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Objective: The gut microecosystem is the largest microecosystem in the human body
and has been proven to be linked to neurological diseases. The main objective of this
study was to characterize the fecal microbiome, investigate the differences between
epilepsy patients and healthy controls, and evaluate the potential efficacy of the fecal
microbiome as a diagnostic tool for epilepsy.

Design: We collected 74 fecal samples from epilepsy patients (Eps, n = 24) and
healthy controls (HCs, n = 50) in the First Affiliated Hospital of Zhengzhou University
and subjected the samples to 16S rRNA MiSeq sequencing and analysis. We set up
a train set and a test set, identified the optimal microbial markers for epilepsy after
characterizing the gut microbiome in the former and built a diagnostic model, then
validated it in the validation group.

Results: There were significant differences in microbial communities between the
two groups. The α-diversity of the HCs was higher than that of the epilepsy
group, but the Venn diagram showed that there were more unique operational
taxonomic unit (OTU) in the epilepsy group. At the phylum level, Proteobacteria
and Actinobacteriota increased significantly in Eps, while the relative abundance
of Bacteroidota increased in HCs. Compared with HCs, Eps were enriched
in 23 genera, including Faecalibacterium, Escherichia-Shigella, Subdoligranulum
and Enterobacteriaceae-unclassified. In contrast, 59 genera including Bacteroides,
Megamonas, Prevotella, Lachnospiraceae-unclassified and Blautia increased in the
HCs. In Spearman correlation analysis, age, WBC, RBC, PLT, ALB, CREA, TBIL, Hb and
Urea were positively correlated with most of the different OTUs. Seizure-type, course
and frequency are negatively correlated with most of the different OTUs. In addition,
twenty-two optimal microbial markers were identified by a fivefold cross-validation of
the random forest model. In the established train set and test set, the area under the
curve was 0.9771 and 0.993, respectively.

Conclusion: Our study was the first to characterize the gut microbiome of Eps and
HCs in central China and demonstrate the potential efficacy of microbial markers as a
noninvasive biological diagnostic tool for epilepsy.

Keywords: epilepsy, gut microecosystem, microbial biomarkers, operational taxonomic unit (OTU), fecal
microbiome
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INTRODUCTION

The fecal microflora, as a major component of the gut
microecosystem, plays an important role in human health and
diseases and is also a significant regulator of environmental
factors affecting host disease risk. The gut microbiome is
closely related to and interacts with various organs and systems
of the human body, including the brain, lungs, liver, bones,
and cardiovascular system (Feng et al., 2018). As sequencing
and metabolomics technologies have improved and costs have
decreased, gut microbes have received more attention and
research. A growing body of clinical and preclinical evidence
indicated that gut microbiota regulated the development and
homeostasis of the central nervous system through immune,
circulatory, endocrine and neural pathways (Tremlett et al., 2017;
Lum et al., 2020), which played a key role in neuropsychiatric
disorders such as anxiety, depression, autism, Alzheimer’s
disease, multiple sclerosis, Parkinson’s disease, and stroke
(Benakis et al., 2016; Minter et al., 2016; Sampson et al., 2016;
Foster et al., 2017; Fung et al., 2017). In a study of infant
neurodevelopment (Carlson et al., 2018), cognitive function
at age 2 was significantly associated with the composition
of the microbiota 1 year earlier. Experiments in germ-free
mice also demonstrated that basic neural processes depend
on the composition of the microbiota (Luczynski et al.,
2016). Gut microbiome may also play a key role in aging
and neurodegeneration by modulating microglial activation
(Erny et al., 2015).

Epilepsy is a chronic neurological disease characterized by
recurrent seizures. Epidemiological statistics have indicated that
more than 50 million people worldwide suffer from this disease
(Perucca et al., 2020), which is associated with significant rates
of healthcare costs. The prevalence of epilepsy in China has
more than doubled in the past 20 years (Song et al., 2017),
and it is estimated that more than 2.4 million people suffer
from epilepsy annually. Both genetic and environmental factors
can influence an individual’s susceptibility to epilepsy, but the
exact causes in most people with epilepsy are unknown. In
addition, approximately 30% of Eps are resistant to traditional
antiepileptic drugs, indicating that the need for new treatments
and biomarkers for epilepsy research remains unmet (Chen et al.,
2018). According to the Chinese Guidelines for the Clinical
Diagnosis and Treatment of Epilepsy, the novel definition of
epilepsy has three elements: at least one seizure; a tendency
and susceptibility to recurrent seizures; and the corresponding
neurobiological, cognitive, psychological and social effects and
obstacles. A detailed clinical history and a reliable eyewitness

Abbreviations: OTU, operational taxonomic unit; Eps, epilepsy patients; HCs,
healthy controls; ILAE, International Anti-Epilepsy Alliance; PCR, polymerase
chain reaction; NMDS, nonmetric multidimensional scaling; PCoA, principal
coordinate analysis; LDA, linear discriminant analysis; LEfSe, linear discriminant
analysis effect size; KEGG, Kyoto Encyclopedia of Genes and Genomes; COG,
clusters of orthologous groups; HUMAnN, HMP unified metabolic analysis
network; SD, standard deviation; ROC, receiver operating characteristic curve;
POD, probability of disease; AUC, area under the curve; ANOSIM, analysis
of similarities; FDRs, false discovery rates; WBC, white blood cells; RBC, red
blood cells; PLT, platelets; ALB, albumin; CREA, creatinine; UA, uric acid; Hb,
hemoglobin; UREA, urea; EEG, electroencephalogram; TBIL, total bilirubin.

account of seizures are the basis for diagnosis. This diagnosis
is determined by a series of clinical characteristics, including
age of onset, seizure types, comorbidity, EEG, and imaging
features (Thijs et al., 2019). Among them, EEG is a very key
diagnostic tool, seizures are often accompanied by abnormal
EEG performance, and when it can’t capture habitual seizures,
interictal epileptiform discharges, such as spikes and sharp waves,
are often used to support the diagnosis of epilepsy. However, the
absence of interictal epileptiform discharges in conventional EEG
does not exclude the possibility of epilepsy, and only about 50%
of patients with a history of epilepsy had epileptiform discharges
in conventional tests (Chen and Koubeissi, 2019). This method,
which relies on subjective description and does not provide
adequate warning, has a very limited effect on the onset and
prevention of epilepsy. The complex etiology of epilepsy and the
lack of reliable human biomarkers have forced us to urgently
seek new strategies.

In recent years, with the development of sequencing
technology, the relationships between the composition, function
and metabolic potential of the microbiome and diseases
have been extensively studied. The diagnostic potential of
the gut microbiome for a variety of neurodevelopmental,
neuropsychiatric, and neurodegenerative diseases has been
confirmed by compelling studies, but only a few studies have
highlighted the distinctions between the fecal microbiota in Eps
and HCs, finding that the intestinal microbiota may play an
important role in epileptic seizures and thus may represent a new
target for drug therapy or a biomarker (Xie et al., 2017; Peng
et al., 2018; Lindefeldt et al., 2019), the diagnostic potential of the
gut microbiome for epilepsy needs to be further evaluated. The
objectives of this study were to investigate the differences in fecal
microbial composition between Eps and HCs and to verify the
efficacy of fecal microorganisms as a diagnostic tool for epilepsy
using several detected biomarkers.

MATERIALS AND METHODS

Participant Inclusion and Exclusion
Criteria
The study was designed and performed in accordance with
the PRoBE (prospective specimen collection and retrospective
blinded evaluation) design, the Helsinki Declaration, and the
Rules of Good Clinical Practice (Ren et al., 2019). Before
commencing the experiments, ethical clearance was sought from
the First Affiliated Hospital of Zhengzhou University, and the
study was approved (No. 2021-KY-0574-002). Written informed
consent was obtained from each enrolled participant.

A total of 24 patients with epilepsy from the outpatient
department of the First Affiliated Hospital of Zhengzhou
University were enrolled from June 2019 to October 2019, and
fecal samples were collected prospectively. Patients were included
if they met the following criteria: (1) met the 2005 ILAE criteria
for epilepsy; (2) had at least one epileptic seizure without a
fixed cause; (3) had a tendency toward recurrent attacks; and
(4) were first diagnosed as having epilepsy. Participants with
the following conditions were excluded: (1) other neurological
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conditions similar to epilepsy; (2) use of antibiotics or probiotics
in the past 3 months; and (3) a known history of chronic illness;
(4) pregnant and lactating women.

Fifty HCs from the physical examination department of the
First Affiliated Hospital of Zhengzhou University were also
enrolled in this study. Inclusion criteria: (1) good physical
condition, no special discomfort symptoms compared with
usual; (2) mentally normal, with normal expression ability; (3)
volunteer to participate in this study; Exclusion criteria: (1)
complicated with malignant tumors, serious cardiovascular and
cerebrovascular diseases, infectious diseases and other mental
and nervous system diseases; (2) younger than 18 years of age
or older than 80 years of age; (3) pregnant and lactating women;
(4) lack of relevant clinical information; (5) use of antibiotics or
probiotics in the past 3 months. Clinical information including
gender, age, seizure frequency, seizure types and clinical features
was registered prospectively. Fecal samples were prospectively
collected from the enrolled participants and subjected to 16S
rRNA MiSeq sequencing.

Fecal Sample Collection and DNA
Extraction
Fresh stool samples were collected from all participants. Each
stool sample was subjected to routine testing to assess stool
consistency (Vandeputte et al., 2017). The sample was divided
into five aliquots of 200 mg, placed in a DNA preservation tube
following the protocol recommended by the manufacturer, and
immediately stored in a −80◦ freezer within 2 h. A QIAamp
Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany) was used
to perform the DNA extraction (Tang et al., 2018).

Polymerase Chain Reaction
Amplification and MiSeq Sequencing
Extracted DNA was amplified with PCR in a 20-µL reaction
system. The V3-V4 hypervariable region of 16S rRNA was
targeted by the forward primer 5′-CCTACGGGNGGCWGCAG-
3′ and reverse primer 5′-GACTACHVGGGTATCTAATCC-3′.
PCR was conducted in an ABI Gene AmpR 9700 system (Thermo
Fisher Scientific, Waltham, MA, United States). Specifically, PCR
included 2 min at 95◦C followed by 30 cycles of denaturation
(95◦C for 30 s), annealing (55◦C for 30 s), and extension
(72◦C for 30 s) and a final extension at 72◦C for 5 min (Ren
et al., 2019). Samples were collected and subjected to quality
control by electrophoresis on a 2% (w/v) agarose gel, and
we used AxyPrepTM DNA gel (Axygen Scientific, Waltham,
MA, United States) and a PCR Cleanup System (Promega,
Madison, WI, United States) to extract and purify the bands.
The amplicons were then sequenced on the Illumina HiSeq
PE250 platform. The purified PCR products were mixed, and a
DNA library was constructed according to the manufacturer’s
instructions. Sequences were merged with the Illumina MiSeq
platform by Shanghai Mobio Biomedical Technology Co. Ltd.,
Shanghai, China (Ren et al., 2013), and raw Illumina read data
were deposited in the European Nucleotide Archive Database
of the European Bioinformatics Institute under accession
number PRJNA 701117.

Sequence Data Processing
The filtered reads were distributed to different samples based
on specific barcodes, and then the barcodes and primers were
removed. The paired-end sequenced reads of each library were
overlapped with the default parameters using FLASH v. 1.2.10
(Magoč and Salzberg, 2011). The combined sequence was
obtained, and the original data were quantitatively analyzed
for quality control. The overlapping reads generated by FLASH
were subjected to quality control to filter out mismatches in the
barcode/primer region, ambiguous bases, and reads with >5 in
the overlap region. Briefly, the sequences with an average quality
score less than 20, more than one ambiguous base, and a length
less than 220 bp or more than 500 bp were filtered out. The
read data were demultiplexed and assigned to different samples
according to the barcodes. Chimeric sequences were also detected
and removed using UCHIME v. 4.2.40 (Edgar et al., 2011).
All remaining sequences were then clustered into operational
taxonomic units (OTUs) according to sequence similarity after
singleton removal. The Broad Institute 16S “gold standard”
database was used as a reference (Microbiome, Util - r20110519
version1) to match the operational classification units (OTUs).

Operational Taxonomic Unit Clustering
and Taxonomic Annotation
Equal numbers of reads were randomly selected from all
the samples; among them, a large number of sequences and
singletons were sifted out. The unique sequences were clustered
into OTUs by using the “usearch-CLUster-otus” command, the
selected sequence was compared with the OTU sequences by
using the “usearch-usearch-global-ID 0.97” command, and the
identity threshold was set to 0.97. Then, the OTU composition
table was created (Lu et al., 2019). After the OTUs were binned
with the UPARSE pipeline (Edgar, 2013), we counted the gross
OTUs at each taxonomic level (phylum, class, order, family, and
genus). The results are presented in a statistical table listing the
OTU sequence numbers of each sample.

Bacterial Diversity and Taxonomic
Analysis
A rarefaction curve was plotted to compare microbial community
richness among the samples and validate the sequencing data.
Similarly, a Shannon–Wiener curve and rank-abundance curve
were used to verify the data quality of the samples. The Venn
program was used to identify the overlap and uniqueness of
OTUs in the two groups. The within-sample diversity (i.e.,
α-diversity) was calculated by the Chao1 index, ACE index,
Shannon index and Simpson index using the R program package
‘vegan.’ Distance matrices (i.e., β-diversity) were obtained by
both the weighted and unweighted unifrac distance metrics and
visualized by PCoA. PCoA, which was conducted in R2, is
functionally similar to NMDS analysis. Unifrac uses phylogenetic
information to assess community differences between samples.
Weighted unifrac takes the abundance of sequences into account,

1http://drive5.com/uchime/gold.fa
2http://www.R-project.org/
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whereas unweighted unifrac does not. The Wilcoxon rank-sum
test R function was used for statistical comparisons of the two
groups. Dominant species heat map was plotted with Heat
map Builder. Microbial community bar plots were generated
by species composition analysis. We compared the sequences
with MUSCLE and used Fast Tree MP to generate an unrooted
phylogenetic tree with a generalized time-reversible (gtr) model.
The phylogenetic tree was rerooted by using a custom Perl script
furnished by Microbes Online (reroot.pl)3.

Bacterial classification, analysis and comparison were
conducted between the EP group and the HC group at the
phylum, class, order, family and genus levels. The bacterial
compositions in individual samples and the two groups were
both plotted. The Wilcoxon rank-sum test was also used to
compare the epilepsy group and the HC group. LDA was
conducted using the LEfSe method to characterize the fecal
microbiomes. The LEfSe method combined both statistical
significance (Kruskal test and Wilcoxon test) and LDA to
measure the magnitude of differentiation between groups.
The threshold LDA score for discriminative features was
3.0 [(log10) = 3]. The LEfSe method and LDA were used to
characterize the fecal microbiota, and LDA was used to screen
key microbial markers.

Gene Function Prediction
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) was used to predict the metabolic
functions of the bacterial flora and 16S rRNA gene sequences in
the KEGG, COG, and Rfam databases. Data were then entered
into the HUMAnN to find significant differences in KEGG
ortholog (KO) abundances. This approach predicts the metabolic
functions of bacteria and ancient bacteria by comparing the
16S rRNA gene sequencing data against a reference database of
microbial genomes with known metabolic functions.

The annotation information corresponding to each functional
spectrum database per sample and the abundance matrix for the
predicted functional groups may be obtained from the prediction
results of PICRUSt. Relative differences in 16S rRNA gene copy
number among species were considered during the prediction
process. The original species abundance data were corrected to
enhance prediction accuracy and reliability (Wang et al., 2018).
The biological metabolic pathway analysis database (KEGG
PATHWAY Database) is the core of the KEGG database, in
which metabolic pathway categories include Metabolism, Genetic
Information Processing, Environmental Information Processing,
Cellular Processes, Organismal Systems, and Human Diseases.

Operational Taxonomic Unit Biomarker
Identification and Probability of Disease
Determination
A random forest model was used to select significantly different
OTUs in each sample group. The generalization error was
estimated by a fivefold cross-validation. An OTU frequency
profile was generated by mapping reads from the Eps and HC

3www.microbesonline.org/programmers.html

FIGURE 1 | Study design and flow diagram. A total of 104 fecal samples from
Central China were collected. After a strict diagnosis and exclusion process,
24 patients with epilepsy and 50 healthy controls were included and randomly
divided into the train set (n = 50) and test set (n = 24). In the train set, we
characterized gut microbiome among 13 epilepsy patients and 37 healthy
controls and identified microbial markers and constructed epilepsy classifier
by random forest model. In test set, 13 healthy controls and 11 epilepsy
patients were used to validate diagnosis efficacy of epilepsy classifier. RFC,
random forest classifier.

groups onto these represented sequences (Fouhy et al., 2019).
A cross-validation error curve was plotted after a fivefold cross-
validation. The cutoff point was that with the lowest cross-
validation error. The sum of the minimum error and the SD
at the corresponding point was defined as the cutoff value.
All sets of OTU markers with errors below the cutoff value
(≤30) are listed. The optimal set with the fewest OTUs, which
revealed the differences between the two groups with the highest
accuracy, was identified.

Subsequent analyses, such as ROC analysis, were then
performed. Statistical significance was determined with a
Wilcoxon rank-sum test (P < 0.05) (Deschasaux et al., 2018). The
POD index was defined as the ratio of the number of randomly
generated decision trees predicting samples as “Epilepsy” to that
of HCs. The ROC curve was plotted to evaluate the diagnostic
efficacies of the selected biomarkers, and the AUC was also
calculated using pROC (R 3.8.1) (Tilg et al., 2018).

Statistical Analysis
SPSS v. 20.0 (IBM Corp., Armonk, NY, United States) was
used to process the data. The statistical significance of the
differences between groups was calculated. Wilcoxon rank-
sum tests were conducted to compare the continuous variables
between groups. Fisher’s exact test was used to compare
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TABLE 1 | Characteristics of the participants in this study.

Characteristics Epilepsy
(n = 24)

Healthy
controls
(n = 50)

P-Value

Age, mean (±SD) 30.21 (15.53) 30.1 (5.72) 0.358

Gender

Female, n (%) 7 (29%) 15 (30%) 0.941

Male, n (%) 17 (71%) 35 (70%)

Seizure type (n, %)

Generalized 17 (71%) – –

Simple partial seizure 3 (12.5%) – –

Complex partial seizure 4 (16.7%) – –

Frequency (seizures per 3 months) (n, %)

0–4 16 (66.7%) – –

5–12 0 (0%) – –

13–52 2 (8.3%) – –

>52 6 (25%) – –

Clinical index, mean (±SD)

WBC 6.09 (1.86) 5.52 (1.08) 0.959

RBC 4.41 (0.44) 4.90 (0.49) <0.0001

Hb 135.29 (15.45) 146.55 (16.10) 0.009

PLT 214.36 (42.49) 239.1 (30.75) 0.009

ALB 45.47 (5.67) 47.49 (3.95) 0.001

UREA 4.53 (1.62) 4.85 (1.30) 0.137

CREA 63.26 (14.45) 75.11 (12.93) 0.001

UA 269.74 (96.34) 306.42 (83.07) 0.074

TBIL 8 (4.40) 9.39 (5.33) 0.299

SD, standard deviation; WBC, white blood cells; RBC, red blood cells; Hb,
hemoglobin; PLT, platelets; ALB, albumin; UREA, urea; CERA, creatinine; UA, uric
acid; TBIL, total bilirubin.

categorical variables between groups. Spearman’s rank test was
used for the correlation analysis.

RESULTS

Characteristics of the Participants
After rigorous screening and exclusion, a total of 74 participants
were enrolled, including 24 Eps and 50 HCs. The process

and flow chart are shown in Figure 1. The Eps were mainly
men, and their seizure types mainly included the following:
(1) simple partial seizures (conscious patients, with seizures
mainly manifested as paroxysmal paresthesia or local muscle
twitches); (2) complex partial seizure (patients exhibited fuzzy
consciousness and performed some activities without purpose);
and (3) overall stiffness and clonus (the clinical symptoms of
the patients were loss of consciousness, limb tics and foaming
at the mouth). Moreover, we divided the participants into four
grades according to the frequency of seizures within 3 months:
grade 1 (0–4 times), grade 2 (5–12 times), grade 3 (13–52
times), and Grade 4 (>52 times). Fecal samples were collected
prospectively. The baseline clinical characteristics of the two
groups are shown in Table 1.

Data Quality and Intestinal Microbial
Diversity in Patients With Epilepsy
The rank-abundance curve and Shannon–Wiener curve showed
species diversity in epilepsy group and HC group. The curve
was smooth and the species uniformity was good. However,
the rarefaction curve and the species accumulation (Specaccum)
curve showed that the sample size of the epilepsy group was small,
and it was better to increase the sample size for more complete
studies (Supplementary Figure 1). We measured α-diversity
in two groups through five indicators, which mainly reflected
the number, abundance and evenness of species in the samples
(Supplementary Data 1). According to Shannon and Simpson
index, gut microbial diversity in HCs was significantly higher
than that in epilepsy group (P < 0.01; Figures 2A,B). Venn
diagram (Figure 2C) showed that the number of OTU shared
by the two groups was 1184. In total, 2181 OTUs were unique
to the epilepsy group, while only 65 OTUs were unique to the
HC group, indicating that there were significant differences in
microbial composition between the two groups.

Differences in the Fecal Microbiome
Between Patients With Epilepsy and
Healthy Individuals
Nonmetric multidimensional scaling analysis and PCoA based
on the distribution of the OTUs were conducted to illustrate the

FIGURE 2 | α-Diversity in the fecal microbiota of Eps (n = 24) and HCs (n = 50). (A) The Shannon index was higher in HCs, indicating that the α-diversity of HCs was
higher. (B) The higher the Simpson index is, the lower the microbial diversity. Therefore, the Eps had a lower diversity than the HCs. (C) The Venn diagram displaying
overlap between the two groups showed that 1184 of the 3430 OTUs were shared between the Eps and HCs (blue). A total of 2181 of the 3430 OTUs were unique
to Eps. Eps, patients with epilepsy; HCs, healthy controls; OTUs, operational taxonomic units.

Frontiers in Microbiology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 696632

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-696632 January 3, 2022 Time: 12:42 # 6

Cui et al. Gut Microbiome and Epilepsy

FIGURE 3 | Differences in fecal microbiomes between Eps (n = 24) and HCs (n = 50). (A) β-Diversity was calculated by NMDS analysis of unweighted UniFrac
distances. Samples from the Eps and HC (blue) groups were distinctly separated along the NMDS2 axis, which means that individuals with epilepsy were
substantially different from healthy individuals. (B) PCoA of unweighted UniFrac PC1-2 showed that the samples from the Eps and HC (blue) groups were distinctly
separated along the PC2 axis, which means that the overall fecal microbiota compositions were markedly different between Eps and HCs. (C) ANOSIM showed that
there were significant differences between the two groups (R = 0.526, P = 1e-04). Each symbol represents a sample (red, Eps; blue, HCs). The variance explained by
the PCs is indicated by parentheses on the axes.

FIGURE 4 | Heat map of the relative abundances of differential OTUs between Eps (n = 24) and HCs (n = 50). For each sample, the columns show relative
abundance data for differential OTUs on the right. The relative abundance of each OTU was used to plot the heat map (blue, low abundance; red, high abundance).
Group data are shown above the plot: HCs, right, blue line; Eps, left, red line. Each row represents one OTU. Eps, patients with epilepsy; HCs, healthy controls;
NMDS, nonmetric multidimensional scaling; PCoA, principal coordinate analysis; ANOSIM, analysis of similarities; OTUs, operational taxonomic units.
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FIGURE 5 | Composition and comparison of fecal microbiomes in Eps (n = 24) and HCs (n = 50). Composition of the fecal microbiota at the (A) phylum and (C)
genus levels in Eps versus HCs. Comparison of the fecal microbiota at the (B) phylum between the two groups. Significant differences in the abundance of
predominant genera between Eps and HCs (blue). The average abundance of each bacterium is depicted as the mean ± SE. P-values were calculated by a
Wilcoxon rank-sum test and are shown in the Supplementary Data. *P < 0.05; ***P < 0.001; Eps, patients with epilepsy; HCs, healthy controls.

microbiome space of different samples. β-diversity was mainly
demonstrated by unweighted unifrac-based NMDS and PCoA.
The fecal microbial communities in patients with EPs and
HCs (blue) were separated along the NMDS2 axis (Figure 3A),
indicating that the fecal microflora differed significantly between
the two groups. In the PCoA diagram (Figure 3B), samples
from the Eps and HC (blue) groups were separated on the PC2
axis, and the contribution rate of PC2 to sample separation
was 12.9%, which also confirmed a significant difference in
the fecal microbial community between the two groups. In
the ANOSIM (Figure 3C), R = 0.526 and P = 1e-04, so the
difference between the two groups was statistically significant.
The microbial community heat map (Figure 4) showed
that 14 OTUs, including Subdoligranulum, Faecalibacterium,
Enterobacteriaceae-unclassified and Escherichia-Shigella, were
more abundant in Eps than HCs. In contrast, 33 OTUs, including

Blautia, Lachnospiraceae-unclassified, Parabacteroides, Collinsella
and Bacteroides, were enriched in the HCs compared with Eps.

Composition and Comparison of Fecal
Microbiomes in Patients With Epilepsy
and Healthy Controls
According to the OTU annotations of each fecal sample, the
relative microbial abundance of all samples at the phylum,
class, order, family and genus levels was calculated. A Wilcoxon
rank-sum test was used to analyze the significant difference in
microbial composition between groups. FDRs and q values were
calculated for P (Cohen et al., 2019). The average compositions
and relative abundances of the microbial community in the
two groups at the phylum and genus levels are shown in
Supplementary Figure 2. At the phylum level (Figure 5A),
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FIGURE 6 | LEfSe analysis and LDA based on OTU characterizations of the microbiota in Eps (n = 24) and HCs (n = 50). (A) Cladogram generated by the LEfSe
method showing the phylogenetic distribution of fecal microbiomes associated with Eps and HCs. Each filled circle represents one phylotype. Phylum and class are
indicated by names on the cladogram. Order, family, and genus are listed in the right panel. Circle size is proportional to phylotype abundance. By default, the
taxonomic levels are arranged outward from phylum to genus. Red circles on the branches represent microbial communities playing pivotal roles in epilepsy. Green
circles represent microbial groups playing important roles in HCs. Yellow circles represent microbial groups of little significance in either group. The default criteria
LDA > 3 and P < 0.05 indicate different species and a higher abundance in one group than in the other. (B) Histogram of LDA scores calculated for selected taxa
showing significant differences in microbe type and abundance between Eps (green) and HCs. LDA scores on a log10 scale are indicated at the bottom. The
significance of the microbial marker increases with the LDA score. Eps, patients with epilepsy; HCs, healthy controls; OTUs, operational taxonomic units; LEfSe,
linear discriminant analysis effect size; LDA, linear discriminant analysis.

the bar plots revealed that the cumulative average proportion
of Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota
accounted for more than 98% in the two groups. There were no
significant changes between the groups in terms of Firmicutes
(P > 0.05). However, the relative abundance of Bacteroidota in
the HCs was higher than that in the Eps, while those of the
Proteobacteria and Actinobacteriota in the Eps was higher than
those in the HCs (all P < 0.05, Figure 5B). The composition
(Figure 5C) and comparison (Supplementary Figure 3D) of fecal
microflora of the two groups at the genus level were also shown.
At the genus level, Bacteroides, Faecalibacterium, Megamonas,
Prevotella, Lachnospiraceae-unclassified, Escherichia-Shigella, and
Subdoligranulum accounted for >50% on average in both groups
(Supplementary Data 2–4).

At the class level, four bacterial groups, including Bacteroidia,
Negativicutes, Bacilli, and Coriobacteriia, had a higher relative
abundance in the HCs, while three bacterial groups, including
Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria,
were enriched in the Eps. At the order level, 11 bacterial
groups, including Lachnospirales and Bacteroidales, had a higher
abundance in the HCs, whereas six bacterial groups, including

Enterobacteriales and Bifidobacteriales, were enriched in the Eps.
The fecal microorganisms in the two groups were also different at
the family level, indicating that there were significant differences
between the Eps and the HCs (Supplementary Data 5–8 and
Supplementary Figures 3A–C).

Phylogenetic Characteristics of the Fecal
Microbial Communities in Epilepsy
Patients
Linear discriminant analysis effect size analysis (Figure 6A) and
the LDA genus score (Figure 6B) confirmed that 48 microbial
biomarkers clearly distinguished Eps and HCs. Moreover, the
divergence between the two groups was highly significant
(P < 0.05). Biomarker names, LDA scores, log values and
P-values are shown in Supplementary Data 9.

In the cladogram (Figure 6A) drawn by the LEfSe method,
the phylogenetic distribution of the intestinal microbiota in
patients with EPs (green) and HCs (Jandhyala et al., 2015) is
shown. In the epilepsy group, microbes such as c-Actinobacteria,
c-Gammaproteobacteria, o-Bifidobacteriales, o-Clostridia-
unclassified and f-Bifidobacteriaceae had obvious advantages,
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FIGURE 7 | Functional analysis of predicted metagenomes. Differentially
abundant KEGG pathways across Eps (n = 24) and HCs (n = 50) identified by
the LEfSe method. Histogram of LDA scores calculated for selected pathways
showing significant differences in gene functions between Eps (green) and
HCs. LDA scores on a log10 scale are indicated at the bottom. The
significance of the microbial marker increases with the LDA score. Eps,
patients with epilepsy; HCs, healthy controls; OTUs, operational taxonomic
units; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant
analysis.

while in the healthy group, microbes such as c-Coriobacteriia,
o-Bacteroidales and f-Rikenellaceae had obvious advantages.
The LDA score in Figure 6B shows that there was a significant
difference in genera between Eps and HCs. Twelve genera,
including Escherichia-Shigella, Enterobacteriaceae-unclassified,
Halomonas, and Bifidobacterium, predominated in Eps,
whereas 36 genera, including Lachnospiraceae-unclassified,
Bacteroides, Blautia and Lachnospira, predominated in HCs
(P < 0.05; LDA > 3).

Gene Function Analysis
To elucidate the functional and metabolic alterations of the
intestinal microbiomes between the Eps and HC groups,
metagenomes were next inferred from the 16S rRNA data,
and the functional potential of the gut microbiota was
analyzed. LEfSe analysis was used to identify the differential

abundant KEGG pathways between the Eps (n = 24) and
HCs (n = 50) (Figure 7). At level 3, 21 pathways, including
other-glycan-degradation, secondary-bile-acid-biosynthesis and
D-Arginine-and-D-ornithine-metabolism were enriched in the
HCs (P < 0.05; LDA > 3). Twenty-six pathways, including
oxidative-phosphorylation, drug-metabolism-other-enzymes,
systemic-lupus-erythematosus, and beta-alanine-metabolism,
were enriched in Eps (P < 0.05; LDA > 3).

Correlations Between the Fecal
Microbiome and Clinical Characteristics
To analyze correlations between OTUs and the clinical
characteristics of individuals with epilepsy, Spearman’s rank test
was performed to consider potential drivers such as age, gender
and course. The distance correlation plots in Figure 8 revealed
partial Spearman correlation coefficients among 38 OTUs and
12 clinical indices, such as gender, seizure, course, frequency,
and WBC. We used at least one correlation coefficient greater
than 0.4 and P < 0.05 as the criteria for correlation. Seven
of the clinical indicators had higher correlations with OTUs:
Seizure-type, course and frequency are strongly correlated with
all 38 OTUs, and negatively correlated with the same 31 OTUs,
but positively correlated with the remaining seven OTUs. In
addition, age, ALB, TBIL, Hb, and Urea were only positively
correlated with part of OTUs. WBC, RBC, PLT, and CREA
were positively correlated with some OTUs and negatively
correlated with some OTUs. Interestingly, their related OTUs
overlapped. And their negative correlation OTUs is the positive
correlation OTUs of seizure-type, course and frequency. OTU69
(Blautia), OTU72 (Lachnospiraceae-unclassified), OTU98
(Lachnospiraceae-unclassified), and OTU322 (Blautia) are
strongly correlated with more than half of the clinical indicators
and may be the focus of research (Supplementary Data 10).

Potential Use of Fecal
Microbiome-Based Signatures in
Epilepsy Diagnosis
A minimum OTU combination was identified to assess
the potential of gut microbial markers as a noninvasive
diagnostic tool for epilepsy. A cross-validation curve of
the random forest model revealed 22 OTU biomarkers,
namely, OTU2944 (Lachnospiraceae-unclassified),
OTU117 (Parabacteroides), OTU3 (Halomonas), OTU45
(Lachnospiraceae-unclassified), OTU322 (Blautia) and OTU35
(Collinsella), etc. (Figure 9A and Supplementary Data 11).
The mean decrease in accuracy and mean decrease in the Gini
coefficient in the stochastic decision forest model showed the
distribution of OTU importance (Figure 9B). The POD index
was calculated using the microflora data and 22 OTU biomarkers
and found to be markedly higher in the Eps group than in the HC
group (Figures 9C,E). The ROC constructed with the training set
showed that the AUC was 0.9771 and the 95% confidence interval
was 0.9384–1 (P < 0.0001) (Figure 9D). For the test set, the
AUC was 0.993, and the 95% confidence interval was 0.9736–1
(P < 0.001) (Figure 9F). These data validated the significant
diagnostic potential of gut microbial markers for epilepsy.
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FIGURE 8 | Correlation analysis of differential OTUs and clinical characteristics of epilepsy patients. Heat map showing partial Spearman’s correlation coefficients
among 38 OTUs and clinical indices. Positive values indicate positive correlations. Negative values (blue) indicate inverse correlations. Solid lines represent P ≤ 0.01.
Dotted lines represent 0.01 < P ≤ 0.05. The intensity of shading in circles is proportional to the magnitude of the association. Correlation direction was determined
by Spearman’s method. Eps, patients with epilepsy; WBC, white blood cells; RBC, red blood cells; Hb, hemoglobin; PLT, platelets; ALB, albumin; UREA, urea;
CERA, creatinine; UA, uric acid; TBIL, total bilirubin.

DISCUSSION

Epilepsy is a complex condition with multiple risk factors and
strong genetic predisposition, and more than 75% of people
with active epilepsy go untreated in low- and middle-income
countries, constituting a major treatment gap (Saxena and Li,
2017). Epilepsy is a major burden in terms of quality of life,
morbidity and mortality risk. However, most of the studies on
the relationship between intestinal microbiome and neurological
diseases are focused on Alzheimer’s disease, Parkinson’s disease
and autism, and there are few studies on the intestinal
microecology of epilepsy. Reports of ketogenic diet therapy for
epilepsy (Neal et al., 2008; Ang et al., 2020) have increased the
focus of future research on the potential role of microbiota as
a mediator of epilepsy. In our study, after rigorous screening,
a total of 24 patients with EPs and 50 HCs were selected. We
collected stool samples from the participants, sequenced the 16S
rRNA and divided them into a training set and a validation
set. The best biomarkers were sought and diagnostic model was
constructed in the former, then validation was made in the test

set. Our study is the first to elucidate the differences in gut
microbiota between epileptic patients and healthy controls in
central China. In the world to provide objective basis and support
for the study of epilepsy and intestinal microbe. Although the
number of participants was small, it injected its own strength
into the ocean and provided evidence and guidance for more
studies in the future.

To date, there have been only a few reports on epilepsy and
intestinal microecology. Among these studies, Xie et al. (2017),
which mainly considered intractable epilepsy in babies, revealed
that the relative abundances of Firmicutes and Proteobacteria
increased, while those of Bacteroidetes and Actinobacteria
decreased. Most of the results of our study confirm those
in previous reports, but there are some new findings that
show some differences and advantages compared with the
results of other similar studies. At the phylum level, compared
to those in HCs, Proteobacteria and Actinobacteriota in the
Eps were significantly increased, while Bacteroidota abundance
was significantly increased in HCs. Twenty-three genera were
enriched in the Eps while fifty-nine genera were increased in the
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FIGURE 9 | Identification of microbial OTU-based Ep markers by random forest models. (A) 22 OTUs were selected by random forest models as the optimal
epilepsy biomarkers. (B) Importance distribution map of the selected microbial markers in the model. (C) POD was significantly higher in Eps than HCs in the training
set. (D) The POD index had an AUC = 0.9771 with a 95% CI = 0.9384–1 between Eps and HCs in the training set. (E) POD was significantly higher in Eps than HCs
in the test set. (F) The POD index had an AUC = 0.993 with a 95% CI = 0.9736–1 between Eps and HCs in the test set. Eps, patients with epilepsy; HCs, healthy
controls; OTUs, operational taxonomic units; CV error, cross-validation error; POD, probability of disease; AUC, area under the curve.

HCs. We identified 22 microbial markers for the diagnosis of
epilepsy. Moreover, the POD values indicated that the incidence
in the epilepsy group significantly increased. The AUC for
the training set reached 0.9771, and the AUC for the test
set reached 0.993.

The differences in our study compared with others can
be attributed to regional differences. Regional differences are
the main factors affecting intestinal microecology, and the
results may vary with different patients from different areas. In
addition, the small sample size may also have a certain impact,
and more trials are necessary. Exogenous factors can affect
intestinal microbiome to increase seizures, such as diet, infection
(Ahlers et al., 2019) and antibiotic use (Nørgaard et al., 2012),
among which carbapenems (Cannon et al., 2014), imipenem,

and meropenem (Owens, 2008; Leibovitch and Jacobson, 2015)
are all highly associated with seizures. Although we excluded
people with infections and those using probiotics and antibiotics
when selecting subjects, there was no guarantee of diet or
environmental effects.

By participating in the physiology and pathology of cellular
organisms, microbiome exerts certain influence on disease
and health. In terms of the nervous system, several studies
have demonstrated the importance of the gut microbiome. In
particular, the microbiota–gut–brain axis is proposed to link
the microbiome with the intestine and brain as a whole, and
explore the possible mechanisms and pathways. This two-
way communication signal transmission mechanism is complex,
including neural, endocrine, immune and metabolic pathways
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(Grenham et al., 2011; El Aidy et al., 2015). Ma et al. (2019)
found that changes in the composition of intestinal flora
contributed to inflammation by regulating innate immunity,
especially NF-κB signaling, while restoring unbalanced intestinal
flora alleviates symptoms (Sanz and Moya-Pérez, 2014; Jang
H.M. et al., 2018; Jang S.E. et al., 2018). People who cut the
vagus nerve, which connects the gut to the spinal cord, have a
reduced risk of certain neurological conditions (Svensson et al.,
2015). In addition, increased intestinal and blood-brain barrier
permeability caused by dysbiosis of the microbiome may mediate
or influence the onset of AD and other neurodegenerative
diseases (Angelucci et al., 2019). Bacteria in the gut flora can
secrete large amounts of amyloid and lipopolysaccharide, which
may help regulate parts of signaling pathways and production of
pro-inflammatory cytokines.

Our experiment revealed a difference in intestinal
microecology between Eps and HCs in central China, and
it was found that Proteobacteria and Actinobacteriota were
significantly increased in the Eps, while Bacteroidota abundance
was significantly increased in HCs. These results are convenient
for diagnosis of epilepsy and targeted treatment of patients with
epilepsy. However, our experiment also had some shortcomings.
The sample size was insufficient. The only thing we can do is
expand the sample size and try to improve the standardization
of the sampling procedure to minimize the influence of other
interference factors. Therefore, a more systematic study should
be conducted on a large random sample of individuals from
different regions and with different eating habits, genders and
ages. Moreover, individual microbiology is associated with many
confounding factors, such as time, diet, and the environment.
This has been shown in multiple studies (Ren et al., 2019, 2020;
Lou et al., 2020; Rao et al., 2020). In particular, Ang et al.
(2020) conducted gene sequencing and metabolomics analysis
on fecal samples and found that the structure and function
of the intestinal microbial community changed significantly
during ketogenesis, indicating that diet does interfere with
intestinal microecology.

CONCLUSION

In summary, our study highlighted the differences in the
fecal microbiota between patients with EPs and HCs and
analyzed them at the phylum and genus levels, revealing twenty-
two biomarkers that distinguish patients with epilepsy from
healthy subjects and thus providing a noninvasive method for
diagnosing epilepsy.
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