 non-lapse eating occa-

sions per week per participant. See Table 1 for

descriptive information on EMA-reported eating epi-

sodes and Figure 3 (panels a and b) for a depiction of

lapse and non-lapse eating over time. Figure 3 confirms

that lapse and non-lapse eating are imbalanced (i.e.,

more non-lapse episodes are reported than lapse epi-

sodes)59 and demonstrates that lapse and non-lapse

eating are time-varying across individuals. We also

see that eating episodes appear to trend down over

Table 1. Descriptive Information for Individual Participants and Mean Calculation.

Variable (unit) Pt 1 Pt 2 Pt 3 Mean

Age (years) 43 56 56 51.7

BMI (kg/m2) 30.4 28.9 39.3 32.9

24-week weight loss (%)* 3.5 4.2 –5.8 0.63

EMA surveys complete (%) 59.9 76.8 48.6 61.8

Days of ActiGraph Wear (n) 126 170 137 144.3

ActiGraph wear time per day (hours) 7.7 11.13 10.16 9.8

Total EMA-reported eating episodes (n) 103 236 154 164.3

Total EMA-reported lapses (n) 44 27 30 33.7

Total EMA-reported non-lapses (n) 59 209 124 130.7

Total wrist-detected eating episodes (n) 659 1,783 970 1,137.3

Average daily bite totals (# of bites) 232.4 334.3 211.8 259.5

Average bites per meal (# of bites) 24.5 28.3 30.8 27.8

Average daily eating duration (minutes) 71.7 100.6 62.4 78.2

Average duration of eating episodes (minutes) 7.5 8.54 9.1 8.4

Successful EMA-reported and wrist-detected eating matches (n) 29 174 102 101.7

*Note: Positive value indicative of weight loss, negative indicative of weight gain.
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time, although this is likely confounded with compli-

ance with EMA which is also known to decrease over

time.14

Wrist-based eating inference

Across three participants, there were 433 total days

with ActiGraph wear time. Per Table 1, participants

averaged approximately 85.9% of study days with

wear time (M¼ 144.3, SD¼ 22.9). On days with wear

time, participants averaged 9.7 hours of wear time per

day (SD¼ 1.7). Across participants, there were 47 total

days on which the ActiGraph battery was fully deplet-

ed (M¼ 15.7 days per participant, SD¼ 6.4), thus lead-

ing to partial days of wear time. Because the ActiGraph

requires re-initialization at the research center after the

battery is fully depleted, this led to an additional

66 days with no wear time (M¼ 22.0 days per partici-

pant, SD¼ 13.9).
See Table 1 for descriptive information on wrist-

inferred eating and eating characteristics. Participants

evidenced 3,412 wrist-inferred eating episodes over

24weeks, which corresponded to an average of 47.4

eating episodes per week per participant. See Figure 3

(panel c) for wrist-inferred eating episodes over time

across participants. While the pattern of wrist-

inferred eating episodes over time is likely influenced

by compliance with wearing the ActiGraph, these data

indicate that there could be individual variability in

eating patterns throughout a weight loss program.

Average total daily bites per participant was 259.5

(SD¼ 53.5), and participants averaged 27.8 bites per

meal (SD¼ 2.6). Average total daily eating duration

was 4694.8 seconds (SD¼ 976.5), which corresponds

to approximately 79minutes per day spent eating. Per

eating episode, participants evidenced an average

eating duration of 504.9 seconds (SD¼ 40.4), which

corresponds to approximately 8minutes per eating epi-

sode. Of note, these eating characteristics are generally

comparable to those found in previous lab studies,66

and lower than those found in previous free-living stud-

ies.31 While results from the full sample will be needed
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to draw definitive conclusions, discrepancies from pre-
vious studies could be due to small sample size,
improvements in eating inference and bite counting
algorithms over the lifetime of this research, and the
removal of the button press from the assessment
protocol.

Matching

We identified 78 total EMA-reported eating events that
could not be matched because the ActiGraph was not
worn when participants completed EMA (M¼ 26.0
across participants, SD¼ 10.0). Seven total EMA-
reported events were marked as errors (i.e., eating epi-
sodes reported into the future) and were removed. Of
note, all seven episodes were from one participant.
Using the two-hour window rule, 108 total matches
were removed (M¼ 36.0 across participants,
SD¼ 4.3) as “unsuccessful” matches. Thus, 61.9%
(n¼ 305) EMA-reported eating events were considered
to have “successfully” matched to wrist-inferred eating
events (M¼ 101.7 episodes matched, SD¼ 59.2). Table
1 depicts descriptive information for the frequency of
successfully matched eating episodes across partici-
pants. Figure 4 demonstrates the time difference, in
hours, between the EMA-reported eating and its
wrist-inferred eating match (e.g., an EMA-reported
eating episode at 2:00pm that was matched with a
wrist-inferred eating episode detected at 1:30pm
would have a time difference of -0.5 hours). Negative
time lag indicates that the EMA-reported episode
occurred after the wrist-detected match, positive time
lag indicates that EMA-reported episode occurred
before the wrist-detected match. As seen in Figure 4,
matches are roughly split with regarding to negative
and positive times. The average absolute time between
EMA- and wrist-eating matches was 0.5 hours
(SD¼ 0.5).

Discussion

The current study will be the first to capitalize on the
integration of EMA and passive sensing to characterize
dietary lapse during a behavioral obesity treatment. In
line with the NIH foci on improving measurement and
integrating approaches to capture dietary data, utiliz-
ing EMA, passive sensing tools (such as the wrist-based
eating inference), and dietary assessment together pro-
vides contextually rich data that can subsequently
inform a nuanced understanding of lapse behavior
and ultimately enable sophisticated “in-the-moment”
interventions for lapse.33,67–69 Our initial pilot data
provide evidence that combining EMA and wrist-
based eating inference methods to understand dietary
lapse is feasible and informative.

A major strength of our approach is combining pre-
viously validated dietary assessment tools (i.e., EMA
and 24-hour food recalls) with novel sensing technolo-
gies (i.e., wrist-based eating inference), which enhances
the scientific rigor of the project.32 The method of
wrist-based eating inference that we used has been
developed and validated over decades of research,
beginning with using a wrist watch device requiring a
button press for bite counting and now inferring eating
episodes and characteristics from continuous wrist
motion data.28,29,43 We supplement the wrist-based
eating inference with EMA, which is one of the most
valid and reliable tools for assessing individuals’ behav-
iors throughout the course of their daily lives and has
been used to study dietary lapses across approximately
seven other research studies.7,15,16,54,59,70,71 Finally, we
use a well-established method of dietary assessment,
the 24-hour food recall.52 The combination of these
tools is paramount because each method has the poten-
tial to overcome weaknesses of the others. For exam-
ple, wrist-based eating inference could be used in future
studies to identify underreporting of eating that may
occur via dietary recall or EMA.

Another strength is the size of this proposed work;
upon completion, this project will be one of the largest
(both with regards to sample size and duration) pub-
lished studies of objectively inferred eating and EMA-
reported lapses in free-living adults.32 Moreover, the
temporal granularity of our methods affords an
unprecedented amount of data that will allow us to
explore both within-person and time-varying associa-
tions between EMA-reported lapses and wrist-inferred
eating characteristics, as well as lapse behavior (both
subjectively reported and objectively detected) and
weight change.33
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There have also been general technical challenges
that are normative when using novel technology-
based assessment methods. The process of conducting
our pilot study and preliminary analysis helped us to
identify important considerations that will ultimately
lead to improvements to this work. Although we
would caution against using these data as indicators
of true population values given the small sample size
(n¼ 3), we were able to identify challenges with the
compliance with EMA and ActiGraph measurement
protocols and the EMA-wrist data matching process.

We observed moderate compliance with EMA and
good compliance with wearing the ActiGraph across
the study period. There could be several reasons for
missed EMA surveys, which likely contributed to
fewer lapse or meal recordings than we would expect.
To limit common obstacles in completing EMA, such
as device-related problems (e.g., low battery) and situ-
ational barriers (e.g., driving),72 the main trial now
includes more participant training in using the
LifeData app to report on eating occasions (e.g., a
Frequently Asked Questions document, periodic brief
refreshers on using LifeData and reporting on lapses at
treatment visits, specific instruction for using the ‘user-
initiated surveys’ function to report lapses and meals if
EMA notifications are missed due to situational bar-
riers). In addition to procedures to limit barriers for
completing EMA, monetary compensation has been
used in prior work to enhance participants’ motivation
to respond to surveys. Due to limited resources, we did
not provide compensation that was contingent on com-
pleting EMA or wearing the ActiGraph. Other studies
have combined compensation with frequent detailed
reports of progress (e.g., percentage of completed sur-
veys or hours of wear time) to enhance compli-
ance.7,13,71 Given the importance of good data quality
at this phase of the research, future studies should
strongly consider using these methods for enhancing
assessment compliance. Moreover, this study protocol
requires frequent and high-levels of EMA, which has
been supported in our prior work but nonetheless may
have been difficult for participants to complete.54,59

Future studies might also consider the trade-off
between more continuous assessment and participant
burden (e.g., completing EMA/wearing ActiGraph
every 2 or 3weeks instead of every week/biweekly),
which might mitigate the risk of non-compliance over
the long-term and ultimately enhance data quality.

With regards to the wearing the ActiGraph device,
there were two major technical barriers that likely
impacted participant wear time. First, the ActiGraph
battery does not last a full 24-hour period when collect-
ing data via IMU. Further, the ActiGraph battery
capacity tends to deplete after repeated days of IMU
use and re-initialization. As such, participants reported

having to start charging the ActiGraph prior to finish-
ing their day to prevent the battery from fully deplet-
ing. Second, the ActiGraph requires re-initialization
with proprietary software only available to the research
team if the device battery fully depletes. Thus, when the
battery died, participants were required to return the
device to the research center in-person as soon as pos-
sible, which often fell outside of their planned treat-
ment sessions. Together, these two factors likely led
to an inflation of non-compliance with ActiGraph
device wear and missing data on wrist-inferred eating
episodes. Future studies may consider utilizing other
commercially available smart watches (e.g., Samsung
Galaxy Smart Watch) that have better battery life
and do not require reactivation by the research team
after battery depletion.

Developing the methods for matching the EMA-
reported and wrist-inferred eating posed another inter-
esting challenge. In regards to matching, our pilot data
provided numerous important insights. As depicted in
Table 1 and Figure 3, wrist-inferred eating episodes far
out-number EMA-reported eating. This result is likely
due to respective error in both wrist-based eating infer-
ence and EMA-reported eating. After transitioning
away from the button press method (which incurred
burden but also helped to assess accuracy of ground
truth), our continuous wrist-based eating inference
algorithms currently make an estimated three to five
false positives per actual eating episode,29 thus over-
estimating eating. Conversely, EMA-reported eating
indicated approximately two eating episodes per day,
which is a likely indicator of underreporting. These ini-
tial data show that substantial work is still required to
actualize the potential of combining EMA and wrist-
based passive sensing to infer eating; this research
would benefit from improving the accuracy of each
assessment tool individually and the sophistication of
methods for combining the data. With regard to the
former, we are continuously refining our algorithms
for wrist-based eating inference (in other work not dis-
cussed here) which will ultimately enhance accuracy
and improve our ability to match with EMA in
future studies. With regard to the latter, we illustrate
below how our pilot data can begin to inform EMA-
wrist data matching approaches.

With our pilot data, we chose to use a simple algo-
rithm to match EMA and wrist-inferred eating episodes
that maximized data availability. Based on these data,
a “greedy” matching rule (i.e., matching each EMA-
reported eating episode to its nearest wrist-inferred
eating episode by time) was chosen for now because
it allows us to retain many matches. Of note, we
hope this will serve as a starting point for matching
rules that the larger trial can build from with greater
levels of sophistication. The notable drawback is that
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the two-hour window for matching EMA and wrist-
inferred eating episodes is still quite large. When data
collection for the main trial is complete, we plan to
formally evaluate the impact of this two-hour matching
rule (as compared to 90, 60, or 30-minute matching
rules) by comparing patterns of results across the dif-
ferent matching rules. Another strategy, which would
be ideal for larger datasets, would be to use more
robust analytical tools to fine-tune our simple decision
rule for matching EMA and wrist eating episodes by
searching for optimal matching algorithm parameters
such as thresholds, smoothing factors, or averaging
window sizes (genetic algorithms are one such tool;
they are often applied to biomedical data and time-
table problems to find the set of parameters that best
approximates the expected result).73,74

As evidenced by the EMA-wrist matches reported in
Table 1, another important insight from this work was
that the process of matching wrist- and EMA-eating
was more successful for some participants than
others. Such results may indicate that there will be indi-
vidual variability in the accuracy of EMA-reported
eating and/or wrist-inferred eating, thus making the
matching of the two data streams more difficult.
Given the challenges that arose with matching differing
data streams, future applications of this work would
benefit substantially from linking the wrist-based
eating inference and the EMA, such that detecting a
wrist episode triggers a survey to be sent to the partic-
ipants.34 While this technology has not yet been
developed for our wrist-based passive sensing tool, it
is well-within reach as it would require a program that
1) uses previously-developed algorithms in real-time to
infer eating episodes, 2) pushes a notification to the
participant, and 3) stores the survey response. This
innovation would eliminate the need for matching
EMA-reported and wrist-based eating episodes alto-
gether. In the meantime, future studies in this area
could consider utilizing both continuous eating infer-
ence and the manual button press method to ensure
access to ground truth information (although this
would require use of a smartwatch for wrist-based sens-
ing, as the ActiGraph does not contain the manual
button press feature).

Conclusion

The project is designed to accumulate large quantities
of longitudinal data regarding dietary lapse and pas-
sively sensed eating behavior throughout weight loss
and weight loss maintenance phases of behavioral obe-
sity treatment. Examples of potential research ques-
tions that will be tested using these data include:
distinguishing lapse from non-lapse eating episodes
using objective eating characteristics; investigating

types of eating behaviors that are associated with
weight change (subjective lapses, objective lapses, or
some combination of subjective and objective informa-
tion); evaluating the potential impact of completing
EMA on eating behavior by comparing objective
eating characteristics on EMA weeks to non-EMA
weeks; investigating individual differences with regards
to objective eating characteristics of lapse; and exam-
ining the time-varying nature of the above-described
associations (e.g., evaluating if objective eating charac-
teristics of a lapse differ between weight loss and weight
loss maintenance treatment phases). Additionally, the
use of a traditional dietary assessment tool, the 24-hr
food recall, will provide valuable information related to
the dietary composition of a lapse.32,75 Overall, this
study incorporates several cutting-edge methodologies
that are still being heavily refined due to some impor-
tant limitations, but we can already observe the tre-
mendous potential of this work. Data and methods
from the current study are expected to provide a foun-
dation for subsequent NIH-funded trials using these
technology-based assessment methods to understand
dietary lapses and other types of problematic eating.
Eventually, this research line will lead to the develop-
ment of novel technology-based interventions for tar-
geting problematic eating.
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