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Abstract: Discrimination of Streptococcus pneumoniae from other Streptococcus mitis group (SMG)
species is still challenging but very important due to their different pathogenic potential. In this study,
we aimed to develop a matrix-assisted laser desorption/ionization time-of-flight mass spectrome-
try (MALDI-TOF MS)-based optochin susceptibility test with an objective read-out. Optimal test
performance was established and evaluated by testing consecutively collected respiratory isolates.
Optochin in different concentrations as a potential breakpoint concentration was added to a stan-
dardized inoculum. Droplets of 6 µL with optochin and, as growth control, without optochin were
spotted onto a MALDI target. Targets were incubated in a humidity chamber, followed by medium
removal and on-target protein extraction with formic acid before adding matrix with an internal
standard. Spectra were acquired, and results were interpreted as S. pneumoniae in the case of optochin
susceptibility (no growth), or as non-S. pneumoniae in the case of optochin non-susceptibility (growth).
Highest test accuracy was achieved after 20 h incubation time (95.7%). Rapid testing after 12 h
incubation time (optochin breakpoint 2 µg/mL; correct classification 100%, validity 62.5%) requires
improvement by optimization of assay conditions. The feasibility of the MALDI-TOF MS-based
optochin susceptibility test was demonstrated in this proof-of-principle study; however, confirmation
and further improvements are warranted.

Keywords: Streptococcus pneumoniae; MALDI-TOF mass spectrometry; optochin susceptibility testing;
rapid test; DOT-MGA

1. Introduction

The genus Streptococcus comprises more than 100 different species and it is to be ex-
pected that further species will be discovered [1]. Differentiation of Streptococcus pneumoniae
from other Streptococcus mitis group (SMG) species in clinical diagnostics is still challenging,
but of major relevance due to their different pathogenic potential [1]. Various experimental
approaches for discrimination of S. pneumoniae, e.g., bile solubility, optochin susceptibility,
biochemical or molecular methods, are applied in clinical diagnostics, with their respec-
tive advantages and limitations [1]. Even the matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) as an accurate and rapid method
has limitations in differentiating S. pneumoniae from other SMG streptococci [1–8]. As a
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MALDI-TOF MS instrument is now available in many diagnostic laboratories [9–13], it is
useful to develop further assays on the same platform, besides standard species identifica-
tion. Since most S. pneumoniae isolates are optochin susceptible [1], optochin susceptibility
testing by disk diffusion is recommended by WHO for discrimination of S. pneumoniae [14].
However, no consensus guidelines exist for standardized performing and interpreting of
the assay [15]. In this study, we aimed to investigate whether the differentiation of pneu-
mococci from other SMG members is possible using the recently described MALDI-TOF
MS-based direct-on-target microdroplet growth assay (DOT-MGA) [16]. We thereby sought
to determine optimal test conditions and workflow, followed by confirmation of these
assay conditions, testing consecutively collected clinical isolates.

2. Materials and Methods
2.1. Bacterial Strains

Five reference strains (S. pneumoniae ATCC 20566, S. pneumoniae ATCC 49619, S. mi-
tis DSM 12643, S. pseudopneumoniae DSM 18670, S. oralis DSM 20627), as well as eight
consecutively collected blood culture isolates from clinical diagnostics of the Institute of
Medical Microbiology (University Hospital Münster, Münster, Germany) [17] comprising
four pneumococci and four SMG streptococci (Table S2), were used to establish optimal
test conditions and for determination of optochin breakpoint concentration (development
set). In an additional confirmation study, 24 consecutive respiratory isolates from clinical
diagnostics of the Institute of Medical Microbiology of the University Hospital Münster,
including 12 pneumococci and 12 other SMG streptococci (Table S3), were used to evaluate
test performance (test set). Only one isolate per patient was included. Cultivation of
isolates was carried out on Columbia Blood Agar at 35 ± 1 ◦C in 5% CO2.

2.2. Species Identification by Molecular and Biochemical Method

Species identification was performed by standard molecular methods. sodA gene
sequencing was carried out for confirmation of streptococcal isolates. rpoB gene sequencing
was performed for differentiation between S. pneumoniae and S. pseudopneumoniae. Au-
tolysin (lytA) and pneumolysin (ply) were detected using endpoint PCR. PCR amplification
protocols and primer sequences were used as previously described [17]. NCBI’s Basic Local
Alignment Search Tool [18] was used for analysis of sequences. Additionally, biochemical
identification of all isolates was performed by the Vitek 2 instrument using GP ID cards
(#21342, bioMérieux, Marcy l’Etoile, France) according to the manufacturer’s instructions.

2.3. Bile Solubility Testing

A classical bile solubility tube test and bile solubility plate test were performed as
previously described [1]. Briefly, for the bile solubility tube test, 0.5 mL of a McFarland
0.5–1.0 suspension in 0.9% NaCl was mixed with 0.5 mL of 10% sodium deoxycholate
(Sigma Aldrich, Darmstadt, Germany) in a small tube. As a control, 0.5 mL of bacterial
suspension was mixed with 0.5 mL 0.9% NaCl. Tubes were incubated at 35 ± 1 ◦C. A
positive result, i.e., clearing of the bacterial suspension within 3 h, defined the identification
as S. pneumoniae. Because clearing can start as early as 15 min after inoculation, results were
visually read after 30 min and after 3 h. Due to the difficulties in reading bile solubility
results, tests were additionally performed with a McFarland suspension of 4.0. For the
bile solubility plate test, a single colony on an agar plate was overlaid with one drop
of 10% sodium deoxycholate. The plate was incubated at 35 ± 1 ◦C for 15 to 30 min in
ambient air. Colonies of S. pneumoniae disappeared or showed a flattened morphology; the
appearance of non-S. pneumoniae colonies did not change.

2.4. Optochin Susceptibility Testing by Disk Diffusion

Additionally, optochin susceptibility testing by disk diffusion was performed as pre-
viously described [1]. Briefly, McFarland 0.5 suspension in 0.9% NaCl was streaked on a
blood agar plate. Subsequently, 9 mm disks containing 23 µg of optochin (Optochin Test



Microorganisms 2021, 9, 2010 3 of 10

OPTO-F, #55912, bioMérieux, Marcy l’Etoile, France) were placed onto the blood agar plates
and incubated at 35 ± 1 ◦C overnight in 5% CO2 and in ambient air environments. Ac-
cording to the manufacturer’s instructions (bioMérieux, Marcy l’Etoile, France), inhibition
zones of ≥15 mm defined susceptibility, confirming S. pneumoniae identification.

2.5. Determination of Minimum Inhibitory Concentration (MIC)

Because of a lack of a valid optochin breakpoint concentration to distinguish between
optochin-susceptible and non-susceptible isolates, resulting in S. pneumoniae or non-S.
pneumoniae discrimination, minimum inhibitory concentrations (MICs) of optochin were
determined for test development. MIC determination was performed by broth microdi-
lution according to the current CLSI guidelines [19,20]. In brief, overnight cultures on
blood agar (35 ± 1 ◦C, 5% CO2) were used to prepare a standardized inoculum of Mc-
Farland 0.5 turbidity in 0.9% NaCl. Standardized bacterial suspension was diluted to
10−2 in cation-adjusted Mueller–Hinton broth with lysed horse blood (CAMHB with LHB
(CP112-10), Thermo Scientific™/Remel Inc., San Diego, CA, USA). Optochin (ethylhy-
drocupreine hydrochloride, Sigma Aldrich, Darmstadt, Germany) concentrations in the
range of 0.125–256 µg/mL were tested in double dilution steps. A final inoculum of ap-
proximately 5 × 105 cfu/mL was generated using 50 µL of diluted bacterial suspension
mixed with 50 µL of optochin solution in a 96-well microtiter plate. Inoculum quantity
was confirmed by vital cell counting of serial dilutions onto blood agar in triplicates after
overnight incubation at 35 ± 1 ◦C in 5% CO2. After 20–24 h incubation at 35 ± 1 ◦C in
ambient air, results of broth microdilution were visually read. All tests were performed in
triplicate and the median MIC was determined.

2.6. MALDI-TOF MS-Based Optochin Susceptibility Test
2.6.1. Investigation of Optimal Test Conditions

Investigation of optimal test conditions for MALDI-TOF MS-based optochin suscep-
tibility test was carried out using five reference strains and eight consecutively collected
clinical blood culture isolates (n = 13, development set). DOT-MGA was performed as
previously described [16,21,22]. In brief, a bacterial suspension with turbidity of 0.5 McFar-
land standard was prepared from an overnight culture on blood agar. For growth control,
this suspension was diluted to 10−2 in CAMHB with LHB and added to the same volume
of CAMHB with LHB. Additionally, the diluted bacterial suspension was added to the
same volume of CAMHB with LHB containing optochin in final concentrations of 2, 4 or
8 µg/mL, as possible breakpoint concentrations dividing between optochin susceptible
and non-susceptible isolates. The final inoculum of approximately 5 × 105 cfu/mL was
confirmed by vital cell counting, as described above. Droplets of 6 µL were transferred
from each well of the microtiter plate onto a disposable MALDI target (MBT Biotarget 96,
Bruker Daltonics GmbH & Co. KG, Bremen, Germany) in duplicate (double spotting). For
each time point, a separate target was prepared. The targets were incubated in a plastic
transport box (Bruker Daltonics GmbH & Co. KG, Bremen, Germany), where 4 mL of water
were added to generate a humid atmosphere and to avoid evaporation of microdroplets.
The boxes were incubated for 8 and 24 h at 35 ± 1 ◦C. An additional target was incubated
for 24 h in an incubation chamber device with individual temperature control, which
results in standardized incubation conditions and minimal risk of evaporation (MBT FAST
shuttle prototype (Bruker Daltonics GmbH & Co. KG, Bremen, Germany)). After incuba-
tion, the liquid medium was removed to avoid interference with broth ingredients during
MALDI-TOF MS measurement. For targets that were incubated in the plastic transport
box, medium was removed using novel absorptive pads (Bruker Daltonics GmbH & Co.
KG, Bremen, Germany) while touching the droplets carefully from the top. For targets
that were incubated in the MBT FAST shuttle prototype, a stamp device filled with an
absorptive pad and fit to the incubation chamber device was used to remove the medium
(MBT FAST stamp prototype (Bruker Daltonics GmbH & Co. KG, Bremen, Germany)).
The dried spots on the target were overlaid with 1 µL 70% formic acid. Subsequently, the
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dried spots were overlaid with 1 µL matrix spiked with an internal standard (MBT FAST
matrix (Bruker Daltonics GmbH & Co. KG, Bremen, Germany)) dissolved in the standard
solvent (Solution OS, LCH CHIMIE, Les Aires, France) according to the manufacturer’s
instructions.

2.6.2. Confirmation of Test Conditions and Evaluation of Assay Performance

Established test conditions were confirmed in an additional confirmation study using
12 pneumococci and 12 other SMG clinical isolates (n = 24, test set). A MALDI-TOF MS-
based optochin susceptibility test was performed exactly as described above. Optochin
breakpoint concentrations of 2, 4 and 8 µg/mL were further tested in this study part,
because previous results could not clearly demonstrate an optimal concentration that
distinguishes between optochin-susceptible and non-susceptible isolates. Incubation times
of 8, 10, 12 and 20 h in ambient air were tested, while targets were placed in a plastic
transport box filled with 4 mL water at the bottom. An additional target was incubated
for 20 h in the MBT FAST shuttle prototype (Bruker Daltonics GmbH & Co. KG, Bremen,
Germany). For testing S. pseudopneumoniae isolates, targets were additionally incubated
with 5% CO2 in plastic transport boxes for 8, 10, 12 and 20 h at 35 ± 1 ◦C. After incubation,
the medium was removed from all targets using the MBT FAST stamp with absorptive
pads. Subsequent target preparation was carried out as described above.

2.6.3. Spectrum Acquisition, Determination of Specific Cut-Off Values and Data Evaluation

MALDI-TOF MS measurement was performed using the MALDI Biotyper smart
instrument (Bruker Daltonics GmbH & Co. KG, Bremen, Germany) and the flexControl
software (Version 3.4, Bruker Daltonics GmbH & Co. KG, Bremen, Germany). Spectra
were acquired with optimized instrument settings for the MBT FAST assay and a modified
AutoXecute method (MBT-FAST.axe) was used. Each spot was measured twice. Acquired
spectra were analyzed using a novel prototype software (MBT FAST prototype software),
which compared the acquired spectra on spots with antibiotics to the spectra of the corre-
sponding growth control; for test development, various evaluation criteria were tested to
categorize the acquired spectra as representing optochin susceptibility (no growth means
identification as S. pneumoniae) or optochin non-susceptibility (growth means identification
as non-S. pneumoniae). The evaluation criteria that performed best for the isolates of the
development set were applied for evaluation of the test set isolates in the confirmation part
of the study. Tests were considered valid if the growth control was successfully detected.
Molecular characterization was used as a reference identification method, and rates of false-
positive and false-negative classifications were calculated for valid tests. False-negative
rate was the proportion of isolates tested as optochin non-susceptible (non-S. pneumoniae)
by MALDI-TOF MS DOT-MGA but identified as S. pneumoniae by the molecular reference
method. False-positive rate was the proportion of isolates tested as optochin susceptible
(S. pneumoniae) by MALDI-TOF MS DOT-MGA but identified as non-S. pneumoniae by the
reference method.

3. Results
3.1. Molecular and Biochemical Identification Methods

The results of molecular and biochemical identification for development set isolates
are shown in Table S1. The results of the classical bile solubility and optochin suscepti-
bility testing by disk diffusion corresponded to the molecular identification results, but
with limitations in correct identification of S. pseudopneumoniae (Table S1). Twenty-four
clinical isolates of the test set were confirmed as 12 S. pneumoniae and 12 SMG isolates by
molecular and biochemical identification, as well as classical bile solubility and optochin
susceptibility by disk diffusion, but there were also difficulties in correct identification of S.
pseudopneumoniae (Table S2).
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3.2. Minimum Inhibitory Concentration and Optochin Breakpoint Determination

MICs of optochin for the development set isolates are presented in Table S3. There
was a clear delineation of optochin MICs for S. pneumoniae and S. pseudopneumoniae (when
the latter was tested in ambient air), on the one hand, and MICs of other SMG species, on
the other hand (Figure 1). For following test development, 2, 4 and 8 µg/mL optochin were
chosen as potential breakpoint concentrations to distinguish between pneumococci and
non-pneumococci.
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Figure 1. Distribution of MICs within the development set isolates to determine an optimal optochin
breakpoint concentration for following test development.

3.3. Investigation of Optimal Test Conditions

In total, 13 streptococci isolates (development set) were tested with three different
optochin concentrations (2, 4 and 8 µg/mL). Software configurations based on the tested
strain set resulting in best overall results were used for the final evaluation of assay
performance. All tested optochin concentrations showed comparable results and, compared
to molecular methods used as a reference, all tested isolates were classified correctly after
24 h incubation time in the MBT FAST shuttle (Table 1). Test validity was 100% after 24 h
incubation time, independent of the incubation device (Table 1). Correct classification was
slightly better when targets were incubated in the MBT FAST shuttle compared to those
incubated in the plastic target box. Short-time incubation showed no sufficient validity;
only 23.1% of tested isolates showed sufficient growth after 8 h incubation time (Table 1).

Table 1. Performance of MALDI-TOF MS-based DOT-MGA for establishing optimal test conditions for optochin susceptibil-
ity testing using evaluation with MBT FAST prototype a.

Incubation Type Plastic Target Box MBT FAST Shuttle
(Prototype)

Incubation Time 8 h 24 h 24 h

Optochin Concentration 2 µg/mL 4 µg/mL 8 µg/mL 2 µg/mL 4 µg/mL 8 µg/mL 2 µg/mL 4 µg/mL 8 µg/mL

Validity [%] 23.1 23.1 23.1 100 100 100 100 100 100
Correct classification b [%] 66.7 66.7 66.7 92.3 92.3 84.6 100 100 100

False negative b [%] 0.0 0.0 0.0 0.0 0.0 7.7 0.0 0.0 0.0
False positive b [%] 33.3 33.3 33.3 7.7 7.7 7.7 0.0 0.0 0.0

a development set isolates, n = 13; b Calculated for valid tests.

3.4. Confirmation of Test Conditions and Evaluation of Assay Performance

Experiments on test development showed no clear optochin breakpoint concentration,
so that 2, 4 and 8 µg/mL optochin concentrations were further tested in the confirmation
study part as candidate breakpoints. Overall, 24 clinical streptococci isolates were tested
and with 20 h incubation time, test validity was—independent of incubation device—95.8%
(Table 2). Correct classification of S. pneumoniae and non-S. pneumoniae isolates was at least
91.3% (2 µg/mL optochin and incubation in MBT-FAST shuttle) and 100% for 2 µg/mL
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optochin breakpoint concentration when incubated in the plastic target transport box
(Table 2).

Table 2. Accuracy of the MALDI-TOF MS-based optochin susceptibility testing after 20 h incubation
time a.

Incubation Device Plastic Target Box MBT FAST Shuttle
(Prototype)

Incubation Time 20 h 20 h

Optochin Concentration 2 µg/mL 4 µg/mL 8 µg/mL 2 µg/mL 4 µg/mL 8 µg/mL

Validity [%] 95.8 95.8 95.8 95.8 95.8 95.8
Correct classification b [%] 100 95.7 95.7 91.3 95.7 95.7

False negative b [%] 0.0 0.0 0.0 4.3 0.0 0.0
False positive b [%] 0.0 4.3 4.3 4.3 4.3 4.3

a test set isolates, n = 24; b Calculated for valid tests.

Short incubation times showed sufficient growth (test validity) in 62.5%, 37.5% and
20.8% of isolates after 12, 10 and 8 h, respectively (Table 3). The best result for differentiation
of pneumococci at earlier time points was achieved when applying 2 µg/mL optochin
as the breakpoint concentration. In this setting, correct classification was 100% (validity
62.5%) after 12 h (Table 3). Applying 4 and 8 µg/mL optochin, correct classification was
achieved in 93.3% and 86.7% after 12 h’ incubation, respectively (Table 3).

Table 3. Accuracy of the MALDI-TOF MS-based optochin susceptibility testing after short incubation a.

Incubation Type Plastic Target Box

Incubation Time 8 h 10 h 12 h

Optochin Concentration 2
µg/mL

4
µg/mL

8
µg/mL

2
µg/mL

4
µg/mL

8
µg/mL

2
µg/mL

4
µg/mL

8
µg/mL

Validity [%] 20.8 20.8 20.8 37.5 37.5 37.5 62.5 62.5 62.5
Correct classification b [%] 40.0 40.0 20.0 100 88.9 66.7 100 93.3 86.7

False negative b [%] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
False positive b [%] 60.0 60.0 80.0 0.0 11.1 33.3 0.0 6.7 13.3

a test set isolates, n = 24; b Calculated for valid tests.

In accordance with the guidelines for susceptibility testing of streptococci [19,20],
optochin susceptibility testing was carried out at 35 ± 1 ◦C in ambient air. However, for
differentiation of S. pneumoniae and S. pseudopneumoniae, MALDI-TOF MS-based optochin
susceptibility testing was additionally performed with incubation of S. pseudopneumoniae
isolates at 35 ± 1 ◦C in 5% CO2. S. pseudopneumoniae were correctly classified only after
20 h incubation time and with 2 µg/mL optochin as the breakpoint concentration.

4. Discussion

Many clinical laboratories have implemented MALDI-TOF MS for rapid identification
of microorganisms [9–13]. It would be advantageous and cost efficient to run additional
diagnostic tests on the same MALDI-TOF MS instrument. The recently developed MALDI-
TOF MS-based DOT-MGA is a rapid and universal antimicrobial susceptibility testing
method, which can be easily integrated in daily diagnostic workflows [16,23].

Limitations of conventional MALDI-TOF MS identification in distinguishing S. pneu-
moniae from other SMG streptococci have been shown in several studies [1–8]. That is why
we developed a MALDI-TOF MS-based optochin susceptibility test as a complementary
confirmation method for discrimination between pneumococci and non-pneumococci.

For test development, MIC results of the development set isolates were used to
determine an optochin breakpoint concentration for distinguishing between susceptible
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and resistant isolates, as no valid breakpoint is available for optochin broth microdilution
testing [20,24]. MIC distribution of the development set isolates showed a clear distinction
between optochin-susceptible S. pneumoniae (MIC range 0.25–0.5 µg/mL) and optochin-
resistant non-S. pneumoniae (MIC range 8–128 µg/mL) (Table S3). Only one S. mitis isolate
showed an MIC of 8 µg/mL, whereas optochin MICs for all other non-S. pneumoniae
isolates were between 32 and 128 µg/mL (Figure 1 and Table S3). The reference strain of S.
pseudopneumoniae showed optochin susceptibility (MIC 0.5 µg/mL, Figure 1 and Table S3),
when incubated in ambient air [25]. As candidate breakpoint concentrations for testing in
the MALDI-TOF MS-based DOT-MGA, 2, 4 and 8 µg/mL optochin were chosen.

Results of the investigation of optimal test conditions showed that an 8 h incubation
time was too short for sufficient growth of SMG isolates (Table 1). In contrast, a 24 h
incubation time showed satisfactory results that were independent of incubation device
(plastic box or MBT FAST shuttle). Minimal differences between incubation devices might
be due to variability because of the relatively low number of isolates in this proof-of-
concept study. This study phase showed the principal feasibility of the MALDI-TOF
MS-based optochin testing but revealed limitations of short incubation times due to the
slow growth of SMG species. There was no remarkable difference in results achieved with
different optochin breakpoint concentrations; however, testing with optochin concentration
of 8 µg/mL yielded more false-negative results after 24 h incubation in plastic box (7.7%).
The reason for this could be the worse quality of the manual supernatant removal in
comparison to the supernatant removal with the MBT FAST stamp prototype. Therefore, in
the following confirmation study phase, culture supernatant was removed using the MBT
FAST stamp prototype independent of incubation device (plastic box or MBT FAST shuttle
prototype). Moreover, 2, 4 and 8 µg/mL optochin were further tested in parallel, because
no clear decision could be made after the investigation of optimal test conditions.

For the confirmation study, incubation times of 8, 10 and 12 h were tested, as well as
20 h, which is the recommended time for standard broth microdilution susceptibility testing
of streptococci [19,20,24,26]. Results with shorter incubation times confirmed difficulties
in rapid differentiation of streptococci (Table 3). Nevertheless, a 12 h incubation time
showed promising results (62.5% validity and 100% correct classification), although test
conditions should be further optimized in future studies including larger strain collections.
Acceleration of growth detection could be achieved, e.g., by improved media composition,
inoculum size, and software algorithms. Due to usual working hours in clinical laboratories,
test periods of more than 8 h could be difficult to integrate into the daily workflow. Results
achieved after 20 h incubation in the confirmation study part were very promising (Table 2),
as 95.8% validity indicated that this time is enough for sufficient growth.

The false-positive rate was identical for different optochin concentrations and incu-
bation devices when the incubation time was 20 h (Table 2). For shorter incubation times,
the false-positive rate increased with increasing optochin concentrations, indicating that
higher concentrations of optochin inhibited microbial growth (Table 2). Therefore, 2 µg/mL
optochin was the optimal breakpoint concentration, when applying short incubation. This
is in accordance with the MICs distribution of test set isolates (Table S3). Most S. pneumoniae
and S. pseudopneumoniae isolates (for the latter, if MIC determination performed in ambient
air) showed MICs < 2 µg/mL.

S. pseudopneumoniae has been reported to be insoluble in bile, as well as resistant
or intermediate susceptible to optochin when incubated in 5% CO2, but susceptible to
optochin when incubated in ambient air [25]. According to the current guidelines [19],
susceptibility testing of streptococci should be performed in ambient air. In our study,
MICs were determined under ambient air conditions during the investigation of optimal
test conditions. During the evaluation of assay performance, MALDI-TOF MS-based DOT-
MGA setup for S. pseudopneumoniae isolates of the test set (n = 2) was additionally incubated
in 5% CO2 (data not shown). The growth of S. pseudopneumoniae was already sufficient after
8 h of incubation time in 5% CO2 (100% validity), which was not the case when incubated
in ambient air (Table 3). Correct classification of S. pseudopneumoniae isolates was achieved
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after 20 h incubation in 5% CO2 with 2 µg/mL optochin as the breakpoint concentration,
taking into account that S. pseudopneumoniae is known to be resistant to optochin when
tested in 5% CO2 by the standard method [25].

While molecular identification was used as the reference method in this study, other
standard differentiation methods were also evaluated. The results of the classical bile solu-
bility test using 0.5 McFarland suspension were partly difficult to read (Tables S1 and S2).
The results could be read better when the test was repeated with a 4.0 McFarland sus-
pension; however, there still were interpretation difficulties due to subjective judgment.
The bile insolubility of S. pseudopneumoniae [25] could not be confirmed due to ambiguous
results (Tables S1 and S2). Optochin susceptibility testing by disk diffusion performed in
parallel in ambient air and in 5% CO2 did not clearly show the previously reported effect
of incubation in 5% CO2 [25,27,28] (Table S2). Biochemical identification by the Vitek 2
instrument was not able to distinguish between S. pneumoniae and S. pseudopneumoniae
(Tables S1 and S2).

Different methods for discrimination of pneumococci possess various advantages
and limitations. Molecular identification can be considered as a reference method, but
is complex, time consuming and expensive [29]. Biochemical testing has limitations in
pneumococci differentiation [30,31], as does MALDI-TOF MS [3–5]. Bile solubility is a rapid
method for discrimination of pneumococci, which is however limited by subjective visual
interpretation and thereby, frequent inconclusive results [32,33]. Recently, Idelevich et al.
suggested a novel MALDI-TOF MS-based bile solubility test with an objective read-out [17].
Although the bile solubility test is more specific than the optochin test for discrimination
of S. pneumoniae [27,28], classical optochin susceptibility assay by disk diffusion is largely
used in diagnostic laboratories, probably because of simple visual interpretation [34].
Nevertheless, optochin susceptibility performed as a classical disk diffusion assay also has
limitations, and requires overnight incubation [1]. Notably, Burckhardt et al. demonstrated
that automated reading of disk diffusion optochin susceptibility tests is feasible after only
12 h of incubation [15]. However, manual reading after 12 h incubation can hardly be
integrated into the laboratory workflow, as most European laboratories are not manned
24/7 [13].

5. Conclusions

This study showed that optochin susceptibility testing by an alternative MALDI-TOF
MS-based approach is feasible within 20 h’ incubation time. A short time incubation was,
however, not sufficient due to the slow growth of streptococci. It remains to be investigated
if the improvement of assay conditions can considerably reduce the test duration. This
suggested assay could be used as a confirmation assay for standard methods, which still
have limitations and need confirmation, due to the different pathogenic potential of S.
pneumoniae and other SMG streptococci.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/microorganisms9102010/s1, Table S1: Results of molecular/biochemical species identification
and bile solubility/optochin disk diffusion for the development set of isolates (n = 13). Table S2: Re-
sults of molecular/biochemical species identification and bile solubility/optochin disk diffusion for
the test set of isolates (n = 24). Table S3: Results of optochin minimum inhibitory concentration (MIC)
for the development set (n = 13) and the test set (n = 24) isolates.
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